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FORMAL THEORY OF NOISY SENSOR NETWORK
LOCALIZATION∗

BRIAN D. O. ANDERSON† , IMAN SHAMES† , GUOQIANG MAO‡ , AND BARIŞ FIDAN§

Abstract. Graph theory has been used to characterize the solvability of the sensor network
localization problem. If sensors correspond to vertices and edges correspond to sensor pairs between
which the distance is known, a significant result in the theory of range-based sensor network local-
ization is that if the graph underlying the sensor network is generically globally rigid and there is
a suitable set of anchors at known positions, then the network can be localized, i.e., a unique set
of sensor positions can be determined that is consistent with the data. In particular, for planar
problems, provided the sensor network has three or more noncollinear anchors at known points, all
sensors are located at generic points, and the intersensor distances corresponding to the graph edges
are precisely known rather than being subject to measurement noise, generic global rigidity of the
graph is necessary and sufficient for the network to be localizable (in the absence of any further
information). In practice, however, distance measurements will never be exact, and the equations
whose solutions deliver sensor positions in the noiseless case in general no longer have a solution.
This paper then argues that if the distance measurement errors are not too great and otherwise the
associated graph is generically globally rigid and there are three or more noncollinear anchors, the
network will be approximately localizable, in the sense that estimates can be found for the sensor
positions which are near the correct values; in particular, a bound on the position errors can be
found in terms of a bound on the distance errors. The sensor positions in this case can be found by
minimizing a cost function which, although nonconvex, does have a global minimum.
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1. The problem of interest. Consider a two-dimensional sensor network con-
taining a set of nodes S = {s1, s2, . . . , sN}, and let distances dij between certain
pairs of nodes si, sj be given. Suppose further that the coordinates of certain nodes
(termed the anchor nodes) are given. The localization problem is one of finding a
map p̄ : S → R

2 which assigns coordinates p̄(si) ∈ R
2 to each node si such that,

first, the assignments are consistent with the anchor node position data, and second,
||p̄(si)− p̄(sj)|| = dij holds for all pairs i, j for which dij is given. One way localization
can be thought about is in terms of solving multivariable polynomial equations. Let
us write p̄(i) as shorthand for p̄(si). In particular, if p(i) is used to denote a variable
or unknown position for the node si, the values p̄(i) for i = 1, 2, . . . , N , which are the
true positions of the sensors are the solutions of the set of equations ||p(i)−p(j)|| = dij
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when the dij are known data, with the additional constraints that p(k) = p̄(k) when-
ever sk is designated as an anchor node, (for which p̄(k) is known a priori).

In this paper, we focus on the question of what happens when the distance data are
noisy, i.e., subject to some error, presumably on account of the measurement process:
instead of having available the true values dij associated with certain node pairs, we
have quantities which are perturbations of these values. Now in the noiseless case when
the relevant graph theoretic conditions are fulfilled which guarantee (unique) localiz-
ability, the set of equations ||p(i)− p(j)|| = dij reflecting the edge lengths (and with
the anchor constraints p(k) = p̄(k) whenever sk is designated as an anchor node) turns
out to be an overdetermined set of equations (a fact which will be established in a later
section), i.e., there are fewer scalar unknowns to be found than there are equations.
Hence, when the quantities dij are perturbed from their true values, there will, in gen-
eral, be no solution to the equations for the unknown p(i). This is a complication to the
problem of determining the p̄(i). It raises two questions of what is meant by localiza-
tion in the noisy case and to what extent can one hope to obtain some kind of estimates
for the sensor positions which are close to the true values, at least if the noise in the
distance measurements is small. These are the central problems this paper considers.

Although recently many papers have considered the problem of localization using
distance measurements in the presence of noise and proposed algorithmic solutions
to solve the localization problem, see, e.g., [15, 4, 14, 3], none of them has formally
studied when and how the problem of localization continues to be well-posed in the
presence of noise.

In this paper, we will argue that, given the graph theoretic conditions that would
guarantee unique localizability in the noiseless case, localization in the noisy case can
be posed as a minimization problem, the solution of which has several properties.
First, if the data are noiseless, the correct sensor positions are returned. Second,
when the noise is not great, the solution of the minimization problem is unique and
returns sensor position estimates which are not far from the correct values. Third,
the errors between the true sensor positions and the estimates returned by solving the
minimization problem go to zero continuously as the noise perturbations in the true
distances go to zero. On the other hand, the minimization problem is not guaranteed
to have just one local minimum, and the determination of an effective robust algo-
rithm or numerical procedure for actually solving the problem to achieve localization,
as for the noiseless case, is a separate and challenging task. While these results are
not especially surprising, they serve to fill a logical gap between the formal treat-
ment of noiseless localization and typical practical approaches to sensor localization
in nonideal circumstances.

The next section provides background on the graph theoretic issues which under-
pin examination of the various equations and associated minimization problem. The
third section states and proves the main result, while the fourth section contains brief
concluding remarks.

2. Global rigidity and rigidity.

2.1. Combinatoric characterizations and properties. We associate a graph
G = (V,E) with a two-dimensional sensor network in the usual way. Each vertex of
the graph corresponds to one sensor, and there is an edge in the graph joining two
vertices just when the distance between the corresponding nodes of the sensor network
is known.

In other work [2, 8], it has been shown that the (noiseless version of the) sensor
network localization problem in R

2 is, in principle, solvable if and only if the graph G
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has the property of generic global rigidity [11] and there are at least three noncollinear
anchor nodes. (The property of generic global rigidity, and the associated concept of
global rigidity of a network or formation, will be explained in greater detail.) The
qualifying words “in principle” imply that no consideration is being given at this point
to the nature of a particular algorithmic procedure for carrying out the localization
calculation. The word “generic” also deserves comment. Others sometimes remove the
word generic from the term generic global rigidity with mild abuse of nomenclature,
as, for example, in [11], where the term “global rigidity” is used instead of “generic
global rigidity” as a descriptor of certain graphs. The term “uniquely realizable” has
also been used for generic global rigidity; see [6, 11]. It turns out that there can be
special networks which have at least three noncollinear anchors but which are not
localizable although the associated graphs are globally rigid. They are exceptional,
and in them, special relationships exist among the sensor positions, e.g., groups of
sensors may be collinear. Thus the reason for using the term generic is to highlight
the need to exclude the problems arising from such networks. For further discussion
on the use of the word generic in the terminology generic global rigidity and generic
rigidity, one may refer to [10, 13, 19].

Much of what follows depends on an understanding of the global rigidity concept
and also the concept of rigidity. Therefore, before going further, we include some
background information on these graph theory concepts. Let us call a framework
a graph G = (V,E) together with a map p̄ : V → R

2. Then p̄(vi), written with
mild abuse of notation as p̄(i), denotes the coordinate vector associated with vertex
vi ∈ V . Suppose a set of positive real numbers (representing intersensor distances)
D = {dij : {i, j} ∈ E} is defined. The framework is a realization if it results in
||p̄(i) − p̄(j)|| = dij for any {i, j} ∈ E. The two frameworks (G, p̄) and (G, p̃) are
equivalent if ||p̄(i) − p̄(j)|| = ||p̃(i) − p̃(j)|| for any {i, j} ∈ E. The two frameworks
(G, p̄) and (G, p̃) are congruent if ||p̄(i)−p̄(j)|| = ||p̃(i)−p̃(j)|| for all pairs i, j whether
or not {i, j} ∈ E. This is equivalent to saying that (G, p̄) can be obtained from (G, p̃)
by an isometry of R2, i.e., a combination of translation, rotation, and reflection.

A framework is rigid when it cannot flex, i.e., it cannot via continuous motions
respecting the edge constraints become noncongruent to its starting position. More
precisely, (G, p̄) is rigid if there exists some positive ε such that if (G, p̄) and (G, p̃)
are equivalent and ||p̄(i) − p̃(i)|| < ε for all i ∈ V , then the two frameworks are
congruent. It is important to understand, and we will use this fact below, that there
exist rigid frameworks (G, p̄) and (G, p̃) which are equivalent but not congruent [11].
In more detail, call a framework minimally rigid when the framework is rigid but the
deletion of any single edge from the associated graph results in a nonrigid framework.
Then any minimally rigid framework with more than three vertices is equivalent to
another such framework to which it is not congruent. (Many rigid frameworks which
are not minimally rigid have this property also.) Processes using concepts termed flip
ambiguity and (discontinuous) flex ambiguity can always be used to construct from
any given minimally rigid framework with four or more vertices an equivalent but
noncongruent framework [9]; see Figure 2.1 for an illustration.

A framework (G, p̄) is globally rigid when every framework equivalent to (G, p̄)
is also congruent to it.

Rigidity and global rigidity for a framework in R
2 are generic properties, in the

sense that if a framework (G, p̄) has either of these properties, then the framework
(G, p̄) will also have the property for generic values of the position coordinates p̄, i.e.,
for all values save possibly those contained in a set involving an algebraic dependence
over the rationals of the coordinates. Hence, not surprisingly, the properties of rigidity
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Fig. 2.1. Illustration of (a) Flip ambiguity: Vertex D can be flipped over the edge (A,B) to
a symmetric position D′, and the distance constraints remain the same. (b) Discontinuous flex
ambiguity: Temporarily removing the edge (C,D), the edge triple (D,A), (D,E), (E,B) can be
flexed to obtain positions E′ and D′, such that the edge length (C,D) equals the edge length (C,D′),
and then all the distance constraints are the same.

and global rigidity can be cast purely in terms of properties of the underlying graph
G, to which the terms generic rigidity and generic global rigidity can be applied.

A combinatoric necessary and sufficient condition for generic rigidity is encapsu-
lated in Laman’s theorem [12].

Theorem 2.1 (Laman’s theorem). A graph G = (V,E) modeling a framework
in R

2 of |V | vertices and |E| edges is generically rigid if and only if there exists a
subgraph G′ = (V,E′) with 2|V | − 3 edges such that for any subset V ′′ of V , the
induced subgraph G′′ = (V ′′, E′′) of G′ obeys |E′′| ≤ 2|V ′′| − 3.

A necessary condition for generic rigidity is evidently that there are at least
2|V | − 3 edge constraints. A necessary and sufficient condition for generic global
rigidity is that G remains generically rigid when any edge is removed and that between
any two vertices, there exist at least three paths which are nonintersecting except at
the two vertices in question, i.e., G is 3-connected [7]. Hence, in a generically global
rigid graph, there are necessarily at least 2|V | − 2 edges.

It is clear that a framework is an abstraction of a sensor network. However, even
given the graph and distance set of a globally rigid framework, there is not enough
information to position the framework absolutely in R

2. In fact, as noted above,
the framework can be positioned only to within a translation, rotation, or reflection.
To eliminate this nonuniqueness requires further knowledge, typically the absolute
position of at least three vertices. In a physical sensor network, this information is
either derived from global position sensing measurements or other form of independent
measurements. The vertices in question must not be collinear, for if they were, there
would be ambiguity up to a reflection in the position of all other vertices.

2.2. Linear algebra characterization and properties. There is a different
straightforward characterization of rigidity for a framework in linear algebra terms,
using the concept of the rigidity matrix.

Consider a graph G = (V,E) modeling a framework in R
2 of |V | vertices and |E|

edges. Let the coordinate vector p̄(j) of vertex vj be [xj , yj ]
�. The rigidity matrix

is defined with an arbitrary ordering of the vertices and edges and has 2|V | columns
and |E| rows. Each edge gives rise to a row, and if the edge links vertices j and k,
the nonzero entries of the row of the matrix are in columns 2j− 1, 2j, 2k− 1, and 2k
and are, respectively, xj − xk, yj − yk, xk − xj , yk − yj . For example, for the graphs
of Figures 2.2(a) and (d), the rigidity matrices are

R =

⎡
⎢⎢⎣

x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0
0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0
0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3

x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1

⎤
⎥⎥⎦
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Fig. 2.2. Rigid and nonrigid formations. The formation represented in (a) is not rigid. It
can be deformed by a smooth motion without affecting the distance between the agents connected by
the edges, as shown in (b). The formations represented in (c) and (d) are rigid, as they cannot be
deformed by any such move. In addition, the formation represented in (c) is minimally rigid because
the removal of any edge would render it nonrigid. That of (d) is not minimally rigid; any edge may
be removed without losing rigidity.

and

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0
0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0
0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3

x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1
x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0

0 0 x2 − x4 y2 − y4 0 0 x4 − x2 y4 − y2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The key result connecting generic rigidity of a graph and the rigidity matrix is
shown in the following theorem [19].

Theorem 2.2. A graph G = (V,E) modeling a framework in R
2 of |V | vertices

and |E| edges is generically rigid if and only if for generic vertex positions (or at least
one set of vertex positions), the rigidity matrix has rank 2|V | − 3.

It is easy to verify this result for the first example at least. With the generic vertex
position, the rank for the rigidity matrix R of Figure 2.2(a) is 4, and for Figures 2.2(c)
and (d), it is 5. At some special positions for the vertices of a framework, the rigidity
of the latter graph may be lost, often when vertices are collinear in R

2. If all vertices
are collinear in Figure 2.2(d), for example, column 2j of R is a multiple of column
2j − 1 for each j and so the rank of R is at most 4. Such situations are nongeneric.

There is intuitive content associated with the kernel of the rigidity matrix. In
case the rigidity matrix has rank 2|V | − 3, the dimension of the kernel is 3. Any
vector in the kernel then corresponds to velocities for the vertices of the framework
when the framework is translating and/or rotating. (In two dimensions, there are two
independent translations and one rotation that are always possible.) When the kernel
dimension is greater than 3, independent motions in addition to translation and rota-
tion are possible, corresponding to some kind of flexing. In more detail, suppose that
{i, j} ∈ E, so that the coordinates of vertices vi, vj in the framework obey for all time

||p̄(i, t)− p̄(j, t)||2 = d2ij .(2.1)



FORMAL THEORY OF NOISY LOCALIZATION 689

This equation captures the notion that the distance between the two vertices takes
a fixed value, the square of the value being d2ij . Assuming the motion is smooth, it
follows that

[p̄(i, t)− p̄(j, t)]�
d

dt
[p̄(i, t)− p̄(j, t)] = 0,(2.2)

and by stacking together |E| such equations, there results

R
d

dt
p̄(t) = 0,(2.3)

where p̄(t) denotes the 2|V |-vector obtained by stacking the p̄(i, t).
There is a second useful consequence of (2.1). Suppose that vertex positions

are initially fixed but then a small displacement δp̄ is made to the 2|V |-vector of
vertex positions without respecting the length constraints. There will, of course, be a
corresponding change in the lengths corresponding to the edges of the graph. To first
order, this change is described by

δd = 2Rδp̄,(2.4)

where δd is the vector of changes in the squares of the lengths, ordered in the same
way as the edges are ordered in defining R.

Because R is not square, it is not invertible. Therefore, it does not immediately
make sense to contemplate the change in vertex positions that would flow from an
arbitrary, even small, change in lengths, at least without some kind of constraint. One
can, however, contemplate constraining some of the vertices not to move and some of
the lengths not to change. Then a submatrix of R will map small changes in some of
the vertex positions to small changes in some of the squares of the lengths, and if the
matrix should be square and nonsingular, the inverse of this matrix will map small
changes in some of the squares of the lengths to small changes in some of the vertex
positions.

3. Equation sets and minimization problems for localization.

3.1. The overdetermined property of the equation set. Regarding p(i) as
a 2-vector corresponding to the unknown position of vertex vi, the equations which
apply to a framework are, in terms of the notation above,

||p(i)− p(j)||2 = d2ij ∀{i, j} ∈ E.(3.1)

One such equation is associated with each prescribed intersensor distance. (Of
course, we could have written the equations without the squares, but then they
would no longer be polynomial in the variables.) A particular set of values p̄(i), i =
1, 2, . . . , |V | satisfying these equations provides a particular set of vertex coordinates
for the framework vertices consistent with the distance constraint set.

A modified set of equations applies when the framework is derived from a sensor
network where there are anchor nodes since some of the node positions are now known.
Write the set of vertices of the associated graph as V = VO ∪VA, where VA comprises
precisely vertices corresponding to the anchor nodes, of which there must be at least
three, and VO is the set of (ordinary) vertices which do not correspond to anchor
nodes. Let the coordinate values for the anchor nodes be p̄(i) for i ∈ VA. Between
any two anchor nodes of the network, the distance is necessarily known. Denote by
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EA the subset of E comprising those edges joining two vertices which correspond to
anchor nodes.

Then the equations which apply to the framework after using the anchor node
information include distance information and coordinate information and are of the
form

||p(i)− p(j)||2 = d2ij ∀{i, j} ∈ E \ EA,

p(i) = p̄(i) ∀i ∈ VA.
(3.2)

(Note that we have discarded the equations corresponding to the length constraint
applying to the distance between two anchor nodes in formulating this equation set,
i.e., the edges EA, since such equations involve no unknown quantities.) Determining
a set of values p̄(i) for all i ∈ VO satisfying these equations is the localization problem,
at least when measurement data are exact.

We shall now establish that for a globally rigid framework, the number of inde-
pendent equations actually exceeds the number of (scalar) unknowns we are seeking
to determine, i.e., the set is overdetermined.

Lemma 3.1. Consider a globally rigid framework F = (G, p̄) with G = (V,E).
Suppose the vertex set V can be partitioned as V = VO ∪ VA, where |VA| ≥ 3 and the
values p̄(i) are known for all vi ∈ VA and unknown for all vi ∈ V \ VA. Then the
number of edge-length constraint equations in the equation set (3.2) exceeds 2|VO|.

Proof. Since the framework is globally rigid, we can drop any edge and it remains
rigid. Choose the dropped edge to be one of those in the edge-length constraint set
appearing in (3.2), i.e., not in EA. Since the associated graph is now rigid, there
exists by Laman’s theorem a minimally rigid subgraph G′ = (V,E′), and thus one
with |E′| = 2|V | − 3 edges, such that any induced subgraph of G′ defined using any
subset V ′′ of V has at most 2|V ′′| − 3 edges. Choose for V ′′ the set VA. Then in G′,
there are at most 2|VA|−3 edges joining vertex pairs in VA and so at least [2|V |−3]−
[2|VA| − 3] = 2|VO| other edges. Hence, apart from the edge that was dropped from
the edge constraint set E \ EA before constructing G′, there are necessarily at least
2|VO| distance constraint equations in (3.2), i.e., at least 2|VO|+1 distance constraint
equations in all. There are also precisely 2|VO| unknowns to be determined from the
equation set (3.2), taking the coordinates of the anchor nodes as known. Therefore,
the unknown coordinates are the solutions of an overdetermined set of equations.

The equation set (3.2) constitutes a set of simultaneous polynomial equations in
the position coordinates of the nonanchor nodes. In general, simultaneous polyno-
mial equations have multiple solutions (unless the equations are linear); however, an
overdetermined set, if it has a solution, can be such that the solution is unique.

A very simple example of the above formulation arises in considering the local-
ization of one sensor given its distance from each of three anchors when these have
known positions and are not collinear. Using two of the distance measurements, the
sensor with unknown position can be determined to within a binary ambiguity, given
by the intersection of two circles. The binary ambiguity is resolved using the third
distance measurement; the sensor with unknown position is at the single common
point of intersection of three circles with known centers and radii. (The fact that
there is a single common point of intersection is a consequence of the noncollinearity
of the anchors.) The number of scalar unknowns is two, being the two coordinates of
the sensor with unknown position. The number of distance equations is three.

3.2. Posing a noisy localization problem. Another feature of the overde-
termined nature of the equations becomes evident when we postulate errors in the
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(squares of the) distance measurements. Suppose that each squared distance d2ij in

(3.2) is replaced by d2ij + nij , the quantity nij being a (typically small) error in the
squared distance (rather than in the distance itself); thus dij remains the actual dis-
tance, and nij constitutes the measurement noise effect. Then in the absence of any
knowledge of the noise, it is natural to consider the following set:

||p(i)− p(j)||2 = d2ij + nij ∀{i, j} ∈ E \ EA,

p(i) = p̄(i) ∀i ∈ VA.
(3.3)

This equation set is still overdetermined but in general will have no solution. The
fact that it has no solution underpins the motivation for the paper.

The simplest example of this problem involves localizing a single sensor given
noisy measurements of its distance from three anchor sensors, as treated in [5]. As
already noted, there are two unknowns, the coordinates of the single sensor to be
localized. There are three scalar equations perturbed by noise, and there is generically
no solution. The obvious remedy is to try for an approximate solution, and that is
what is done in general.

Despite the inability to solve the noisy equation set (3.3), the notion of localiza-
tion, albeit approximate localization, still makes sense: clearly, it would be appropri-
ate to seek those coordinate values of p(i), call them p̄∗(i) for i ∈ VO = V \VA solving
the following minimization problem:

min
p(i),i∈VO

∑
{i,j}∈E\EA

[||p(i)− p(j)||2 − (d2ij + nij)]
2

subject to
p(i) = p̄(i) ∀i ∈ VA.

(3.4)

(Of course, other measures for the error between ||p(i)−p(j)||2 and (d2ij+nij) could be
used. There will be no essential difference in the results.) Now we know that if all nij

are zero, there is generically a unique solution to the minimization problem, namely,
the solution of the usual localization problem, which yields a zero value for the cost
function. Let n denote the vector of nij , corresponding to some arbitrary ordering of
the subset of edges E \ EA, i.e., edges incident on at least one ordinary (nonanchor)
vertex. Let ||n|| denote the Euclidean norm so that ||n||2 =

∑
{i,j}∈E\EA

n2
ij . The

questions of interest to us here are: Is it guaranteed that, at least for suitably small
||n||, there will still be a solution to the minimization problem and that its distance
from the solution of the localization problem with zero measurement noise will go
continuously to zero as the value of ||n|| goes to zero? A further question is: Under
what circumstances will the solution of the (noisy) minimization problem be unique?

Before stating the main result, let us motivate the need to limit ||n|| or equiv-
alently the magnitude of the |nij |. Consider Figure 3.1, which represents a sensor
network with four nodes in two configurations, one corresponding to nodes 1, 2, 3,
and 4 and the other corresponding to nodes 1′, 2, 3, and 4. Suppose that nodes 2, 3,
and 4 are anchors, and regard 1 as being in a true position. It is quite apparent from
the figure that the distances d12, d13, d14 are close to the distances d1′2, d1′3, d1′4. If
there are noisy measurements of d12, d13, d14 and the measurement error magnitudes
are comparable to the differences between d12, d1′2, etc., i.e., if the noisy measurements
of d12, d13, d14 yield values approximately equal to d1′2, d1′3, d1′4, then the solution of
the minimization problem could well give a point in the vicinity of 1′ rather than in
the vicinity of 1. On the other hand, there will be a value of measurement error such
that if it is not exceeded, there could be no possibility of this occurring.
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Fig. 3.1. A four-node sensor network in two configurations, one corresponding to nodes 1, 2, 3,
and 4 and the other corresponding to nodes 1′, 2, 3, and 4.

3.3. Main result. The central result of this paper is the following theorem.
Theorem 3.2. Consider a globally rigid and generic framework F defined by a

graph G = (V,E) and vertex positions p̄(i), i = 1, 2, . . . , |V |. Denote the formation as
F = F (V,E, p̄). Let VA ⊂ V denote vertices of G corresponding to anchor nodes, of
which there are at least three and for which the value of p̄(i) is known, and let EA ⊂ E
denote those edges incident on two vertices of VA, with the graph GA = (VA, EA) then
forming a complete subgraph of G. Let dij denote the distance between nodes i and
j when ij is an edge of G. Consider the minimization problem (3.4), and denote the
solution of the minimization problem by p̄∗. Then there exists a suitably small positive
Δ and an associated positive constant c such that if the measurement errors in the
squares of the distances obey ||n|| < Δ, the solution of the minimization problem is
unique and there holds ||p̄∗ − p̄|| ≤ c||n||.

The issue of what determines Δ and c and whether they are readily computed or
estimated will be dealt with subsequently.

We shall use several lemmas in proving the theorem. Some of these appear to be
of independent interest.

3.4. Background lemmas. For convenience, assume that the vertices in the
set V \ VA = VO are indexed from 1 to K := |VO|. Recall that we are seeking to
minimize the following cost function:

P [p(1), p(2), . . . , p(K)] =
∑

ij∈E\EA

[||p(i)− p(j)||2 − (d2ij + nij)]
2(3.5)

subject to

p(i) = p̄(i) for i = K + 1,K + 2, . . . , |V |.(3.6)

For fixed n, P is a function of the vector p or, equivalently, x1, y1, x2, y2, . . . , yn.
For the first lemma, we require some additional notation. Define the reduced

rigidity matrix Rr to be the submatrix of R containing those columns corresponding
to vertices 1, 2, . . . ,K and those edges joining vertex pairs of which at least one is in
the set 1, 2, . . . ,K. Note that the entries of Rr depend in an affine way on each of
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the xi, yi. Let e denote the vector of quantities eij = ||p(i)− p(j)||2 − dij − nij when
{i, j} ∈ E and with the same ordering as the rows of the rigidity matrix; the entries
depend on the xi, yi and the nij . Define eij = 0 when ij /∈ E, and let E denote the
square K ×K matrix with

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∑
j

e1j e12 e13 . . . e1K

e12 −∑
j

e2j e23 . . . e2K

e13 e23 −∑
j

e3j . . . e3K

...
...

...
e1K e2K e3K . . . −∑

j

ejK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(3.7)

Now using a straightforward calculation, we have the following lemma.
Lemma 3.3. Adopt the same notation as above. Then the column vector ∇P

whose (2i− 1)th and 2ith entries are ∂P
∂xi

and ∂P
∂yi

is given by

∇P = 2R�
r e,(3.8)

where the reduced rigidity matrix Rr is evaluated at the p(i), i = 1, 2, . . . |V |. Further,
the Hessian matrix ∇2P is given by

∇2P = 2[R�
r Rr + E ⊗ I2].(3.9)

The matrix Rr plays a crucial role in the above formulas and in the material
to come. As already recorded (see Theorem 2.2), for a rigid framework, the rigidity
matrix R must have rank 2|V | − 3. We will need the rank of Rr rather than R. Its
rank is given in the following lemma; also see [18].

Lemma 3.4. Adopt the notation above, with the assumption that the framework
F (V,E, p̄) is globally rigid and that a subset VA ⊂ V of vertices are designated as
anchor vertices, with an edge existing between every pair of vertices in VA. Then the
reduced rigidity matrix Rr (evaluated at p̄) has generically full column rank.

Proof. The rigidity matrixR has |E| rows and 2|V | columns and is of rank 2|V |−3.
Suppose that the vertices are ordered so that the last numbered vertices correspond
to VA and that the edges are ordered so that the edges joining vertices both in VA

appear last. (There are 1
2 |VA|(|VA| − 1) such edges, and since |VA| ≥ 3, there are

necessarily at least 3.) Then it is straightforward to see that for some matrices X and
Y with 2VA columns and with Y with at least 1

2 |VA|(|VA| − 1) rows, there holds

R =

[
Rr X
0 Y

]
.(3.10)

Now if Rr were not of full column rank, there would be a nonzero vector, call it α,
such that Rrα = 0. We shall obtain a contradiction. Define β = [α� 0]�. Then
Rβ = 0.

Now it is known from [19] that because R is the rigidity matrix of a rigid frame-
work, its kernel is three-dimensional and the following three vectors are a basis of the
kernel: λ1 = [1 0 1 0 . . .]�, λ2 = [0 1 0 1 . . .]�, and λ3 = [y1 − x1 y2 − x2 . . .]�.
Here [xi yi]

� denotes the coordinate vector of the ith vertex. Hence β must be a
linear combination of λ1, λ2, and λ3, i.e., for some scalar a, b, and c, not all zero:

β = aλ1 + bλ2 + cλ3.(3.11)
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The last 1
2 |VA|(|VA| − 1) rows give

aλ̄1 + bλ̄2 + cλ̄3 = 0,(3.12)

where λ̄1, λ̄2, and λ̄3 are subvectors formed from the last 1
2 |VA|(|VA| − 1) ≥ 3 entries

of λ1, λ2, and λ3, respectively. However, inspection of the subvectors formed from
the last three entries of λ̄1, λ̄2, and λ̄3 shows they are generically independent. Hence
nonzero a, b, and c cannot exist, i.e., there is no nonzero α that lies in the kernel of
Rr.

The preceding two lemmas will now provide the basis for using the implicit func-
tion theorem to show that the noisy minimization problem has a locally minimizing
solution when the noise is small enough.

Lemma 3.5. Assume the hypotheses of Theorem 3.2. Consider the set of equations
∇P = 0, which are necessarily satisfied at a minimum of the index (3.5). Then the
following are true:

1. These equations have the solution p(i) = p̄(i), i = 1, 2, . . . ,K when the nij for
{i, j} ∈ E \ EA are all zero.

2. There exist a suitably small positive Δ1 and a positive constant c depending
on Δ1 such that for any fixed n lying in the ball of radius Δ1 around the
origin, there is a unique solution p̂(i), i = 1, 2, . . . ,K of the equations ∇P = 0
satisfying the constraint ||p̂− p̄|| ≤ c||n||.

3. For the fixed n, this solution is a local minimizer (with respect to p) of
P (p,n).

Proof. The first conclusion of the lemma is trivial, amounting to the conclusion
that because the network is globally rigid, the actual vertex positions will be recovered
when measurements are noiseless.

To establish the second claim of the lemma, one can apply the implicit function
theorem to the equation ∇P (p,n) = 0. The second claim of the lemma will hold
true, provided the Jacobian of ∇P is nonsingular at the solution point of ∇P = 0
defined by the pair (p̄,n) = 0. The Jacobian is precisely ∇2P which is evaluated in
Lemma 3.3. Because by Lemma 3.4 Rr has full column rank, the matrix R�

r Rr is
positive definite and certainly nonsingular. Also, the matrix E is zero at this point.
Hence the second formula of Lemma 3.3 yields that ∇2P is nonsingular, as required.
For the third part, since at n = 0, ∇2P is positive definite, the continuity of this
expression in n guarantees it is positive definite for ||n|| suitably small, which means
that the stationary point p̂ is minimizing.

Lemma 3.5 shows that under the hypothesis of Theorem 3.2, with sufficiently
small noise so that the inverse function theorem becomes applicable, a local minimum
for P (p,n) is achieved with p = p̂. To prove the theorem, it remains to show that
this minimum is also a global minimum, i.e., that p̂ coincides with p∗.

3.5. Proof of the theorem. Let B denote the ball around p̄ defined by ||p− p̄|| <
cΔ1, and let Bc denote the complementary set ||p− p̄|| ≥ cΔ1. Observe that for all
n with ||n|| < Δ1, the immediately preceding lemma guarantees that p̂ ∈ B. Let P1

be defined by

P1 = inf
p(i),i∈VO ,p∈Bc

∑
{i,j}∈E\EA

[||p(i)− p(j)||2 − d2ij ]
2

subject to
p(i) = p̄(i) ∀i ∈ VA.

(3.13)
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The unique localizability property with zero noise, i.e., there exist unique p(i) and
p(j) such that ||p(i) − p(j)|| = dij , i, j ∈ {1, . . . , N}, guarantees that P1 is positive.
Also, P1 is overbounded by the minimum value of P computed on ||p− p̄|| = cΔ1.

Consider also a collection of minimization problems, parameterized by a nonneg-
ative constant Δ2, with variables p and n:

P2 = inf
p(i),i∈VO ,p∈Bc,||n||≤Δ2

∑
{i,j}∈E\EA

[||p(i)− p(j)||2 − (d2ij + nij)]
2

subject to
p(i) = p̄(i) ∀i ∈ VA.

(3.14)

There is an infimum as opposed to minimum used in (3.14) because the set over
which the extremization is performed is unbounded. Let us now argue that a bounded
set can be used, with a minimum resulting. With Δ2 fixed, we claim that the value of
P in (3.5) computed on the set {(p,n) : ||p− p̄|| = R ∧ ||n|| ≤ Δ2} for large enough
R will go to infinity as R → ∞: Suppose that for a fixed n obeying the constraint,
pR achieves the minimum of P on ||p− p̄|| = R, and suppose that for a particular R,
the 2-vector position of, say, the Ith vertex pR(I) is of order R. Since the underlying
graph is connected, there will be a path from any anchor node to node I, and so
the length of at least one edge along this path will be of order R. Therefore the
corresponding summand in (3.5) will be of order R4.

It follows that the infimum P2 of the index P over the set Bc
⋂ ||n|| ≤ Δ2 is going

to be attained over the intersection of the set Bc
R := Bc

⋂ ||p − p̄|| ≤ R for some
suitably large R and ||n|| ≤ Δ2, and because this is a bounded and closed set, there
will be at least one point in it achieving the minimum.

We shall now choose Δ2. First note that when Δ2 = 0, there holds P2 = P1.
Because P depends continuously on the nij , P2 will depend continuously on Δ2 as
Δ2 increases from 0. If P2 ≥ (1/2)P1 for all Δ2 ≤ Δ1, choose Δ2 = Δ1. Otherwise,
choose Δ2 so that P2 = (1/2)P1, which requires Δ2 < Δ1.

By the argument above, the global minimum of P over the set Bc for a fixed n
obeying ||n|| ≤ Δ2 is at least (1/2)P1. By Lemma 3.5, there is a single local, and
therefore global, minimum of P in the closure of the set B for any fixed n obeying
||n|| ≤ Δ1 and a fortiori ||n|| ≤ Δ2. If this minimum is less than (1/2)P1, it is
necessarily the global minimum with no restriction on the set of allowed p. Define Δ
by

Δ = min{Δ2, [(1/2)P1]
1/2}.(3.15)

Observe that for any fixed n, there holds

P ∗ = min
p(i),i∈VO

∑
{i,j}∈E\EA

[||p(i)− p(j)||2 − (d2ij + nij)]
2(3.16)

≤
∑

{i,j}∈E\EA

[||p̄(i)− p̄(j)||2 − (d2ij + nij)]
2(3.17)

= ||n||2.(3.18)

Now require ||n|| < Δ. Then this formula ensures that P ∗ < (1/2)P1. Such a
minimum cannot be achieved in the set Bc. Hence it is achieved in the set B. Within
this set, there is at most one minimum. Therefore the minimum in this set is the
global minimum with no restriction on the set of allowed p. This proves the theorem.
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3.6. Remarks on the constants in the theorem. The main theorem involves
two constants c and Δ. This subsection makes some remarks on these constants.

The constant c arises in a more or less standard way in applying the inverse
function theorem. Indeed, it is standard that in an infinitesimal neighborhood around
p̄, n̄ = 0, there holds

∇2P (p̄∗ − p̄) =

[
∂

∂n
(∇P )

]
n̄ = 2R�

r n.(3.19)

Noting the expression for ∇2P in (3.9) and that at p̄, one has E = 0, we see that,
infinitesimally,

R�
r Rr(p̄∗ − p̄) = R�

r n(3.20)

so that

c = [λ
1/2
min(R

�
r Rr)]

−1.(3.21)

In this equation, Rr is evaluated at p̄. As noted, the value of c applies for
infinitesimally small perturbations of n around zero. It is, of course, a guide for larger
perturbations. For infinitesimally small perturbations around a nonzero value of n,
there holds, using (3.19),

c = [λmax[Rr(∇2P )−2R�
r ]]

1/2 = [λmax[(∇2P )−2R�
r Rr]]

1/2.(3.22)

In this equation, the various quantities are evaluated at the nominal value of n and
the corresponding value of p̄. For larger perturbations with n restricted by ||n|| < Δ,
it then follows that

c = max
||n||≤Δ

[λmax[Rr(∇2P )−2R�
r ]]

1/2 = max
||n||≤Δ

[λmax[(∇2P )−2R�
r Rr]]

1/2.(3.23)

The value of (3.21) is a lower bound to the value just obtained. If Δ is small, it may
be a good approximation to the correct value of c.

Now we turn to explaining the value of Δ. There are two reasons why this quantity
may be limited. First, the set over which the inverse function theorem is valid is
necessarily one where ∇2P is positive definite. This property holds at the point where
n = 0. It may cease to hold well away from this point. It is this phenomenon which
limits the size of Δ1. There is a second independent limiting factor. In the noiseless
case, there may be a local minimum for the function P differing from zero by a small
amount. The coordinate values corresponding to this local but nonglobal minimum
will necessarily be different from those corresponding to the global minimum. Then it
is likely that as noise levels are slowly increased from zero, the coordinates yielding the
global minimum could jump at some noise level from the vicinity of those applicable
in the noiseless case to coordinates corresponding to a point in the vicinity of that
associated in the noiseless case with the local but nonglobal minimum. To stop this
from happening, it may be necessary to take ||n|| ≤ Δ2 < Δ1 (this, in particular,
ensures that the minimum value of the cost function in the vicinity of any differing
local minimum does not get too small, in particular, not smaller than (1/2)P1) and
also to take ||n|| < [(1/2)P1]

1/2 to ensure that the value of the noisy cost function at
the minimum in the vicinity of the noiseless global minimum does not get too large,
in particular, not greater than (1/2)P1.
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4. Conclusions. Sensor network localization in the noiseless case is a matter of
finding a unique solution of some overdetermined equations. Because of the overde-
termined property, the equations cannot be expected to have any solutions if noise
perturbs a number of the quantities appearing in the equations. This paper has
indicated how to replace the problem of solving equations by one of minimizing a per-
formance index in a consistent way. That is, in the noiseless case, minimization of the
performance index should recover the same result as solving the equations, and in a
low noise case, the result should be close to the noiseless result, with the perturbation
continuous in the noise magnitude.

An important problem, linked but separate from the one treated in this paper,
is how (numerically) to solve the minimization problem. The corresponding problem
in the noiseless case is how to perform localization. For a localization problem to
be solvable in polynomial time, it is generally necessary that some special structure
holds for the graph; for example, in the case of trilateration graphs, localization can
be done in linear time with suitable anchors [1]. We would expect, although we have
no formal proof, that such geometries will also be important in ensuring that a noisy
localization problem is computationally tractable. The issue in noisy localization will
be to obtain a suitable initial iterate, i.e., one that is close to the global minimum
of the index and from which the global minimum can be reached through a standard
sort of descent algorithm. It is easy to envisage for a trilateration graph, for example,
how one could systematically use noisy measurements to construct an initial iterate
for use in the index of this paper. As with noiseless localization in a trilateration
graph, initial iterates for the position of each nonanchor node would be successively
determined.

There are many other localization problems than those relying on just range, us-
ing, for example, bearings and time differences of arrival (TDOA) [17, 16] in which,
again in the noiseless case, an overdetermined set of equations determines the solution.
For example, in TDOA localization in two dimensions, typically three or more hyper-
bola branches have a common point of intersection. The same issue will arise in the
presence of noise, and this paper gives some of the formal machinery for dealing with it.
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