
Passive Angle Measurement Based Localization
Consistency via Geometric Constraints
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Abstract

In this paper we examine the geometric relations between
various measured parameters and their corresponding errors
in angle-measurement based emitter localization scenarios.
We derive a geometric constraint formulating the relationship
among the measurement errors in such a scenario. Using this
constraint, we formulate the localization task as a constrained
optimization problem that can be performed on the measure-
ments in order to provide the optimal values such that the
solution is consistent with the underlying geometry.

1. INTRODUCTION

LOCALIZATION and positioning systems typically in-

volve three types of measurements; distance, time dif-

ference of arrival (TDOA) and angle. In this paper we focus

on angle-measurement based localization. Angle measuring

sensors measure the direction to the target with respect to

either a global or local direction [1], [2], [3], [4]. Passive

surveillance radars, for example typically involve measuring

only the bearings of the targets since they are more readily

available in a passive scenario.

The objective of this work is to derive and examine functional

relationships between the measurement errors in a passive

surveillance scenario. We seek to form a constraint function

that can be used in constrained optimization processes where

the aim is to minimize the location estimation error for a target.

Indeed the errors may be estimated such that the final solution

satisfies the proposed constraint and hence is consistent with

the geometry. In this paper we only consider situations in �2.

Geometric constraints have been examined for distance based

problems and recently a functional relationship between the
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errors in distance-based localization was derived [5] and

exploited to secure improvement in localization using noisy

measurements. In [5] a quadratic constraint on the distance

measurement errors is given. One of the contributions of this

paper is development of such a geometric constraint for angle-

measurement based localization.

Furthermore, we show how this constraint on the measured

angles can be used to find a consistent solution to the localiza-

tion problem when no solution would traditionally be reached

using only the noisy measurements that are available. Using

the geometric constraint we derive, we formulate the above

problem as a constrained optimization problem and show that

equal or better performance results when compared to a mean

estimation solution.

The rest of this paper is organized as follows. In Section 2

we formulate the problem and derive a functional relationship

between the angle-measurement errors in a localization system

involving three or more sensors. Section 3 outlines the incon-

sistency problem associated with the over-determined system

of measurement equations from a geometric perspective and

outlines the solution to the problem conceptually. Section 4

discusses the constrained optimization approach taken to find

a consistent solution to the problem and Section 5 examines a

simulation showing the algorithms performance in practice.

In Section 6 we give our concluding remarks along with

suggestions for future work.

2. ANGLE CONSTRAINTS FOR PASSIVE SURVEILLANCE

Consider the problem of localizing an emitter in �2 using

measurements from three or more sensors. The sensors are

capable of estimating the bearings to the emitter relative to a

global direction. The inter-sensor distances are known and the

bearings between the sensors are accurately known relative to

the global direction. The over-determined system of equations

defined by the three or more measurements will not have a

unique solution in the presence of noisy measurements. We

consider the problem of finding a solution to the inconsistent

system of equations by formulating a relationship between the
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measurement errors. Consider the scenario in Figure 1.

Fig. 1: Angle relationships in a sensor triangle

Let us consider the internal angles and their corresponding

errors. We denote the angle subtended at sensor i by the target

and sensor j as θijT , and its noisy estimate by θ̂ijT . The

relevant equations are,

θ̂12T = θ12T − e1

θ̂13T = θ13T − e1

θ̂21T = θ21T − e2

θ̂23T = θ23T + e2

θ̂31T = θ31T − e3

θ̂32T = θ32T − e3 (1)

Notice that the set of the measurements only involves three

independent errors (ei for i ∈ {1, 2, 3}). The reasoning

for this relates directly to the way the internal angles are

determined. Each sensor measures the bearing to the target

relative to North. Call those bearing estimates φ̂1T , φ̂2T and

φ̂3T . These have errors ei such that the true bearings φiT

obey φ̂iT = φiT + ei. Also, we have available exactly the

angles φ12 and φ13, see Figure 2. Now it is easily seen that

θ̂12T = φ12 − φ̂1T = φ12 − φ1T − e1 = θ12T − e1 and so on.

This argument will explain the sign difference in the equation

for θ̂23T in (1).

For simplicity we shall assume the internal angles are de-

termined from the bearings and hence we omit any further

reference to the actual bearing measurements.

Theorem 1: Consider the arrangement of three sensors and a

target all located in the plane shown in Figure 1, with the three

sensors not collinear and no sensor collocated with the target.

The sensor angles in the triangle formed by the sensors are

precisely known and the bearings from each sensor (relative

to North) to the target are approximately known. Suppose that

θijT denotes the angle subtended at sensor i by sensor j and

Fig. 2: Internal angle determination from bearings

the target, and suppose that noisy measurements are available

for the associated six quantities as indicated in (1). Then in

terms of the known quantities θ̂ijT , the unknown errors ei

satisfy the following trigonometric constraint,

sin(θ̂12T + e1)sin(θ̂23T − e2)sin(θ̂31T + e3) −
sin(θ̂21T + e2)sin(θ̂32T + e3)sin(θ̂13T + e1) = 0 (2)

Proof: Referring to Figure 1, a system of equations can

be given as follows

Asin(θ12T ) − Bsin(θ21T ) = 0 (3)

Bsin(θ23T ) − Csin(θ32T ) = 0 (4)

Asin(θ13T ) − Csin(θ31T ) = 0 (5)

We would like to eliminate A, B, and C from the above system

of equations. Solving (3) for A and substituting this into (5),

A =
Bsin(θ21T )
sin(θ12T )

⇒ C =
Bsin(θ21T )sin(θ13T )
sin(θ12T )sin(θ31T )

(6)

Substituting the result for C (6) into (4),

B =
Bsin(θ21T )sin(θ32T )sin(θ13T )
sin(θ12T )sin(θ23T )sin(θ31T )

(7)

Hence,

sin(θ12T )sin(θ23T )sin(θ31T ) −
sin(θ21T )sin(θ32T )sin(θ13T ) = 0 (8)

Therefore, (8) is a functional relationship between the internal

angles of the triangle system given in Figure 1. By adding the

corresponding error term to both sides of each equation in (1)

and substituting into (8) we obtain the constraint equation (2).
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Remark 1: The constraint (2) appears to have no absolutely

known term, i.e a quantity such as φ12. However, although (2)

does not have any explicitly defined absolutely known value,

it does have some implicitly defined. In the determination of

the measured internal angles we use the bearings to known

sensor nodes and hence we assume these bearings are known

absolutely. Hence, the absolute bearing values are implicitly

represented in the constraint (2).

Remark 2: The constraint on the errors given by (2) is invalid

for scenarios involving three collinear sensors. Referring to

Figure 1 it is clear that θ12T will equal θ13T and θ31T will

equal θ32T when the three sensors are collinear. Furthermore,

it is straightforward to find that sin(θ21T ) equals sin(θ23T )
when all three sensors are collinear. Hence, the relationship

given by (8) is identically satisfied in all cases, i.e. including

scenarios when the system of angles (1) and the corresponding

rays do not intersect at a single point. The constraint (2) has

the advantage however, of involving only the measured angle

values as parameters.

For completeness, we provide a general constraint equation

that is valid for all geometries including the case involving

three collinear sensors, but that involves some inter-sensor

distances. We assume that no sensor is collocated with the

target. Consider the scenario depicted in Figure 1 again.

Theorem 2: Assume the same hypothesis as for Theorem 1,

save that the three sensors may be collinear with each other.

Let dij denote the distance between sensors i and j. Then

in terms of the known quantities θ̂ijT and dij , the unknown

errors ei satisfy the following trigonometric constraint,

d12sin(θ̂12T + e1)sin(θ̂23T − e2 + θ̂32T + e3) −
d23sin(θ̂32T + e3)sin(θ̂12T + e1 + θ̂21T + e2) = 0 (9)

Proof: Referring to Figure 1, a system of equations can

be given as follows

B = d12sin(θ12T )
sin(θ12T +θ21T ) (10)

B = d23sin(θ32T )
sin(θ23T +θ32T ) (11)

This clearly leads directly to,

d12sin(θ12T )sin(θ23T + θ32T ) −
d23sin(θ32T )sin(θ12T + θ21T ) = 0 (12)

Therefore, (12) is a trigonometric relationship between the

internal angles of the triangle system given in Figure 1.

By adding the corresponding error term to both sides of

each equation in (1) and substituting into (12) we obtain the

constraint equation (9).

Similarly to the method proposed in [5], we can derive a

system of functional relationships for the cases involving more

than three sensors. If the system involves k > 3 measurements

then we have k − 2 independent constraints by creating

constraints of the form,

ci−2(e1, e2, ei) = 0, for i = 3, 4, . . . , k (13)

These equations are obtained by considering the relations for

the angles involving the target and a sensor triangle including

sensors 1, 2 and i, for i = 3, 4, . . . , k. In the remainder of this

paper we shall focus on the case involving three sensors only.

3. GEOMETRIC INTERPRETATIONS

If we attempt to localize a single target in �2 using two

angle measurements from two sensors we have a well defined

system. That is, we have two measurement equations and two

unknowns (i.e. the x and y coordinates), and it so happens

that there is a unique solution. If we involve another sensor

and hence another measurement we have an overdetermined

system of equations. In an ideal case there will be a unique so-

lution to this overdetermined system of equations. In practice,

i.e. in the presence of noise, it will generally be the case that

there will be no (exact) solution to the system. One approach

that may be followed in the presence of noisy measurements

is to do pair-wise localization from the three pairs of well

defined systems. The result is depicted in Figure 3 where we

can clearly see that three intersections result in three possible

target estimations.

Fig. 3: Inconsistent system

We can estimate the mean position of the three estimates as

follows,

xmean = (x1:2 + x1:3 + x2:3)/3
ymean = (y1:2 + y1:3 + y2:3)/3 (14)

where, xi:j and yi:j are the x and y estimates for the well

defined system formed between sensors i and j. This is an

ad-hoc way of localizing, and it might well transpire that

the errors associated with this estimate fail to satisfy (2) or

(9). Given the existence of the constraint on the errors in the

system, we should seek to estimate a position for which the
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associated errors are consistent with (2) and (9). That is, if we

take pair-wise systems of the resulting consistent equations,

the three points should all fall on the same point. We will force

this constraint by estimating the errors through a constrained

optimization process analogous to that proposed in [5].

4. THE CONSTRAINED OPTIMIZATION APPROACH

The constraints on the measurement errors discussed in the

previous sections can be used in finding an optimal solution to

the localization problem defined in Section 2 after formulating

the localization problem as a constrained optimization problem

[6], [7]. The constraints force the solution to be consistent with

the underlying geometry such as the requirement that all the

nodes lie on a plane.

There exist various approaches in the literature to solve a

general constrained optimization problem. The least squares

estimation approach [8] with linear [9] and quadratic [10],

[11] constraints has been well documented in the literature.

Furthermore, other optimization techniques such as linear and

quadratic programming [12], [13] are available for optimiza-

tion subject to linear and quadratic constraints. Other nonlinear

constraints can be used in the optimization algorithms by

employing nonlinear programming [14], sequential quadratic

programming and numerical techniques. We use the optimiza-

tion toolbox in Matlab v7 (R14) to perform the numerical

optimization in this paper [15].

In this paper we formulate the optimization problem as fol-

lows: consider the following objective function,

f(e1, e2, e3) = e2
1 + e2

2 + e2
3 (15)

We want to minimize the cost function in (15) subject to

the constraint that c(e1, e2, e3) = 0 (e.g. equation (2) or

(12)). We use a sequential quadratic programming method to

perform constrained nonlinear optimization numerically using

the fmincon function in the Matlab Optimization Toolbox

(see [15]).

Sequential quadratic programming is widely used for solv-

ing nonlinear optimization problems where the objective and

constraint functions are continuously differentiable [16] and

is discussed in detail in [6], [17], [15]. We note, that in this

paper we employ an optimization bound on the measurement

errors such that −15o < ei < 15o for i ∈ {1, 2, 3} in order

to improve the convergence of the optimization algorithm. We

also begin the algorithm with an initial estimate of 0o.

The formula (15) can be thought of as coming up with a

maximum likelihood estimation of the errors, given that they

satisfy the particular constraints and that the errors have the

same variances. If the variances are different and given an a
priori estimate of the variances then each squared error in (15)

should be weighted by the inverse of its a priori variance.

Following the convergence of the optimization algorithm we

have an estimate of the errors ε = [e1, e2, e3]. According

to the constraints ((2) or (12)) and (1), it is this error value

plus the corresponding measured angle value that results in

system consistency along with hopefully estimating the true

angle values. Therefore, we add the appropriate error to the

appropriate measured angle (e.g. in (1)) and localize the

target in the standard way.

5. NUMERICAL SIMULATION

In order to illustrate the purpose and effectiveness of the

constraint based localization we examine a typical localization

scenario in detail. We consider three sensors and a single

target. The sensors can measure the direction to the target

relative to a global direction. Although the results are applica-

ble to cases with non-identical error distributions, we consider

here a case with identical error distributions. The measurement

errors obey a zero-mean Gaussian distribution with standard

deviation, σθ, of 5o.

A. No Collinear Sensors

We examine the performance of the constraint given in Theo-

rem 1 first. The scenario involving no constrained optimization

is given in Figure 4.
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Fig. 4: Simulation Example 1 - Estimation ignoring constraint consistency

We can clearly see that there are three distinct estimates

corresponding to the three pair-wise well defined localization

systems. We also note the position of the mean estimate of

these three pair-wise estimates. Following the constrained opti-

mization procedure we obtain an estimate of the measurement

errors that will also force solution consistency. The result

is given in Figure 5 along with the original mean position

estimate.

The three pair-wise estimates fall on the same point and

hence we see the consistency enforced through the constrained
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Fig. 5: Simulation Example 1 - Estimation considering constraint consistency

optimization process. The mean estimate and the constrained

optimization estimate can be shown to closely follow each

other. An analysis of the absolute position error for the mean

estimate and the constrained optimization estimate is given

over 100 simulation runs in Figure 6. In Figure 6 we plot the

following ratio,

ratio =
me − coe

coe
(16)

where, me is the mean estimate error and coe is the constrained

optimization estimate error. The mean estimate error is defined

as,

me =
√

(xtrue − xmean)2 + (ytrue − ymean)2

while the constrained optimization estimate error can be

defined as,

coe =
√

(xtrue − xco)2 + (ytrue − yco)2

where xco and yco are the x and y coordinates estimated using

the constrained optimization technique.

Referring to Figure 6 we see that the ratio in (16) is more likely

to be positive and hence the constrained optimization estimate
is closer to the target more often than the mean estimate of
the original three pair-wise estimates.

B. Collinear Sensors

We now examine the performance of the constraint given in

Theorem 2. The scenario involving no constrained optimiza-

tion is given in Figure 7.
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Fig. 6: Simulation Example 1 - Error comparison
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Fig. 7: Simulation Example 2 - Estimation ignoring constraint consistency

We can clearly see that there are three distinct estimates

corresponding to the three pair-wise well defined localization

systems. We also note the position of the mean estimate of

these three pair-wise estimates. Following the constrained opti-

mization procedure we obtain an estimate of the measurement

errors that will also force solution consistency. The result

is given in Figure 8 along with the original mean position

estimate.

The three pair-wise estimates fall on the same point and

hence we see the consistency enforced through the constrained

optimization process. An analysis of the absolute position

error for the mean estimate and the constrained optimization

estimate is given over 100 simulation runs in Figure 9. In

Figure 9 we plot ratio (16).

Referring to Figure 9 we see that the ratio in (16) is more likely

to be positive and hence the constrained optimization estimate
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Fig. 8: Simulation Example 2 - Estimation considering constraint consistency

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Simulation Run

E
rr

or
 R

at
io

Fig. 9: Simulation Example 2 - Error comparison

is closer to the target more often than the mean estimate of
the original three pair-wise estimates.

C. Discussion

From our simulations we note that the constrained optimiza-

tion estimate is generally a better choice than the mean po-

sition estimate. The constrained optimization estimate is also

forcing a consistent solution which more insightfully depicts

the ideal mathematical scenario where the overdetermined

system will still yield a single unique solution. There are also

more benefits to constraint based localization than just forcing

system consistency. A distance constraint on the inter-node

distances in a sensor network has been recently shown to be

a novel method to estimate the path-loss exponent in a signal

strength based localization scheme [18]. Therefore, these lines

of research warrant further investigation and reporting on.

Remark 3: Finally, it is important to note that although we

employed a least squares objective function for illustrative

purposes, we are by no means restricted to this. Indeed, the

least squares cost function can be thought of as simply a

particular incarnation of our algorithm.

6. CONCLUSION

This paper introduced a constraint on the errors in passive

angle-measurement based localization systems. The constraint

introduced allows us to estimate the errors such that the

system is consistent with the geometrical requirements. The

problem is formulated as a constrained optimization problem

and the resulting location estimate is compared with an average

estimate of the multiple inconsistent pair-wise estimates. The

comparison shows that the proposed method in general per-

forms equally well or better. This method takes advantage of

the underlying dependency between the measurement errors.

The future direction of this work involves analyzing, in more

detail, the optimization process and examining the potential

of various objective functions. The extension of this work to

localization in �3 space may also be examined.
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