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Abstract— Consider a wireless sensor network with i.i.d. sen-
sors following a homogeneous Poisson distribution in a given
area A in <2. A sensor located at x2 ∈ A is directly connected
to a sensor located at x1 ∈ A with probability g (x2 − x1),
independent of any other distinct pair of sensors. In this letter,
we provide a recursive formula for computing Pr (k|x), the
probability that a node x ∈ A apart from another node is
connected to that node at exactly k hops, for a generic random
connection function g : <2 → [0, 1]. The recursive formula is
accurate for k = 1, 2 and provides an approximation for Pr (k|x)
for k > 2. The exact and approximate analytical results are
validated by simulations. The knowledge of Pr (k|x) can be used
in a number of areas in sensor networks.

Index Terms— Random connection model, k-hop connection

I. INTRODUCTION

Consider a wireless sensor network (WSN) with i.i.d.
sensors following a homogeneous Poisson distribution with
known density ρ in a given 2D area, denoted by A. A sensor
at x2 ∈ A is directly connected to a sensor at x1 ∈ A
with probability g (x2 − x1), termed the connection function,
where g : <2 → [0, 1], independent of the event that another
distinct pair of sensors are directly connected. There are three
related probabilities characterizing the connectivity properties
of such a network, i.e. the probability that an arbitrary node
is k-hops apart from another arbitrary node, Pr (k) (i.e. the
length of the shortest path from the first node to the second
node measured by the number of hops is k); the probability
that a node x apart from another node is connected to that node
in exactly k hops, Pr (k|x); and the spatial distribution of the
nodes k-hops apart from another designated node, Pr (x|k).
These three probabilities are related through Bayes’ formula
and if one is computable, the other two will be computable
using similar techniques. Therefore we call these problems
collectively the probability of k-hop connection problems.

Solutions to the probability of k-hop connection problems
can be used in a number of areas in sensor networks. The
probability Pr (k) is useful in estimating the overall energy
consumption, lifetime and capacity of a WSN [1], [2]. The
probability Pr (k|x) can be used in the analysis of end-to-
end delay and energy consumption, and reliability of packet
transmission [3], [4], [5] and the probability in vehicular
networks that a vehicle can access the base station within
a designated number of hops [6]. The probability Pr (x|k)
is useful in estimating the distance between two nodes from
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their neighborhood information and obtaining variance of such
estimate, which can then be used in localization [7].

The conditional probability Pr (k|x) was first investigated
by Chandler [8] in which he analysed the probability that
two random radio stations separated by a known distance can
communicate in k or less hops where stations are uniformly
distributed on a flat earth and any two stations are directly
connected if their Euclidean distance is less than a given
threshold r, i.e. following the unit disk connection model for
which g (x) = 1 when ‖x‖ ≤ r and g (x) = 0 otherwise.
Here ‖x‖ denotes the Euclidean norm of x. Note that under
an omnidirectional connection model, including the widely
used unit disk model (UDM) and log-normal model [5],
Pr (k|x) = Pr (k| ‖x‖). In [5] Mukherjee and Avidor pre-
sented a technique to compute Pr (k| ‖x‖) in a network with
Poissonly distributed nodes, where the wireless links between
nodes are subject to log-normal fading. In [9] Bettstetter et al.
analysed Pr (k) under the UDM for k = 1, 2 and where a total
of n nodes are i.i.d. in a rectangular area following uniform
distribution. In [10] Miller analysed Pr (k) for k = 1, 2 under
a similar setting as that in [9] for Gaussian node distribution.
In [11], Dulman et al. investigated Pr (k| ‖x‖) in 1D and 2D
networks with Poissonly distributed nodes under the UDM.
In [1], Zorzi and Rao analyzed under the UDM the average
progress per hop for Poissonly distributed nodes whose path
is established using the greedy forwarding protocol (GFP). On
that basis they derived Pr (k| ‖x‖) for networks using the GFP.
In [12], [13] the authors analyzed Pr (k| ‖x‖) under the UDM
for Poissonly distributed nodes. Further the authors pointed out
the existence of the so-called spatial dependence problem in
the analysis of the hop count statistics, i.e. in 2D networks the
event that a node B is a k-hop neighbor of a node C and the
event that another node D is a k-hop neighbor of the same node
C are dependent for k ≥ 2, a fact which has been incorrectly
ignored in many previous studies. In this letter we advance
the earlier work by giving a recursive formula for computing
Pr (k|x) under the more practical generic random connection
model, where a sensor located at x2 is directly connected to a
sensor located at x1 with probability g (x2 − x1), independent
of the event that another distinct pair of sensors are directly
connected. The recursive formula is accurate for k = 1, 2 and
provides an approximation for Pr (k|x) for k > 2. Our result
incorporates the earlier results obtained under the UDM [12],
[13] and the log-normal model [5] as its two special cases.
Further, the impact of boundary effects is included in the
computation of Pr (k|x). Spatial dependence however causes
some errors for k > 2, see later simulations.
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II. ANALYSIS OF PROBABILITY OF k-HOP CONNECTION

Without loss of generality, consider that there is a node
located at the origin. The probability that a node located at
x is directly connected to the node at the origin is g (x).
Due to the independence of connections between nodes, the
set of nodes directly connected to the node at the origin,
denoted by K1, can be shown to have an inhomogeneous
Poisson distribution with density ρg (x) [14, Proposition 1.3].
Obviously Pr (k = 1|x) = g (x). It follows that the set
of nodes not directly connected to the node at the origin,
denoted by K1, has an inhomogeneous Poisson distribution
with density ρ (1− g (x)).

Due to the inhomogeneous Poisson distribution of K1, the
probability that there is a node in K1 within a differential
area dAx centered at x is ρg (x) dAx. Without loss of
generality, we assume that the node in dAx is located at x. The
probability that there is more than one node in the differential
area dAx can be ignored due to the Poisson distribution of
nodes. Therefore the probability that a node at y /∈ dAx is
not directly connected to any of the nodes within K1 is given
by

lim
dAx→0

∏
dAx⊂A,dAx∩{y}=Ø

[(1− g (y − x)) ρg (x) dAx

+(1− ρg (x) dAx)] (1)

= lim
dAx→0

e
∑
dAx⊂A,dAx∩{y}=Ø log(1−g(y−x)ρg(x)dAx) (2)

= lim
dAx→0

e
∑
dAx⊂A,dAx∩{y}=Ø(−g(y−x)ρg(x)dAx) (3)

= e−
´
A
ρg(y−x)g(x)dx (4)

In Eq. 1, the term (1− g (y − x)) ρg (x) dAx represents the
probability that there is a node in dAx from K1 (i.e. the
ρg (x) dAx term) and the node at y is not directly connected
to that node in dAx at location x (i.e. the 1−g (y − x) term).
The term 1− ρg (x) dAx represents the probability that there
is no node in dAx from K1.

It follows from Eq. 4 that the probability that the node at
y is directly connected to at least one of the nodes in K1,
denoted by g2 (y), is given by

g2 (y) = 1− e−
´
A
ρg(y−x)g(x)dx (5)

A node at y is connected to the node at the origin in exactly
two hops if and only if it is not directly connected to the node
at the origin and it is directly connected to at least one node
in K1. Therefore

Pr (k = 2|x) = (1− g (x)) g2 (x)

For consistency in notation we also use g1 (x) for g (x).
Due to the spatial dependence problem mentioned in [12],
[13], the event that a node is directly connected to another node
in k hops and the event that a third node is directly connected
to the same node in k hops are dependent for k ≥ 2. In this
letter, we ignore such dependence and consider the above two
events to be approximately independent. Using the indepen-
dence approximation, it then follows from [14, Proposition
1.3] that the set of nodes that are directly connected to the
node at the origin in exactly two hops, denoted by K2, has an

approximate inhomogeneous Poisson distribution with density
ρ (1− g (x)) g2 (x). The set of nodes that are not connected to
the node at the origin within two hops, denoted by K1 +K2,
has an approximate inhomogeneous Poisson distribution with
density ρ (1− g1 (x)) (1− g2 (x)).

Using the same steps that lead to Eq. 5 and the fact that
K2 has an approximate inhomogeneous Poisson distribution
with density ρ (1− g (x)) g2 (x), it can be shown that the
probability that a node at y is directly connected to at least
one of the nodes in K2, denoted by g3 (y), is given by

g3 (y) = 1− e−
´
A
ρg1(y−x)(1−g1(x))g2(x)dx (6)

It then follows that

Pr (k = 3|x) = (1− g1 (x)) (1− g2 (x)) g3 (x)

Using the independence approximation, it can be
shown from [14, Proposition 1.3] that the set of
nodes within K1 +K2 that are directly connected
to at least one node in K2, denoted by K3, has an
approximate inhomogeneous Poisson distribution with density
ρ (1− g1 (x)) (1− g2 (x)) g3 (x).

By recursion, for a positive integer l > 1, it can be shown
that (adopting the independence assumption)

Pr (k = l|x) = gl (x)

l−1∏
i=1

(1− gi (x)) (7)

where

gl (y) = 1− e−
´
A
ρg1(y−x)gl−1(x)

∏l−2
i=1(1−gi(x))dx

Given knowledge of Pr (k|x) and Pr (x), i.e. the distribution
of the displacement between two randomly selected nodes in
A [15], Pr (x|k) and Pr (k) can be readily obtained using
Bayes’ formula.

Note that the independence approximation is only needed
for the computation of Pr (k = l|x) with l > 2, and is not re-
quired for the computation of Pr (k = 1|x) and Pr (k = 2|x).
Therefore the results on Pr (k = l|x) in Eq. 7 are accurate for
l = 1, 2 and are an approximation only for l > 2.

III. SIMULATION

In this section we use simulations to establish the accuracy
of the analytical result on Pr (k|x). In the simulation, sensors
are deployed in a 2000×2000 square area according to a
homogeneous Poisson process with density ρ. Two most
widely used connection models, i.e. the UDM and the log-
normal model, are used as specific examples of the generic
connection g. Under the UDM, the transmission range r is
100, i.e. g (x) = 1 for ‖x‖ ≤ 100 and g (x) = 0 for
‖x‖ > 100. Simulations are conducted for a number of node
densities but only the results for a node density which gives an
average node degrees 40 are shown. Results using other node
densities showed similar trend. Under the log-normal model, a
node B is directly connected to another node C if the power
received from C at B, whose propagation follows the log-
normal model, is greater than a given threshold, PT . It then
follows that under the log-normal model
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Fig. 1. Conditional probability Pr (k| ‖x‖) under the unit disk model for
k =1 to 6. Analytical-Ta is the result from [13]. Our result is marginally
more accurate than the result in [13] for k > 2 however the two analytical
results are mostly indistinguishable.
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Fig. 2. Conditional probability Pr (k| ‖x‖) under the log-normal model
for k =1 to 6. Analytical-Mukherjee is the result from [5]. Our result is
marginally more accurate than the result in [5] for k > 2 however the two
analytical results are mostly indistinguishable.

g (x) = Pr (Pr (‖x‖) ≥ PT ) =
ˆ
10α log10

‖x‖
r0

1√
2πσ

e−
z2

2σ2 dz

where r0 = d010
Pt−PL0(d0)−PT

10α and Pr is the received
power in dB milliwatts, Pt is the transmitted power in dB
milliwatts, ‖x‖ is the Euclidean distance between the two
nodes, PL0 (d0) is the reference path loss in dB at a reference
distance d0, α is the path loss exponent and σ is the standard
deviation of the log-normal fading. The path loss exponent
depends on the environment and can vary between 2 in free
space to 6 in urban areas and the value of σ can be as large as
12. Several values of α and σ have been used in the simulation,
but only the result for α = 4 and σ = 4 is shown because other
results have similar accuracy. Under the log-normal shadowing
model, r0 is chosen to be 100, while ρ is chosen to give
the same average degree as that in the UDM. Every point
shown in the plots is the average value from 2000 simulations.
As the number of instances of random networks used in the
simulation is large, the confidence interval is too small to be
distinguishable and hence is ignored in the following plots.
Our analytical result is compared with the analytical result
from [13] obtained under the UDM in Fig. 1, and the analytical
result from [5] obtained under the log-normal model in Fig. 2
respectively. Note that under an omnidirectional model, such
as the UDM and the log-normal model considered in the
simulation, Pr (k|x) = Pr (k| ‖x‖).

As shown in Fig. 1 and Fig. 2, our result is marginally more
accurate than the result in [13] obtained under the UDM and
the result in [5] obtained under the log-normal model due to

the inclusion of the boundary effect in our analysis. However,
unsurprisingly, in most cases our analytical result is almost
indistinguishable from the previous results [5], [13], reflecting
the negligible impact of the boundary effect on the analysis
of Pr (k|x). The main contribution of our analysis is that it
is applicable for a wider class of wireless channel models
whereas the results in [13] and in [5] are only valid for the
particular channel model being considered.

The discrepancy between the analytical result and the sim-
ulation result starts to appear for k > 2. It is due to the
spatial dependence problem [12], [13] and the associated in-
dependence approximation mentioned earlier. The discrepancy
between the analytical and the simulation results is larger for
a larger value of k. This is caused both by the independence
approximation and the accumulation of errors in the recursive
procedure for computing Pr (k|x). Such errors appear to be
acceptable for some applications [1], [2], [7], [4], [5] but not
necessarily for all. It is beyond the scope of this letter to
discuss the performance implication of the error on specific
applications.
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