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Abstract—In heterogeneous networks (HetNet), the load be-
tween macro-cell base stations (MBS) and small-cell base sta-
tions (SBS) is imbalanced due to their different transmission
powers and locations. This load imbalance significantly impacts
the system performance and affects the experience of mobile
users (MU) with different priorities. In this paper, we aim
to distributively optimize the user association in HetNets with
various user priorities to solve the load balancing problem.
Since the user association is a binary matching problem, which
is NP-hard, we propose a distributed belief propagation (BP)
algorithm to approach the optimal solution. We first develop a
factor graph model using the network topology to represent this
user association problem. With this factor graph, we propose
a novel distributed BP algorithm by adopting the proportional
fairness as the objective. Next, we theoretically prove the existence
of the fixed point in our BP algorithm. To be more practical,
we develop an approximation method to significantly reduce
the computational and communication complexity of the BP
algorithm. Furthermore, we analyze some properties of the factor
graph relevant to the performance of the BP algorithm using the
stochastic geometry. Simulation results show that 1) the proposed
BP algorithm well approaches the optimal system performance
and achieves a much better performance compared with other
association schemes, and 2) the analytical results on the average
degree distribution and sparsity of the factor graph match with
those obtained from the Monte-Carlo simulations.

Index Terms—Heterogeneous networks, user association, user
priority, belief propagation, stochastic geometry

I. INTRODUCTION

Wireless data traffic is expected to increase by a factor
of 40 over the next five years, from current 93 to 3600
Petabytes per month, driven by vast demands from bandwidth-
hungry mobile applications. To cope with the data avalanche,
an efficient solution is to enhance the network capacity by
embedding small cells with low-power base stations (BS) into
existing macro-cell based networks so obtain the so-called
heterogeneous networks (HetNet) to significantly boost the
area spectrum efficiency [1, 2].
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In LTE-Advanced, HetNets contain regularly deployed
macro-cell BSs (MBS) and overlapping small-cell BSs (SBS),
e.g., Pico-cells and Femto-cells [3, 4]. The aim of these low-
power and flexibly deployed SBSs is to eliminate the coverage
holes and increase the capacity in hot-spots. Usually, the loca-
tions of MBSs are carefully chosen, and properly configured
to minimize the interference among them, while the SBSs are
deployed in a relatively unplanned manner.

Due to imbalanced power and random locations among
various BSs in HetNets, a major issue is how to associate
each MU with a proper BS, namely, user association, to
achieve the optimal trade-off between load balancing and
network throughput. In conventional homogeneous networks,
user association is typically based on the maximum signal-
to-interference-plus-noise (SINR) received at MUs. However,
applying this method to HetNets will lead to a severely
imbalanced load among the BSs because of the disparity in
their transmission power. Many MUs tend to connect to MBSs,
though they are located closer to SBSs. In this case, MBSs may
have difficulty to support too many MUs, while SBSs only
serve a small portion of MUs and become under-utilized. This
imbalanced load will lead to a performance loss and uneven
user experience. Therefore, many efforts have been made on
better user association schemes.

From industrial perspective, an effective association scheme
is to adapt the coverage of small cells to control the number of
MUs connecting to them. For instance, in wireless local area
networks, cell breathing technique is proposed to balance the
load of access points (AP) by tuning transmission power [5,
6]. However, this technique is not suitable for HetNets, since
transmission power is quite different between MBSs and SBSs.
Alternatively, cell range expansion (CRE) is proposed in LTE-
Advanced to enable the offloading of MUs from MBSs to
SBSs by setting a bias value [7, 8]. That is, a positive bias
is added to the received power from SBSs before each MU
associates with a BS, which is equivalent to expanding the
coverage of SBSs [9, 10].

From academic perspective, the user association problem
has typically been formulated as an optimization problem.
Different kinds of objective functions are adopted for op-
timizations. For instance, the max-min fairness is adopted
in [11], which distributes resources among all users as equally
as possible, the network throughput is considered in [12], the
topological potential is used in [13], and several different
utility functions are encompassed in [14]. In [15–17], the
proportional fairness is chosen as the objective function for
optimization, which achieves a good trade-off between the load
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balancing, user fairness, and system throughput.
Generally, user association is a binary matching problem,

which is proved to be NP-hard [18]. Since in real systems, it
is very difficult to implement the case that an MU associates
with multiple BSs, most of the works have the constraint that
an MU only associates with one BS. Aiming to solve this
problem with polynomial complexity, many algorithms relax
the binary constraint by assuming that each MU can associate
with multiple BSs simultaneously. This converts the binary
matching problem to a continuous optimization problem. Then
a rounding method is adopted to obtain the final solution [15,
16]. These algorithms will lead to a performance loss due to
the relaxation of the binary constraint. In addition, some works
on this problem are based on centralized algorithms, which
require information of all the BSs and MUs [16, 17]. Authors
in [19] perform localized and distributed optimizations, but
central tuning is still required. Furthermore, the above papers
have not taken into account the user priority when performing
the optimization, while in practice, it is common that MUs
have different priorities. The unequal user priority (weight)
reflects different characteristics among the users. For instance,
in practical cellular network management, users with high QoS
requirements or users who experience a low long-term trans-
mission rate, are given higher priorities. Therefore, unequal
user priority has been widely considered in many scenarios of
wireless communications [20, 21].

In this paper, we aim to distributively optimize the user
association in HetNets where MUs have different priorities. By
utilizing the weighted proportional fairness as the objective,
we propose a distributed belief propagation (BP) algorithm to
solve the optimization problem without relaxing the binary
constraint in order to approach the optimal performance.
The BP algorithm is widely used in artificial intelligence,
signal processing, and digital communications, for instance,
the decoding of LDPC codes, and the interference coordi-
nation in HetNets. To our best knowledge, our work is the
first application of the BP algorithm in the user association
problem. Generally, it can compute various marginal functions
(distribution) derived from a global function (distribution),
after decomposing the complicated global function of many
variables into the product of multiple local functions, each of
which only depends on a subset of the variables [22].

We first develop a factor graph model to represent this user
association problem. Then with this factor graph, a distributed
BP algorithm is proposed to solve the formulated problem
by iterative message passing between the MUs and BSs.
We theoretically prove that the fixed point exists and show
that convergence can be achieved in our BP algorithm. To
be more practical, we also develop an approximated method
to dramatically reduce the complexity of the BP algorithm.
Furthermore, since the factor graph is closely related to the
performance of the BP algorithm, we analyze the average
degree distribution and sparsity of the factor graph based on
the stochastic geometry theory.

Our simulation results show that 1) the proposed BP algo-
rithm can almost achieve the optimal solution via exhaustive
search and that the approximate BP algorithm approaches the
optimal solution with a very small gap, 2) our BP algorithm

outperforms the existing schemes, such as maximum-SINR
and CRE, 3) analytical results on the average degree distri-
bution and sparsity of the factor graph match well with the
Monte-Carlo simulations.

The rest of this paper is organized as follows. Section II
describes the system model and formulates the user association
problem. Section III presents the BP algorithm. The approx-
imate method is given in Section IV. The degree distribution
and sparsity of the factor graph are analyzed in Section V.
Section VI presents the simulations and Section VII draws
the conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We focus on the downlink of a HetNet, which consists of
multiple MBSs and SBSs with overlapping coverage. Further-
more, we assume that 1) the HetNet is saturated, where the
BSs transmit all the time, 2) each MU can only associate with
one of the BSs, and 3) channels between MUs and BSs are
considered to be static during the optimization process of the
association.

Let M denote the set of MUs and B denote the set of BSs
in the HetNet. Also, we define two sets I , {1, · · · , |M|}
and J , {1, · · · , |B|}, where |·| is the cardinality of a set. We
assume that each BS allocates its transmission power equally
in its entire bandwidth. Then the received SINR of the i-th
MU Mi ∈ M from the j-th BS Bj ∈ B can be written as

ρij =
Pjd

−α
ij hij∑

q∈J \{j}
Pqd

−α
iq hiq + σ2

, ∀i ∈ I, j ∈ J , (1)

where Pj is the transmission power of Bj , σ2 is the power
of additive white Gaussian noise. The path loss from Bj

to Mi is formulated as d−α
ij , where dij and α represent

their distance and the path loss exponent, respectively. In
addition, hij denotes the fading power, where the random
channel is modeled as Rayleigh fading. Thus, the spectral
efficiency between Mi and Bj can be obtained according to
the following formula γij = log2 (1 + ρij).

We denote by xij ∈ {0, 1} the user association indicator,
where xij = 1 if Mi is associated with Bj , and xij = 0
otherwise. Assuming that Mi is associated with Bj , we denote
by βij the fraction of the resource allocated to Mi by Bj ,
and by Rij the rate that Mi obtains from Bj . We have
Rij = Wγijβij , where W is the bandwidth of Bj . Since Mi

is possible to associate with any BS, the effective transmission
rate of Mi can be written as

Ri =
∑
j∈J

xijRij =
∑
j∈J

xijWγijβij . (2)

B. Problem Formulation

We aim at the network-wide optimization of the user
associations xij , ∀i, j, with different user priorities, where
the priority of Mi is denoted by ωi, namely, priority-based
user association (PUA) optimization. Here, ωi is a positive
constant for Mi, reflecting its physical feature. We choose the
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objective function based on the proportional fairness, which
has been proved to be associated with the logarithmic utility
function [23]. The utility of Mi can be given as

Ui (Ri) = logRi = log

∑
j∈J

xijRij

 . (3)

Noting that ωi denotes the priority of Mi and Ui denotes
the utility achieved by Mi, it follows that ωiUi can be
viewed as the weighted utility. Therefore, the overall system
utility is formulated as the sum of each user’s weighted
utility [16, 20, 24], i.e.,

∑
i ωiUi, which is used as our objective

function. Hence, our optimization problem can be formulated
as maximizing the objective function, i.e.,

max
{xij ,βij}

∑
i∈I

ωi logRi = max
{xij ,βij}

∑
i∈I

ωi log

∑
j∈J

xijWγijβij


(4)

s.t.
∑
j∈J

xij = 1, ∀i ∈ I, (5a)∑
i∈I

xijβij = 1, ∀j ∈ J , (5b)

xij ∈ {0, 1} , ∀i ∈ I, j ∈ J , (5c)
βij ∈ (0, 1] , ∀i ∈ I, j ∈ J . (5d)

The constraint (5a) means that each MU can only associate
with one BS, (5b) indicates that the MUs associated with the
same BS share the resource of the BS, (5c) makes sure that
the association indicator must be binary, and (5d) specifies the
range of the resource fraction allocated to each MU.

Given xij , ∀i ∈ I , ∀j ∈ J , the optimization problem
(4) is equivalent to maximizing

∏
i∈I (xijWγijβij)

ωi , ∀j.
Since

∑
i∈I xijβij = 1, the optimal fraction of the resource

assigned to Mi by Bj can be obtained as βij =
ωixij∑

k∈I ωkxkj
.

For further details, please refer to Theorem 3 in [16]. Thus,
the formulation of our PUA optimization can be rewritten as

max
{xij}

∑
i∈I

ωi log

∑
j∈J

xijWγij
ωi∑

k∈I xkjωk

 (6)

s.t.
∑
j∈J

xij = 1, ∀i ∈ I, (7a)

xij ∈ {0, 1} , ∀i ∈ I, j ∈ J . (7b)

This problem is proved to be a NP-hard problem [16], due
to the nonlinear utility function and the binary association
indicator. Note that if each MU has equal priority, i.e., ωi =
ωk, ∀i, k ∈ I, i ̸= k, we can obtain that βij = xij/

∑
k∈I

xkj .

Then the PUA optimization is reduced to the basic user
association problem in [15].

III. FACTOR GRAPH MODEL AND DISTRIBUTED BP
ALGORITHM

In this section, we propose a BP-based distributed algorithm
to solve the formulated PUA optimization problem in Eq. (6).
To proceed, we first develop a factor graph model according to

11 22 33 44 55

11 33 44 55 6622 77 88 99 1010

Fig. 1. Factor graph model for user association based on the HetNet.

the topology of the HetNet. Then we propose a distributed BP
algorithm to efficiently solve the PUA optimization problem
with a near-optimal performance. At the end of this section,
we prove the existence of the fixed point in our BP algorithm.

A. Factor Graph Model

Based on the topology of the HetNet, we develop a factor
graph model G = (V ,E), as shown in Fig. 1. The vertex set V
consists of factor nodes and variable nodes, where each factor
node is related to a BS, and each variable node is related to
an MU. To simplify the notations, we use j ∈ J to denote
the j-th factor node and use i ∈ I to denote the i-th variable
node. Hence, the vertex set V is composed of I and J , i.e.,
V = {I,J }.

An edge in the set E connecting Mi and Bj , denoted by
(i, j), exists if and only if the received SINR at Mi from Bj

is no less than a predetermined threshold δ. The node j is
called a neighboring node of i if there is an edge (i, j). We
use H(v) to denote the set of neighboring nodes of a node
v, v ∈ V . Thus, H(i) is the set of neighboring nodes of Mi,
and H(j) is the set of neighboring nodes of Bj .

Given a factor graph, our BP algorithm intends to find out
the optimal BS for Mi to associate with from the set H(i).
The messages passing in the BP only occurs between a node
and its neighbors, i.e., Mi forward messages to its neighbors
B~, ∀~ ∈ H(i), and Bj forward messages to its neighbors
Mh, ∀h ∈ H(j). Now we introduce the details of factor graph
and its relationship with the PUA optimization problem.

1) Factor Nodes: We rewrite the optimization problem in
Eq. (6) as

max
{xij}

∑
i∈I

ωi logRi
(a)
= max

{xij}

∑
i∈I

ωi log

∑
j∈J

xijRij


(b)
= max

{xij}

∑
j∈J

∑
i∈I

xijωi logRij

(c)
= max

{xij}

∑
j∈J

∑
i∈H(j)

xijωi logRij

= max
{xij}

∑
j∈J

fj ,

(8)
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where the function

fj ,
∑

i∈H(j)

xijωi log

Wγij
ωi∑

k∈H(j)

ωkxkj

 (9)

is defined as the local utility function at Bj . In Eq. (8), step
(a) uses the formulation of Ri in Eq. (2). In step (b), we
use the constraints xij ∈ {0, 1} and

∑
j xij = 1. For step

(c), since only the users in the set of neighboring nodes of
Bj are possible to associate with it, i ∈ I can be narrowed
to i ∈ H(j). From (8), the network-wide system utility in
(6) can be decomposed into multiple individual local utility
functions fj at Bj , ∀j. Thus, in the factor graph, we use the
factor node j to represent the utility fj .

2) Variable Nodes: We define a vector xi for Mi consisting
of the user association indicators xi~, ∀~ ∈ H(i). The length
of xi is |H(i)|. Due to the association constraint in (5a), i.e.,
Mi only associates with one BS, there is only one element in
xi equal to 1, and all the other elements are 0. Thus, xi has
|H(i)| possible values according to |H(i)| different locations
of 1. In the factor graph, we use the variable node i to represent
xi, namely, user association variable.

To illustrate xi, we take M3 in Fig. 1 as an example.
In Fig. 1, M3 can receive signals from B2 and B3. Due
to the constraints (5a) and (5c), the association variable x3
for M3 has two possible values, i.e., 1) x3 = [1, 0], that is,
M3 associates with B2 and does not associate with B3; 2)
x3 = [0, 1], that is, M3 associates with B3.

We define the set of the variable nodes in the factor graph
as X ,

{
x1, x2, · · · , x|M|

}
. Based on the above analysis of

the factor graph model, the network-wide optimization of the
system utility in (8) can be rewritten as

max
X

F (X ), F (X ) ,
∑
j∈J

fj(XH(j)), (10)

where XH(j) = {xh, ∀h ∈ H(j)} represents the set of the
user association variables corresponding to j’s neighbors. In
the following, we will discuss the maximization of F (X ) via
distributed BP algorithm.

B. Transformation of Utility Optimization

Generally, BP algorithm converts the optimization problem
to a marginal distribution estimation problem [25]. In our
optimization problem, we define a probability mass function
(PMF) based on the global utility F (X ), i.e., p (X ) ,
1
Z exp (µF (X )), where µ is a positive number, and Z is a nor-
malization constant. According to [25], the large deviation the-
ory shows that when µ → ∞, p (X ) concentrates around the
maxima of F (X ), i.e., limµ→∞ E (X ) = argmaxX F (X ),
where E (·) denotes the expectation. From this equation, once
we obtain E (X ), we will have a good estimation for the
maximization of F (X ).

The calculation of E (X ) can be decomposed into the
calculation of the expectation of each element in X , i.e.,
E (xi), ∀xi ∈ X . Therefore, the optimization problem is
transformed into estimating the marginal PMF of each variable
node xi, i.e., p (xi), which can be solved by BP algorithm.

C. Iterative Message Passing
The PMF p (xi) is the message updated and exchanged

between BSs and MUs. In each iteration, Mi updates p(xi)
and forwards it to B~, ∀~ ∈ H(i) while Bj updates p(xh) and
forwards it to Mh, ∀h ∈ H(j). There are |H(i)| probabilities
in p (xi) corresponding to |H(i)| values of xi, representing the
probabilities that Mi associates with its |H(i)| neighbor BSs.
Since B~ only considers whether Mi is associated with it or
not, the message passing along the edge (i, ~) only carries
the probability that Mi associates with B~, i.e., Pr(xi~ = 1),
which is one of the |H(i)| probabilities in p (xi).

In the following, to simplify the notations, we assume
the edge (i, j) exists. We index the iteration by t, and let
m

(t)
i→j(xij) and m

(t)
j→i(xij) denote the messages from Mi to

Bj and from Bj to Mi in the t-th iteration, respectively. The
steps for the distributed BP are given as follows.

1) Initialization: The MU Mi measures the SINR from all
the BSs and finds out possible serving BSs B~, ∀~ ∈ H(i),
according to the SINR threshold and access policy. Instanta-
neous channel state information (CSI) gi~ is estimated at Mi,
which is then fed back to all the B~. At B~, the CSI gi~ is
needed for the update of the messages in each iteration.

2) Message from MU to BS: In the iteration t, Mi sends
its possible serving Bj the probability of choosing it, i.e.,

m
(t)
i→j (xij = 1) = φ (xi)

∏
k∈H(i)\{j}

m
(t−1)
k→i (xik = 0) . (11)

From (11), we can see that the probability of xij = 1 is based
on the probabilities of xik = 0, ∀k ∈ H(i)\{j}. This calcu-
lation comes from the constraint that Mi can only associate
with one of the BSs in H(i). Also in (11), φ (xi) is the normal-
ization function which ensures

∑
~∈H(i)m

(t)
i→~ (xi~ = 1) = 1.

Obviously, m(t)
i→j (xij = 0) is not needed to be transmitted by

Mi since we have m
(t)
i→j (xij = 0) = 1−m

(t)
i→j (xij = 1).

Note that before iterations begin, MUs does not have any a
priori information about associations. Thus, initial messages
are set uniformly. For example, if the Mi has 3 possible
serving BSs, i.e., |H(i)| = 3, the initial messages can be set
as m

(1)
i→~ (xi~ = 1) = 1/3, ∀~ ∈ H(i).

3) Message from BS to MU: Now, we consider the message
passing from Bj to Mi. Note that fj is only related to xhj in
xh. We define a vector xH(j) as consisting of xhj , ∀h ∈ H(j),
i.e., xH(j) = [xhj , ∀h ∈ H(j)]. We have

m
(t)
j→i (xij)

=
∑

xH(j)\{xij}

exp
(
µfj

(
xH(j)

)) ∏
k∈H(j)\{i}

m
(t)
k→j (xkj)


=

∑
xH(j)\{xij}

exp

( ∑
k∈H(j)\{i}

µxkjωk log (Rkj)+

µxijωi log (Rij)

)∏
k

m
(t)
k→j (xkj)

)
,

(12)

where
∑

xH(j)\{xij} represents the summation over all possible
values of xH(j) given xij .
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Based on the two values of xij , Bj calculates
m

(t)
j→i (xij = 0) and m

(t)
j→i (xij = 1), and then forwards

the two values to Mj . Specifically, we have

m
(t)
j→i (xij = 0) =

∑
xH(j)\{xij} ∏

k∈H(j)\{i}

 Wγkjωk∑
q∈H(j)\{i}

ωqxqj


µxkjωk

m
(t)
k→j (xkj)

 ,

(13)

m
(t)
j→i (xij = 1) =

∑
xH(j)\{xij}

 ∏
k∈H(j)\{i}

 Wγkjωk∑
q∈H(j)\{i}

ωqxqj + ωi


µxkjωk

 Wγijωi∑
q
ωqxqj + ωi


µωi

m
(t)
k→j (xkj)

 . (14)

4) Final Decision: We assume there are totally T iterations
in our BP algorithm. After T iterations, the probability that
the Mi associates with Bj can be calculated as

Pr (xij = 1) = φ (xi)m
(T )
j→i (xij = 1)∏
k∈H(i)\{j}

m
(T )
j→i (xik = 0) . (15)

Based on (15), an decision can be made, i.e., Mi associates
with the BS Bĵ such that

ĵ = argmax
j

Pr(xij = 1). (16)

D. Fixed Point

The existence of the fixed point is a necessary condition
that our distributed BP algorithm can converge. Based on the
messages in Eq. (11) and (12), the message for each variable
node xi in the t-th iteration can be obtained from the messages
in the (t− 1)-th iteration. That is,

m
(t)
i→j (xij) = φ (xi)

∏
k∈H(i)\{j}

∑
xH(k)\{xik}(exp (µfk (xH(k)

))) ∏
q∈H(k)\{i}

m
(t−1)
q→k (xqk)

 . (17)

Since the message m
(t)
i→j (xij) is a probability, we define the

probability set S(t) ,
{
m

(t)
i→~ (xi~)

}
, ∀i ∈ I , ~ ∈ H(i),

and thus |S| =
∑

i∈I |H(i)|. Define the message mapping
function Γ : R|S| → R|S| based on (17). Then we have S(t) =
Γ(S(t−1)).

Lemma 1. The message mapping function Γ is continuous.
Proof: Please refer to Appendix A.

With Lemma 1, we have the following theorem.

Theorem 1. A fixed point exists for the proposed distributed
BP algorithm.
Proof: Please refer to Appendix B.

Whether the BP algorithm can converge to a fixed point,
unfortunately, is not well understood yet [26]. Generally
speaking, if the factor graph is sparse and contains no cycles,
the BP algorithm can converge to a fixed point exactly and
efficiently [27]. In Section V, we will analyze the average
sparsity of our factor graph based on the stochastic geometry
theory. From the analysis, we show that the sparsity and the
loops in the factor graph can be controlled by adapting the
SINR threshold δ.

IV. COMPLEXITY REDUCTION VIA APPROXIMATIONS

From the BP algorithm in the previous section, we can
see that its computational and communication complexities
are relatively high. From communication complexity point of
view, the BS Bj needs to send two messages, i.e., Eq. (13) and
(14), to each of its potential MUs in a point-to-point manner,
which leads to a heavy communication complexity, especially
when the number of the MUs is large.

From computational complexity point of view, the calcula-
tion on each of the two messages at Bj needs to 1) obtain the
CSI about the channel from Bj to Mh in order to calculate
γhj , ∀h ∈ H(j), and 2) consider 2|H(j)|−1 combination cases
to obtain the expectation, which causes a large number of
computations at Bj .

Due to the high complexity of the BP discussed above
(referred to as the exact BP), in this section, we will propose
an approximate BP to significantly reduce the computational
complexity and enable message transmission in a broadcast
manner. At the end of this section, we compare the complexity
between the exact BP and approximate BP algorithms.

A. Approximations

First, we can rewrite the message from Mi to Bj in Eq.
(11) as

m
(t)
i→j (xij = 1) =

1

1 +
∑

k∈H(i)\{j}

m
(t−1)
k→i (xik=1)

m
(t−1)
k→i (xik=0)

. (18)

We can see from (18) that the message m
(t)
i→j (xij = 1)

only depends on the likelihood ratios m
(t−1)
k→i (xik=1)

m
(t−1)
k→i (xik=0)

, ∀k ∈
H(i)\{j}. Hence, the two messages sent from Bj to Mi in
Eq. (13) and (14) can be replaced by their likelihood ratio.

Second, after several approximation steps (please refer to
Appendix C for details), the likelihood ratio of the two
messages from Bj to Mi can be approximated as

m
(t)
j→i (xij = 1)

m
(t)
j→i (xij = 0)

≈

 Wγijωi∑
k∈H(j)\{i}

ωkm
(t)
k→j (xkj = 1) + ωi


µωi

(19)
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where the denominator of the item in the right hand side can
be rewritten as∑

k∈H(j)\{i}

ωkm
(t)
k→j (xkj = 1) + ωi =∑

h∈H(j)

ωhm
(t)
h→j (xhj = 1)− ωim

(t)
i→j (xij = 1) + ωi. (20)

From Eq. (19), we can see that the likelihood ra-
tio forwarded from Bj to Mi can be replaced by∑
h∈H(j)

ωhm
(t)
h→j (xhj = 1), since the parameters W , γij , ωi,

and m
(t)
i→j (xij = 1) are all known to Mi. Then Mi can

obtain the likelihood ratio by calculating Eq. (19) with∑
h∈H(j)

ωhm
(t)
h→j (xhj = 1). In the approximate BP, we use this

item as the belief message transmitted by Bj , denoted by

m
(t)
j =

∑
h∈H(j)

ωhm
(t)
h→j (xhj = 1) . (21)

Intuitively, m(t)
j can be seen as the expectation of the priority

of the MUs which associate with Bj . In the case when all MUs
have the same priority configured as 1, m(t)

j is the expected
load, i.e., the average number of the associated MUs with Bj .

It is clear that the message m
(t)
j is common to Mh,

∀h ∈ H(j). With this property, Bj can forward m
(t)
j in

a broadcast manner to all of its neighboring MUs, rather
than in the point-to-point manner to each individual Mh.
Also note that the calculation of m

(t)
j at Bj does not need

the channel state information from Bj to Mi. As such, the
message transmission complexity can be dramatically reduced.
Furthermore, the computational complexity at Bj is reduced
significantly: Only |H(j)| multiplications and |H(j)| − 1
additions are needed on this item in each iteration.

B. Approximate BP Algorithm

Based on the previous approximations, we propose an
approximate BP algorithm as follows.

1) Initialization: The initialization of the approximate BP
is similar to that in the original BP in Section III except that
the instantaneous downlink CSI is not required at the BSs.

2) Message from MU to BS: In the t-th iteration, the MU
Mi calculates the message for Bj , i.e., m

(t)
i→j(xij = 1),

based on Eq. (18), in which, the likelihood ratio m
(t−1)
k→i (xik=1)

m
(t−1)
k→i (xik=0)

,

∀k ∈ H(i)\{j}, is calculated from (19) based on the message
broadcasted by Bk, i.e., m(t−1)

k .
3) Message from BS to MU: The BS Bj calculates the

message m
(t)
j based on Eq. (21), and then broadcasts it to

Mh, ∀h ∈ H(j).
4) Final Decision: The final decision is made similar to

that in the exact BP.

C. Complexity Comparisons

1) Communication Complexity: At the MU side, in the
exact BP, Mi needs to forward the instantaneous CSI to B~,
∀~ ∈ H(i) before iterations begin, while in the approximate

TABLE I
COMPLEXITY COMPARISONS FOR THE EXACT BP AND APPROXIMATE BP

IN EACH ITERATION

Number of Distinct Messages
Exact BP Approximate BP

MU Mi |H(i)| |H(i)|
BS Bj |H(j)| 1

Instantaneous CSI at BSs Needed Not Needed
Computational Complexity

Exact BP Approximate BP
MU Mi O (|H(i)|) O (|H(i)|)
BS Bj O(2|H(j)||H(j)|) O(|H(j)|)

BP, this is not the case. At the BS side, in the exact BP, Bj

needs to send a distinct message, i.e., m
(t−1)
k→i (xik=1)

m
(t−1)
k→i (xik=0)

, to each

individual Mh, ∀h ∈ H(j). Thus, the number of distinct
messages sent from Bj is |H(j)| in each iteration. In the
approximate BP, one message in (21) is broadcast to all Mh

from Bj .
2) Computational Complexity: At the MU side, the com-

putational complexity is O (|H(i)|) in each iteration for both
the exact and approximate BP. At the BS side, in the exact
BP algorithm, Bj needs to calculate 2|H(j)| combinations in
each iteration and each combination includes O(|H(j)|) mul-
tiplications and additions. Therefore, the overall computational
complexity for Bj is O(2|H(j)||H(j)|). In the approximate BP,
the computational complexity at Bj reduces to O(|H(j)|) in
each iteration, i.e., only |H(j)| multiplications and |H(j)|−1
additions.

Table I shows the detailed comparisons on the computa-
tional and communication complexity between the two BP
algorithms in each iteration as discussed above. As shown in
Table I, the computational and communication complexities
of the BP algorithm critically depend on |H(i)| and |H(j)|.
Therefore, in the next section, we will analyze the average
degree distribution of the factor graph, i.e., E(|H(i)|) and
E(|H(j)|), to provide an insight on the performance of the
algorithm.

We compare the computational and communication com-
plexities of the approximate BP with the scheme proposed
in [15], which also relies on the messages iteratively passing
between MUs and BSs. The computational complexities of
the scheme in [15] at the MU and BS side are O(|H(i)|) and
O(|H(j)|), respectively, which equal to that of the approx-
imate BP. The numbers of distinct messages of the scheme
in [15] at the MU and BS side are both 1. Therefore, the
number of distinct messages at the MU side of this scheme is
less than that of approximate BP which is |H(i)|. However, in
this scheme, the iteration number needed is much larger than
the approximate BP, and an extra centralized algorithm is used
to calculate the step size in each iteration, which involves the
information in all BSs.

D. BP for Dynamic Scenarios

In this subsection, we extend the approximate BP algorithm
to dynamic scenarios, namely, dynamic BP. The wireless
network changes due to the time-varying channels, arrivals
of new MUs and so on. In these scenarios, new association
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decisions are needed. We denote by ‘new MUs’ those MUs
in the HetNet who need to make or renew their association
decisions, and by ‘existing MUs’ those MUs who keep their
existing association decisions. It is practical by making proper
association decisions for ‘new MUs’ without changing the
associations of ‘existing MUs’.

To achieve this goal, our dynamic BP algorithm is designed
to involve only ‘new MUs’ and their possible serving BSs.
That is, the belief messages are only exchanged between the
BS Bj and its neighboring ‘new MUs’, denoted by Hn(j).

Since the dynamic BP needs to take into account the
association results of the ‘existing MUs’, we assume that each
BS has recorded the load from its associated ‘existing MUs’.
Here, the load of Bj is defined as Ωj ,

∑
i∈A(j) ωi, where

A(j) is the set of ‘existing MUs’ associated with Bj . In the
dynamic BP, the message that Bj broadcasts is

m
(t)
j = Ωj +

∑
h∈Hn(j)

ωhm
(t)
h→j (xhj = 1) . (22)

The messages from ‘new MU’ Mi to Bj are calculated in the
same way as in the approximate BP algorithm.

V. FACTOR GRAPH ANALYSIS BASED ON STOCHASTIC
GEOMETRY

From the analysis in the previous section, the complexity of
the proposed BP algorithm depends on the degree of variable
nodes and factor nodes, i.e., |H(i)| and |H(j)|. Aiming to
provide a general understanding of the complexity of the
proposed BP algorithm, in this section, we analyze the average
degree distribution of the factor graph using the stochastic
geometry theory, i.e., E(|H(i)|) and E(|H(j)|). Also, we
investigate the sparsity of the factor graph with the aim to
provide a good indication on the performance of the proposed
BP algorithm.

To be general, we consider a L-tier HetNet. Here, “tier”
represents the set of BSs with the same properties. That
is, the BSs in the l-th tier, ∀l ∈ L , {1, · · · , L}, have
transmission power Pl and the path loss exponent αl. Also,
the distribution of the BSs in the l-th tier is modeled as
an independent homogeneous Poisson point process (HPPP)
Φl with the intensity λl [28]. Thus, the l-th tier is defined
by {Φl, λl, Pl, αl}. Also, the distribution of the MUs in the
HetNet is modeled as an HPPP Φu with the intensity λu.

Note that the tier structure is transparent to our BP algorith-
m, since in the BP all the BSs are treated as independent factor
nodes, and in the factor graph, the existence of the edge (i, j)
depends on whether the received SINR at Mi from Bj is larger
than the SINR threshold δ. Now, we investigate the average
degree distribution of the factor graph. Note that the degree of
a variable node i is defined as the number of its neighboring
factor nodes, i.e., |H(i)|. The degree of a factor node j is
defined as the number of its neighboring variable nodes, i.e.,
|H(j)|. Then we can formulate the following theorem.

Theorem 2. The variable nodes in the factor graph have the
average degree

Du , E(|H(i)|) =
L∑

l=1

2πλlZ (λl, Pl, αl, δ) , (23)

and the factor nodes corresponding to the BSs in the l-th tier
have the average degree

Dl , E(|H(j)|) = 2πλuZ (λl, Pl, αl, δ) , (24)

where

Z (λl, Pl, αl, δ) =

∫ ∞

0

exp

{
−

L∑
k=1

2λkπ

αk

(
δPk

Pl

) 2
αk

B

(
2

αk
, 1− 2

αk

)
r

2αl
αk − δσ2

Pl
rαl

}
rdr (25)

and the Beta function B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

Proof: Please refer to Appendix D.

Based on Theorem 2, we have the following two corollaries.

Corollary 1. Assuming all the tiers have the equal path loss
exponents, i.e., α1 = · · · = αL = α, and neglecting the noise,
the function Z (λl, Pl, αl, δ) in (25), can be rewritten as

Z (λl, Pl, α, δ) =
α

4π

(
Pl

δ

) 2
α 1

B
(
2
α , 1−

2
α

)∑L
k=1 λkPk

2
α

.

(26)
Then we simplify the average degree of the variable nodes as

Du =
α

2δ
2
αB

(
2
α , 1−

2
α

) , (27)

and the average degree of the factor nodes related to the BSs
in the l-th tier as

Dl =
λuα

2

(
Pl

δ

) 2
α 1

B
(
2
α , 1−

2
α

)∑L
k=1 λkPk

2
α

=
Pl

2
α∑L

k=1 λkPk
2
α

λuDu.

(28)

Proof: Please refer to Appendix E.

Equations (27) and (28) can be seen as approximations of
(23) and (24), respectively, when noise power is neglected.
These approximations are accurate enough for the HetNets,
since interference is dominant due to the dense deployments
of the SBSs.

From (27), the average degree of a variable node, i.e., Du,
is only related to δ and α, while independent of λl and Pl.
In other words, the number of potential serving BSs for an
MU is independent of the BSs’ deployment intensities and
transmission powers. An intuitive explanation is that although
increasing the BSs’ deployment intensities or transmission
powers can enhance the MUs’ received signal, the interference
increases at the same time. Since Du keeps constant, the
average computational and communication complexity of the
proposed BP algorithm at the MU side also remains constant,
even when the scale of the network increases.

From (28), the average degree of factor nodes in l-th tier,
i.e., Dl, increases with λu. This means that the number of
MUs in the coverage of an BS is proportional to the intensity
of MUs. Also, Dl decreases when the deployment intensities
of the BSs increases. That is, the coverage area of an BS
shrinks when the number of BSs increases. Furthermore, Dl

increases with Pl

Pk
, k = 1, · · · , L, and k ̸= l, which means the
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coverage area of the BSs in l-th tier depends on the power
ratios between the l-th tier and the other tiers.

Now we focus on the sparsity of the factor graph. Given
a factor graph G = (V ,E), the sparsity is defined as the
ratio between the number of existing edges in the graph, i.e.,
|E|, and the number of all possible edges. The latter can be
calculated as |I| × |J |. Generally, the sparsity of a factor
graph is important to the performance of the BP algorithm. If
the graph is too dense, the complexity will be high, and the
highly correlated messages cause a poor performance due to
a large number of loops. On the other hand, if the graph is
too sparse, messages cannot be effectively conveyed between
nodes, causing a performance degradation.

In the following corollary, we give the expression of the
average sparsity of our factor graph.

Corollary 2. Given the average degree distribution of the
variable nodes, we can express the average sparsity of the
factor graph in the area of R2 as

S =
Du

R2
∑L

l=1 λl

. (29)

Proof: Please refer to Appendix F.

From (29), the sparsity of the factor graph is independent
of the intensity of MUs, i.e., λu, and inversely proportional
to the number of BSs in the network. That is, the factor
graph is sparser when the scale of the network increase. Also
intuitively, we could control the average sparsity of the factor
graph by tuning the threshold δ.

Remark 1. We observe that in (27) the beta function
B
(
2
α , 1−

2
α

)
= π when α = 4. Thus, we can have closed

forms for Du, Dl, and S in (27), (28), and (29), respectively,
when α = 4.

VI. SIMULATION RESULTS

In this section, we first analyze the performance of the
proposed BP algorithm using Monte-Carlo simulations. Then
we present analytical and simulation results for the average
degree distribution and sparsity of the factor graph.

We consider a HetNet consisting of 4 macro cells where
MBSs are deployed at the center of macro cells while multiple
SBSs are randomly distributed. The inter-site distance (ISD)
between MBSs is set to be 500 meters, and the transmission
power of MBSs is 20W [29]. The deployment intensity of
SBSs are 24 per cell and the transmission power of SBSs is
2W [29]. The MUs are uniformly distributed in the network
with the intensity of 30 MUs per cell, and the MUs’ priorities
are modeled as 3 different levels, i.e., ωi ∈ {1, 2, 3}. The path
loss exponent is set to be 4. The SINR threshold is 0.1, and
the noise power is 10−13W [29]. The simulations focus on the
spectral efficiency where the bandwidth W = 1. Besides, in
the simulation, µ = 10 and the iteration number T = 5.

A. Performance of Distributed BP Algorithms

We consider two BP algorithms proposed in our paper.
One is the original BP algorithm without approximation in
Section III, which is denoted by ‘BP-Exact’. The other is
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Fig. 2. Utility comparison between two BP algorithms and the optimal result
by exhaustive search.

the complexity reduced BP algorithm with approximation
in Section IV, which is denoted by ‘BP-Approx’. Also we
compare them with the following user association schemes.

1) Max-SINR (denoted by ‘Max-SINR’): Each MU chooses
to associate with the BS that provides the strongest received
SINR.

2) Cell Range Expansion: A positive bias will be added to
the received power of SBSs before the MU selects the BS
that provides the strongest SINR. Two bias values that are
commonly used are selected for simulations, 4dB and 8dB,
denoted by ‘CRE-4dB’ and ‘CRE-8dB’, respectively [30, 31].

3) Optimal results (denoted by ‘Optimal’): The exhaustive
search method is used to find out the optimal user-association
solution.

Fig. 2 shows the cumulative distribution function (CDF)
curves of the utility obtained by ‘BP-Exact’, ‘BP-Approx’
and ‘Optimal’. Due to the high complexity of the exhaustive
search, Fig. 2 considers one macro-cell with 4 overlapping
small-cells. From the figure, we can see that ‘BP-Exact’ almost
achieves the performance of ‘Optimal’ with 0.086% utility
loss, and ‘BP-Approx’ can well approach ‘Optimal’ with
1.54% utility loss. The reason that ‘BP-Exact’ cannot achieve
the optimal performance is as follows: a) The value of µ is
finite; b) There could be loops in the factor graph. Since ‘BP-
Approx’ has a very close performance with ‘BP-Exact’, we
only consider ‘BP-Approx’ in the following simulations due
to its low complexity.

Fig. 3 compares the system utility performance of different
user association schemes: ‘Max-SINR’, ‘CRE-4dB’, ‘CRE-
8dB’ and ‘BP-Approx’. From the figure, we can see that, com-
pared with the traditional ‘Max-SINR’ scheme, ‘CRE-4dB’ s-
lightly improves the system utility by 4.39%. However, ‘CRE-
8dB’ degrades the system utility. Among all the schemes, ‘BP-
Approx’ has the best system performance, which increases the
system utility of ‘Max-SINR’ by 28%.
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Generally, the CRE is simple and does not need message
overhead once the bias is fixed. However, selecting a univer-
sally good bias is a non-trivial optimization problem, since it
depends on many factors such as the deployment intensity of
BSs and MUs, the transmission powers of BSs, and so on. The
performance becomes unpredictable for a fixed bias when the
network environment changes. In contrast, our BP is always
near-optimal and robust to network environments. Particularly,
the approximate BP has dramatically reduced the complexity
with little performance loss.

To evaluate the performance of the dynamic BP algorithm,
we apply the dynamic BP to two scenarios, i.e., the first
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Fig. 5. Average degree of the variable nodes in the factor graph.

scenario: 80% ‘existing MUs’ with 20% ‘new MUs’ joining
the network, and the second scenario: 60% ‘existing MUs’
with 40% ‘new MUs’ joining the network. Denoted by ‘DBP-
Approx(80%+20%)’ and ‘DBP-Approx(60%+40%)’ for the
two scenarios, respectively. For comparison, we also consider
the start-over user association scheme, in which the approx-
imate BP algorithm is applied to all MUs as a whole. This
start-over scenario, denoted by ‘BP-Approx(100%)’, provides
the benchmark with the optimal result.

From Fig. 4, we can see that the performance of the dy-
namic BP algorithm in the two scenarios approaches the ‘BP-
Approx(100%)’ algorithm with a very small gap. Specifically,
the performance gap between ’DBP-Approx(80% + 20%)’
and ’BP-Approx(100%)’ is only 2.28%, and the gap be-
tween ’DBP-Approx(60% + 40%)’ and ’BP-Approx(100%)’
is 5.59%. This means that we can rely on the dynamic BP to
establish associations for the ‘new MUs’ with a much lower
complexity, rather than starting over to perform the original
BP algorithm for all the MUs.

B. Degree Distributions of Factor Graph
Fig. 5 plots the average degree of variable nodes in the factor

graph. Here, δ is a linear SINR value. First, we can see that the
analytical results in Eq. (27) match well with the simulation
results. The average degree decreases when δ increases, which
reduces the complexity at the MU side. This is because that
the number of the BSs, which can provide large enough SINR,
decreases when the SINR threshold increases. From the figure,
when δ > 0.4, the average degree of a variable node is
below one. In this case, the BP algorithm cannot perform well
because of the limited association options for each MU. Impor-
tantly, the variable node degree only depends on the threshold
δ, and is constant relative to the deployment intensities and
transmission powers of BSs. This property provides a constant
computational and communication complexity at the MU side
once δ is determined.
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Fig. 7. Average degree of the factor nodes in Tier-2 (Pico-cell BSs).

In Fig. 6 and Fig. 7, we present the analytical and simulation
results for the average degree of the factor nodes in different
tiers. As shown in the two figures, the analytical results both
match well with the simulation ones. The average degree of
factor nodes in tier-2 is much less than the those in tier-1
because the transmission power in tie-2 is much smaller. The
average degree of factor nodes decreases with the increase
of δ. Furthermore, we can see that when we increase the
deployment intensities of BSs in tier-2, the degree of factor
nodes in both tiers will decrease, as shown in the two figures.
The reason is that more BSs are contributing to the inter-cell
interference. However, when the transmission power of BSs in
tier-2 increases, the degree of factor nodes in tier-2 increases
as well, while the degree of factor nodes in tier-1 decreases.
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Fig. 8. Sparsity of the factor graph in an unit area (1km2).

Also, we can see that the degrees of factor nodes in all tiers
will increase as the intensity of MUs increases.

Fig. 8 shows the sparsity of the factor graph within a unit
area, i.e., 1 square kilometer. From Eq. (29), we can see that
the sparsity is independent of the transmission power of the
BSs. This can be verified from this figure, i.e., the sparsity
keeps constant when we increase the power of small-cell BSs
P2 from 1W to 2W. However, when the intensities of BSs
increases, the sparsity decreases, which can be seen from Eq.
(29), and is also verified by Fig. 8. Also, we can see that the
sparsity is below 0.1 per area, and will decrease significantly
when the area of the HetNet increases. The sparsity also
decreases when the threshold δ increases. Thus, if δ is close
to 0, the relative high density of the factor graph will affect
the performance of the BP algorithm. We can tune the value
of δ to achieve a good BP performance. Practically, δ = 0.1
will lead to a reasonably good performance.

VII. CONCLUSION

In this paper, we proposed a distributed BP algorithm to
solve the user association problem in HetNets with various
user priorities. In addition, we developed an approximate BP
algorithm to reduce the computational and communication
complexity at the BS side with a slight performance loss.
The computational complexity can be reduced to only |H(j)|
multiplications and |H(j)| − 1 additions, and the messages
are transmitted in a broadcast manner. This is in contrast
with the complexity of the exact BP algorithm, of which
the computational complexity is O(2|H(j)||H(j)|), and the
messages are transmitted in a point-to-point manner. Also
the practical dynamic algorithm is proposed. Furthermore, the
average degree distribution and the sparsity of the developed
factor graph were analyzed based on the stochastic geometry
theory. Simulation results showed that the proposed BP algo-
rithm converged quickly within five iterations. Its performance
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almost overlapped with the optimal result obtained by an
exhaustive search. Compared with the existing schemes, our
proposed distributed BP algorithm improves the system utility
by nearly 30%. The simulations also showed that with the
parameters in 3GPP specification, the average value of |H(i)|,
i.e., the variable node degree Du, is practically small (around
two), which indicated a low computational and communication
complexity at the MU side. Considering the scenario that each
MU can associate with more than one BS, the constraint∑

j xij = 1, ∀i, will be relaxed and more potential MU-BS
associations will be involved in to the BP algorithm. Although
the framework of our BP algorithm still works, the detail
messages will be reformulated. Hence, we leave this issue as
our future work.

APPENDIX A
PROOF OF LEMMA 1

To simplify the notation in the proof, we assume that each
MU’s neighbor set is J , i.e., H(i) = J and H(j) = I .
This will not change the proof. Consider two probability sets
S(t−1) =

{
m

(t−1)
i→j (xij)

}
and S̃

(t−1)
=
{
m̃

(t−1)
i→j (xij)

}
. Then

we have the supremum norm∣∣∣∣∣∣∣∣Γ(S(t−1)
)
− Γ

(
S̃

(t−1)
)∣∣∣∣∣∣∣∣

sup

= max
i∈I,j∈J∣∣∣m(t)

i→j(xij)− m̃
(t)
i→j(xij)

∣∣∣ = 1

φ
max
i,j

∣∣∣∣∣∣
∏

k∈J \{j}

∑
xI\{xik}

exp(µfk)

 ∏
q∈I\{i}

m
(t−1)
q→k (xqk)−

∏
q∈I\{i}

m̃
(t−1)
q→k (xqk)

∣∣∣∣∣∣
(a)

≤ 1

φ
max

j

∏
k∈J \{j}

N
∑

xI\{xik}

max
i

∣∣∣∣∣∣
∏

q∈I\{i}

m
(t−1)
q→k (xqk)−

∏
q∈I\{i}

m̃
(t−1)
q→k (xqk)

∣∣∣∣∣∣
(b)

≤ 1

φ
max

j

∏
k∈J \{j}

2|I|−1(|I| − 1)N

max
q∈I\{i}

∣∣∣m(t−1)
q→k (xqk)− m̃

(t−1)
q→k (xqk)

∣∣∣
≤
(
2|I|−1(|I| − 1)N

)|J |−1

φ

max
q,k

∣∣∣m(t−1)
q→k (xqk)− m̃

(t−1)
q→k (xqk)

∣∣∣|J |−1

≤(
2|I|−1(|I| − 1)N

)|J |−1

φ
max
i,j

∣∣∣m(t−1)
i→k (xi)− m̃

(t−1)
i→k (xi)

∣∣∣
=

(
2|I|−1(|I| − 1)N

)|J |−1

φ

∣∣∣∣∣∣∣∣S(t−1) − S̃
(t−1)

∣∣∣∣∣∣∣∣
sup

.

(30)

The inequality (a) comes from the two following two facts:
1) Given µ, the function exp(µfk) is a bounded value, say
upper bounded by a constant N , since the utility fk is always
a bounded value, and 2) |

∑
s xs| ≤

∑
s |xs| for arbitrary

xs. The inequality (b) can be obtained from 1) the fact that

∑
xI\{xik} is the summation of 2|I|−1 items, and 2) the

following inequality.

max
i∈I

∣∣∣∣∣∣
∏

q∈I\{i}

mq→k −
∏

q∈I\{i}

m̃q→k

∣∣∣∣∣∣
≤ (|I| − 1) max

q∈I\{i}
|mq→k − m̃q→k| . (31)

The proof for (31) is based on the constraint that all the
message values are between 0 and 1. The proof follows
iterative manner by first considering |I| = 2. Then we plug
the result to the case when |I| = 3, and so on. To be concise
with the paper, we skipped this iterative process.

From (30), we say that Γ is a continuous mapping since
the coefficient

(
2|I|−1(|I| − 1)K

)|J |−1
is a finite number,

and this completes the proof. �

APPENDIX B
PROOF OF THEOREM 1

Let A be the collection of the message set S(t). The
mapping function Θ maps A to A with the function Γ.
According to Lemma 1, Θ is continuous since Γ is continuous.
Also, it is clear that the set A is convex, closed and bounded.
According to Schauder fixed point theorem, Θ has a fixed
point. This completes the proof. �

APPENDIX C
APPROXIMATION OF THE LIKELIHOOD

The likelihood ratio mj→i(xij=1)
mj→i(xij=0) can be approximated as

follows. To simplify the notation, we assume µ = 1 here,
since it is a constant and does not affect the approximations.

mj→i (xij = 1)

mj→i (xij = 0)

=
E
(
exp (fj) |xij=1

)
E
(
exp (fj) |xij=0

) (a)
≈

exp
(
E
(
fj |xij=1

))
exp

(
E
[
fj |xij=0

])

=

exp

(
E

( ∑
k∈H(j)\{i}

xkjωk log
Wγkjωk∑

q∈H(j)\{i}
xqjωq+ωi

))

exp

(
E

( ∑
k∈H(j)\{i}

xkjωk log
Wγkjωk∑

q∈H(j)\{i}
xqjωq

))

× exp

E

ωi log
Wγijωi∑

q∈H(j)\{i}
xqjωq + ωi


 ,

(32)

where (a) comes from the approximation that E (exp (x)) ≈
exp (E (x)). Since the priority ωi is uniformed distributed
with a relatively small range, e.g., ωi ∈ [1, 3], we fur-
ther make the approximation on the last equation in (32)

as log

( ∑
q∈H(j)\{i}

xqjωq + ωi

)
≈ log

( ∑
q∈H(j)\{i}

xqjωq

)
,

which is accurate enough when |H(j)| is large. Then (32)
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can be rewritten as

exp

E

ωi log
Wγijωi∑

q∈H(j)\{i}
xqjωq + ωi




=
expωi log (Wγijωi)

expE

(
ωi log

( ∑
q∈H(j)\{i}

xqjωq + ωi

))
(a)
≈

(Wγijωi)
ωi(

E

( ∑
q∈H(j)\{i}

xqjωq + ωi

))ωi

=

 Wγijωi∑
q∈H(j)\{i}

ωqmq→j (xqj = 1) + ωi


ωi

, (33)

where (a) comes from the same approximation as in Eq. (32).
This completes the approximation process. �

APPENDIX D
PROOF OF THEOREM 2

A. The Average Degree of Variable Nodes

Without loss of generality, we conduct the analysis on a
typical MU that is located at the origin and assume that the
potential serving BSs in l-th tier locate at the point xl, ∀l ∈ L.
The fading (power) is denoted by hxl

, which is assumed to
be exponential distributed, i.e., hxl

∼ exp(1). The path loss
function is given by ∥xl∥−αl , where ∥·∥ denotes the Euclidian
distance.

The average number of edges emanated from the typical
MU to the BSs in the l-th tier can be formulated as

Nl =

∫
R2

λl Pr (ρ(xl) > δ) dxl, (34)

where ρ(xl) represents the received SINR at the typical MU
from the l-th tier BS located at xl.

Now, we focus on the probability Pr (ρ(xl) > δ) in (34) as
follows.

Pr (ρ(xl) > δ) = Pr

 Plhxl
∥xl∥−αl

L∑
k=1

∑
xk∈Φk

Pkhxk
∥xk∥−αk + σ2

> δ


= Pr

(
hxl

>
δ
(
I + σ2

)
Pl ∥xl∥−αl

)
= EI (exp (−sI)) exp

(
−sσ2

)
, (35)

where xk denotes the locations of interfering BSs, I
△
=

L∑
k=1

∑
xl∈Φk

Pkhxl
∥xl∥−αk represents the aggregate interference,

and s = δ∥xl∥αl

Pl
. The last step results due to the exponential

distribution of hxl
. Then, we derive EI (exp (−sI)) in (35) as

follows.

EI (exp (−sI))
(a)
=

L∏
k=1

EIk (exp (−sIk))
(b)
=

L∏
k=1

EΦk( ∏
xk∈Φk

∫ ∞

0

exp
(
−sPkhxk

∥xk∥−αk

)
exp(−hxk

)dhxk

)
(c)
=

L∏
k=1

exp

(
−λk

∫
R2

(
1− 1

1 + sPk ∥xk∥−αk

)
dxk

)

=

L∏
k=1

exp

(
−2πλk

1

αk
(sPk)

2
αk B

(
2

αk
, 1− 2

αk

))
,

(36)

where Ik ,
∑

xl∈Φk

Pkhxl
∥xl∥−αk . In (36), (a) follows the

independence of Φk, i.e., the point process of one tier is
independent of other tiers, (b) is based on the indepen-

dence of channel fading, and (c) follows E
(∏

x
u (x)

)
=

exp
(
−λ
∫
R2 (1− u (x)) dx

)
, where x ∈ Φ and Φ represents

a Poisson point process in R2 with the intensity λ [32].
Based on the derivation above, the average number of edges

emanated from the typical MU to BSs from all the tiers can
be calculated as

N =
L∑

l=1

Nl =
L∑

l=1

λl

∫
R2

exp

(
−

L∑
k=1

2π
λk

αk

(
δPk

Pl

) 2
αk

B

(
2

αk
, 1− 2

αk

)
∥xl∥

2αl
αk − δσ2

Pl
∥xl∥αl

)
dxl

=

L∑
l=1

2πλl

∫ ∞

0

exp

(
−

L∑
k=1

2π
λk

αk

(
δPk

Pl

) 2
αk

B

(
2

αk
, 1− 2

αk

)
r

2αl
αk − δσ2

Pl
rαl

)
rdr (37)

It can be seen that the average degree of variable nodes, i.e.,
Du, equals to N .

B. The Degree of Factor Nodes in l-th Tier

In this subsection, we assume a typical BS in the l-th tier
that is located at the origin, and assume that an MU is located
at the point x. The average number of edges emanated from
the typical BS to the MUs can be formulated as

Nu =

∫
R2

λu Pr (ρ(x) > δ) dx. (38)

where ρ(x) represents the received SINR at the MU located
at x from the typical BS, i.e.,

Pr (ρ(x) > δ) =

Pr

 Plhx ∥x∥−αl

L∑
k=1

∑
xk∈Φk

Pkhxk,x ∥xk − x∥−αk + σ2

> δ

 , (39)

where xk denotes the location of an interfering BS.
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Since HPPP is a stationary process, the distribution of
∥xk − x∥ is independent of the value of x, i.e., p(∥xk − x∥) =
p(∥xk∥), where p(·) represents the probability density func-
tion. Then, we have similar results with Eq. (35). That is,

Pr (ρ(x) > δ) = EI (exp (−sI)) exp
(
−sσ2

)
, (40)

where s = δ∥x∥αl

Pl
. Then we have

Nu = 2πλu

∫ ∞

0

exp

(
−

L∑
k=1

2π
λk

αk

(
δPk

Pl

) 2
αk

B

(
2

αk
, 1− 2

αk

)
r

2αl
αk − δσ2

Pl
rαl

)
rdr. (41)

We can see that the average degree of factor nodes correspond-
ing to the BSs in the l-th tier, i.e., Dl, equals to Nu. Combined
with the results Eq. (36), we completes the proof. �

APPENDIX E
PROOF OF COROLLARY 1

By plugging α1 = · · · = αL = α into (25), and ignoring
the noise, we have

Z(λl, Pl, α, δ)

=

∫ ∞

0

exp

(
−

L∑
k=1

2πλk

α

(
δPk

Pl

) 2
α

B

(
2

α
, 1− 2

α

)
r2

)
rdr

=
1

2

∫ ∞

0

exp

(
−

L∑
k=1

λk

(
Pk

Pi

) 2
α 2π

α
δ

2
αB

(
2

α
, 1− 2

α

)
t

)
dt

=
1

2
L∑

k=1

λk

(
Pk

Pl

) 2
α 2π

α δ
2
αB

(
2
α , 1−

2
α

)
=

α

4πB
(
2
α , 1−

2
α

)
δ

2
α

P
2
α

l
L∑

k=1

λk (Pk)
2
α

.

(42)

By substituting the above Z into (23) and (24), we can obtain
(27) and (28) respectively. This completes the proof. �

APPENDIX F
PROOF OF COROLLARY 2

The density (sparsity) of an undirected graph G = (V ,E)
is defined as:

S =
2|E |

|V |(|V | − 1)
, (43)

where 1
2 |V |(|V | − 1) represents the maximum edges in this

graph. In our factor graph model, the edges only exist between
variable nodes and factor nodes. Thus, the density of our factor
graph can be rewritten as

S =
|E|

|I||J |
. (44)

From the perspective of variable nodes I , it is easy to know
that |E| =

∑
i∈I Di, where Di denotes the degree of node i.

Due to the HPPP distribution of the BSs and MUs, each MU

averagely has the same degree, i.e., Di = D. We can obtain
that S = D|I|

|I||J | =
D
|J | .

We consider a typical MU located at the origin, and an
area dx around the position x. The total number of BSs from
all the tiers in this area can be given by

∑L
l=1 λldx. The

number of possible serving BSs (or the number of edges in the
factor graph) for the typical MU in this area from all tiers can
be formulated as

∑L
l=1 λldxPr (ρ(x, Pl) > δ), where ρ(x, Pl)

represents the received SINR at the typical MU from the l-th
tier BS located at x. Then sparsity in dx can be calculated as

S(x) =

∑L
l=1 λl Pr (ρ(x, Pl) > δ) dx∑L

l=1 λldx
. (45)

Then we can obtain the average of the sparsity when x ranges
in the whole area R2, i.e.,

E(S) =
∫
R2

S(x)p(x)dx

=

∫
R2

∑L
l=1 λl Pr (ρ(x, Pl) > δ)∑L

l=1 λl

p(x)dx

=
1∑L

l=1 λl

L∑
l=1

λl

∫ R

0

∫ R

0

Pr (ρ(δ, r, Pl) > δ) dx

=
Du∑L

l=1 λlR2
.

(46)

This completes the proof. �
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