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Abstract—Secure message dissemination is an important issue
in vehicular networks, especially considering the vulnerability
of vehicle to vehicle (V2V) message dissemination to malicious
attacks. Traditional security mechanisms, largely based on mes-
sage encryption and key management, can only guarantee secure
message exchanges between known source and destination pairs.
For secure message dissemination in vehicular networks against
insider attackers, who may tamper the content of the disseminated
messages, ensuring the consistency and integrity of the transmitted
messages becomes a major concern that traditional message
encryption and key management based approaches fall short to
address. In this paper, by incorporating the underlying network
topology information, we propose a novel heuristic decision
algorithm that enables a vehicle to make a decision on the
message content using minimal information readily available.
The proposed algorithm can be readily implemented in practice.
Simulations are conducted to compare the security performance
achieved by the proposed decision algorithm with that achieved
by existing ones that do not consider or only partially consider
the topological information, to establish the effectiveness of the
proposed algorithm. Our results show that by incorporating the
network topology information, the security performance can be
significantly improved. This work sheds light on the optimum
algorithm design for secure message dissemination in vehicular
networks.

Index Terms—Vehicular networks, security, message dissemina-
tion, decision algorithm.

I. INTRODUCTION

Considering the vulnerability of vehicle to vehicle (V2V)

communications, message dissemination in vehicular networks

is susceptible to malicious insider attacks, e.g., malicious

vehicles who may spread false messages, tamper or drop the

received messages to disrupt delivery of authentic messages.

These attacks in vehicular networks could potentially result in

catastrophic consequences like traffic congestion, traffic crash,

even loss of lives, and therefore are significant security threats

to transportation systems that must be thoroughly investigated

before vehicular networks can be deployed.

Conventional security mechanisms, largely based on message

encryption and key management [1], [2], are effective to

guarantee message integrity against outsider attackers, however

fall short of protecting the integrity of disseminated messages

when there exist insider attackers who possess valid certificates

that can pass the authentication process conducted by the

certification authorities [3].

To keep the network message dissemination secure against

insider attackers, the trustworthiness of each vehicle and the

integrity of their transmitted messages are of great impor-

tance. Different from traditional security settings, in vehicular

networks, information collection and dissemination are con-

ducted by distributed vehicles. Quite often, information may

be generated by or received from a vehicle that has never been

encountered before. Moreover, the associated vehicular network

topology is constantly changing considering that both V2V

and vehicle to infrastructure (V2I) connections may emerge

opportunistically. These unique characteristics may render the

entity-based trust establishment approach [4] futile in vehicular

networks because it is challenging to maintain a stable reputa-

tion value for unknown and fast-moving vehicles. Furthermore,

safety-related vehicular network applications usually require

vehicles to respond quickly to the received messages [5]. In

such cases, determining the integrity of the received messages

is of greater importance than the malicious vehicle detection.

Therefore, decision algorithms based on data consistency and

integrity check emerge, e.g., [6]–[8]. However, when a vehicle

receives conflicting messages from different nearby vehicles,

it is not straightforward to assess which message is true if

focusing on data only while ignoring the underlying network

topology information that tells where these messages come

from. Indeed, messages coming from different paths can be

correlated when these paths share some common nodes. For

instance, multiple false messages may result from the same

malicious vehicle shared by multiple paths. Therefore, taking

the underlying topological information into consideration is

essential and beneficial when designing decision algorithms for

vehicles to conduct data consistency and integrity check.

In this paper, we consider vehicular networks containing

insider malicious vehicles that may tamper the content of

messages to disrupt their successful delivery. We are interested

in investigating a topology-based decision algorithm to keep

vehicles from being misguided by false messages. To the best

of our knowledge, this is the first work that takes the underlying

topology information into consideration when checking the

consistency of messages for secure message dissemination. The

novelty and major contributions of this paper are summarized

as follows:

1) By utilizing the underlying network topology informa-

tion, we propose a heuristic decision algorithm to cope

with the issue of message inconsistency caused by insider

malicious vehicles in the network, so as to reduce their

impact on the message security performance.

2) The proposed heuristic decision algorithm enables a
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vehicle to make a decision using readily available in-

formation, so that is fairly easy to implement in practice.

3) Simulation results show that our proposed algorithm

outperforms existing decision algorithms that do not

consider or only partially consider the topological in-

formation in terms of secure message dissemination in

vehicular networks.

The rest of this paper is organized as follows: Section II intro-

duces the system model and the problem formation. Section III

introduces the heuristic decision algorithm. In Section IV, we

conduct simulations to validate its effectiveness and discuss its

insight. Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMATION

A. Network and Message Dissemination Model

We consider a vehicular network where there is a vehicle

(termed as source vehicle) intending to deliver a message about

the road and traffic condition to inform other vehicles far away.

The road condition information can be abnormal situations, e.g.,

traffic accident, slippery road, etc., or normal situation, e.g.,

uncongested traffic. We assume that the content of message

takes value from {0, 1}, where 1 and 0 represents abnormal

and normal road condition respectively. We denote the content

of message transmitted by the source vehicle, which represents

the actual road condition, by m0, m0 ∈ {0, 1}. Other vehicles

do not know the true value of m0 a priori.
The message is forwarded from the source vehicle in a

broadcast and multi-hop manner to other vehicles with the

help of relay vehicles. Relay vehicles can be any vehicle

along the message propagation path. Multi-path forwarding

makes it challenging for the attackers to influence all message

forwarding paths [6], therefore helps to improve the message

security. We consider each vehicle has a unique ID number that

is registered in certification authority to represent its identity,

and vehicles cannot forge their own or other vehicles’ ID

numbers. When a vehicle transmits a message to other vehicles,

it adds its identity information, i.e., ID number, to the message.

This is commonly adopted in vehicular network applications

and can be achieved by some standard signature approach [9].

Using this, any vehicle in the network is able to obtain an

integrity-protected path list of its received messages recording

the relay vehicles of each message, and the records cannot be

injected and removed by attackers.

B. Attack Model

We consider insider attackers in this paper, that is, we assume

all the vehicles are legitimate vehicles that have passed the au-

thentication process conducted by the certification authority [7].

Vehicles in the network can be classified into two categories:

normal vehicles, which behave normally and will forward

the received message without any alteration, and malicious
vehicles, which may tamper the received message. Malicious

vehicles are uniformly distributed among all the vehicles in

the system with proportion p. It follows that the probability of

each vehicle being a malicious vehicle is p, independent of the

event that another distinct vehicle is a malicious vehicle. We

Fig. 1. An illustration of a vehicular network when there exists a malicious
vehicles V2 who would tamper the content of message. Specifically, there are
four paths (S−V1−V4−V8−D, S−V2−V5−V8−D, S−V2−V6−V9−D,
and S − V3 − V7 − V9 − D) that deliver the source message from S to D.
Therefore, out of the four copies of messages received by D, two copies are
incorrect as there are two paths containing the malicious vehicle V2.

initially assume that p is known and show that the accurate

decision algorithm depends on the knowledge of p. However,

in practice p is rather difficult to estimate and therefore we

present a heuristic algorithm that removes the need to know p.

Without loss of generality, we assume that the source vehicle

is normal and only relay vehicles may be malicious. The normal

vehicles do not know which vehicles are normal or malicious.

On the contrary, malicious vehicles not only know which

vehicle is malicious, but also are capable of communicating

with each other via back channels of infinite bandwidth [10].

That is, we assume malicious vehicles know what the correct

message transmitted by the source vehicle is. As a consequence,

each malicious vehicle simply transmit the incorrect message,

i.e., different from message m0, to its neighbors. This implies

that as long as a message is relayed by at least one malicious

vehicle, the message would be incorrect. Fig. 1 gives a simple

example of message dissemination process when there are

insider attackers in the network.

C. Problem Formation

Now we give a detailed description of the research problem

considered in this paper. We consider that there is a vehicle,

which is several hops away from the source vehicle, trying to

make a decision on the message content when it receives several

messages, and we call it the destination vehicle. Note that the

destination vehicle can be any vehicle along the message dis-

semination path. From the time instant the destination vehicle

receives the first message, it waits time period T to receive

more messages before making a decision. T characterizes the

response time requirement on the decision, and a larger T
potentially allows the vehicle to receive more messages. We

will discuss its impact on the integrity of the decision later in

the simulation. Let k be the number of messages received by

the destination vehicle during its waiting time period T and let

n be the number of relay vehicles that participate in relaying

these k messages from the source vehicle to the destination

vehicle. Consequently, the network being considered has n
relay vehicles and k paths between source and destination, and

the values of k and n can be readily obtained by the destination

vehicle from the received messages. Each relay vehicle simply

add their ID and re-broadcast the received messages, except

the malicious relay vehicles who would broadcast the incorrect

message.

Denote the k messages received by the destination vehicle by

Mi, i = 1, 2, ...k, Mi ∈ {0, 1}. As each message corresponds
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to a specific delivery path from the source vehicle to the

destination vehicle, we number the corresponding paths by

L1, L2, ...Lk. In addition, we number the relay vehicles by

V1, V2, ...Vn. A vehicle Vi may belong to one or more paths.

We construct a topology matrix to represent the underlying

network topological correlation. Specifically, based on the path

information derived from the received messages, the destination

vehicle can readily construct a k×n topology matrix B, where

each row represents a path, each column a node (vehicle), and

the (i, j)-th entry Bij being an indicator whether vehicle Vj

belongs to path Li:

Bij =

{
1, if vehicle Vj belongs to path Li

0, else
(1)

In this paper, we are interested in investigating a decision

algorithm for the destination vehicle to make a correct decision

on the disseminated message content against attacks from

malicious vehicles by utilizing the underlying network topology

information. Denote by d, d ∈ {0, 1} the decision made by

the destination vehicle. If d = m0, we say the destination

vehicle makes a correct decision, otherwise we say it makes an

incorrect decision. We use the probability of correct decision,

denoted by Psucc, as the performance metric to measure the

secure message dissemination performance, and Psucc can be

formally defined as follows:

Psucc = Pr(d = 1,m0 = 1) + Pr(d = 0,m0 = 0) (2)

III. HEURISTIC DECISION ALGORITHM

In this section, we propose a heuristic decision algorithm

for the destination vehicle to make a decision when receiving

conflicting messages purely based on the network topology

information.

According to the Maximum Likelihood Estimation [11],

given the k messages M1 = m1, ...Mk = mk received by

the destination vehicle, a decisions can be made according to

the following rule:

d =

{
1, Pr(M1=m1,...Mk=mk|m0=1)

Pr(M1=m1,...Mk=mk|m0=0) > 1

0, Pr(M1=m1,...Mk=mk|m0=1)
Pr(M1=m1,...Mk=mk|m0=0) < 1

, (3)

and when
Pr(M1=m1,...Mk=mk|m0=1)
Pr(M1=m1,...Mk=mk|m0=0) = 1, d is randomly chosen

from 0 and 1 with equal probability.

It can be seen from (3) that, the decision on d = 1 or d = 0
is made by comparing the value of

Pr(M1=m1,...Mk=mk|m0=1)
Pr(M1=m1,...Mk=mk|m0=0)

and 1. Therefore, calculating the probability that the event

M1 = m1, ...Mk = mk occurs if the true message m0

is 1, denoted as Pr (M1 = m1, ...Mk = mk|m0 = 1) and the

probability that the event occurs if the true message m0 is 0,

denoted as Pr (M1 = m1, ...Mk = mk|m0 = 0), is the critical

part of making a decision. In the following, we will first

demonstrate a method of re-arranging the topology matrix B,

followed by the calculation of the above two probabilities, and

finally we present the detailed heuristic decision algorithm.

Without loss of generality, we assume that among the k copies

of messages M1 = m1, ...Mk = mk received by the destination

vehicle, there are exactly k1, messages with content 1 and the

other k − k1 messages with content 0. Note that k1 = 0

and k1 = k are both trivial cases implying no conflict in

the received messages so that the decision is straightforward,

therefore we only consider the case when 0 < k1 < k.

A. Re-arranging the topology matrix B

Based on the message content delivered by different paths,

we re-arrange the network topology matrix B into the following

form:

B =

[
B1 Bs1 0
0 Bs0 B0

]
, (4)

where B1, B0, Bs1 and Bs0 , if exist, are non-zero matrices, and[
B1 Bs1 0

]
is a k1 × n sub-matrix corresponding to the

paths that deliver messages with content 1 to the destination

vehicle, and
[
0 Bs0 B0

]
is a (k − k1) × n sub-matrix

corresponding to the paths that deliver messages with content

0 to the destination vehicle. Besides, the columns of B1 and

B0 correspond to vehicles that only belong to paths that deliver

messages with content 1 and paths that deliver messages with

content 0 to the destination vehicle respectively, denoted by

Type 1 vehicles and Type 0 vehicles respectively. The columns

of sub-matrix

[
Bs1

Bs0

]
correspond to vehicles that belong to at

least one path that delivers message with content 0 and one path

that delivers message with content 1 to the destination vehicle,

denoted by Type 2 vehicles. Assume the number of Type 1 and

Type 0 vehicles are n1 and n0 respectively, 0 ≤ n1 + n0 ≤ n,

and the number of Type 2 vehicles is n2 = n− n1 − n0.
It is worth noting that the above arrangement of columns and

rows of matrix B corresponds to a re-numbering of vehicles

and paths and it does not change the underlying topology in

terms of path information. Besides, the sub-matrix B1 can

be non-existent if n1 = 0, i.e., when the paths that deliver

messages 0 to the destination vehicle contains all the n vehicles

in the network. Under this circumstance, B =

[
Bs1 0
Bs0 B0

]
.

Similarly, the sub-matrix B0 (or

[
Bs1

Bs0

]
) can also be non-

existent or empty when n0 = 0 (or n2 = 0).

B. Calculation of Pr (M1 = m1, ...Mk = mk|m0 = 1) and
Pr (M1 = m1, ...Mk = mk|m0 = 0)

In this part, we show the method of calculating the two con-

ditional probabilities Pr (M1 = m1, ...Mk = mk|m0 = 1) and

Pr (M1 = m1, ...Mk = mk|m0 = 0) based on the re-arranged

topology matrix B. The following two theorems summarize the

results.

Theorem 1. Consider that a destination vehicle receives k
copies of message M1 = m1,M2 = m2, ...Mk = mk, and
among which k1 messages are with content 1 and the other
k − k1 messages are with content 0, 0 < k1 < k. Conditioned
on the source message m0 = 1, the conditional probability
of the occurrence of event M1 = m1, ...Mk = mk can be
calculated as follows:

Pr (M1 = m1, ...Mk = mk|m0 = 1)

=

{
(1− p)

n−n0 ·
[∑n0

i=1 ai · pi (1− p)
n0−i

]
, n0 > 0

0, n0 = 0
, (5)
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where n0 is the number of Type 0 vehicles in the network, and
ai, i = 1, 2, ...n0 is the number of combinations with exactly i
malicious Type 0 vehicles leading to the occurrence of event
M1 = m1, ...Mk = mk.

Proof: When n0 = 0, there are no Type 0 vehicles in the

network, and the topology matrix B =

[
B1 Bs1

0 Bs0

]
. Under

this circumstance, conditioned on the source message m0 = 1,

when the event that k1 messages are with content 1 occurs,

all the n vehicles in the network should be normal vehicles.

It follows that the event that the other k − k1 messages are

with content 0 occurs with probability 0. Therefore, we have

Pr (M1 = m1, ...Mk = mk|m0 = 1) = 0 when n0 = 0.

When n0 > 0, we can conclude that if the matrix

[
Bs1

Bs0

]
exists, then the corresponding Type 2 vehicles should be all

normal vehicles. Observing that there is no possibility for two

paths sharing the same malicious vehicle to deliver different

contents. Therefore, malicious vehicles exist either among Type

1 vehicles or among Type 0 vehicles.

Given the source message m0 = 1, all the Type 1 vehi-

cles should be normal vehicles. Malicious vehicles can only

exist among Type 0 vehicles. Besides, the malicious Type

0 vehicles should be able to compromise all the k − k1
paths (corresponding to the sub-matrix

[
0 Bs0 B0

]
) to

cause the occurrence of the event that all the k − k1 paths

delivering messages with incorrect content 0. Therefore, any

combination of malicious vehicles should satisfy the follows

condition: by implementing element-wise union operation on

their corresponding columns in sub-matrix B0, i.e., implement-

ing element-wise Boolean operation OR on them, the result

should be a column with each entry be 1.

Note that the number of malicious type 0 vehicles can be

any integer within [1, n0]. Denote by event ei that randomly

choosing i columns from sub-matrix B0 and then conducting

element-wise union operation on them, there results a column

with each entry being 1. Denote by ai, i = 1, ...n0 the total

number of combinations that event ei occurs. Thus,

ai =

zi∑
j=1

I (event ei occurs) , (6)

where zi =

(
n0

i

)
, and I(x) is an indicator function that

I(x) = 1, when x is true; otherwise I(x) = 0.

It then follows from the combination theory [12] that :

Pr (M1 = m1, ...Mk = mk|m0 = 1)

= (1− p)
n−n0 ·

[
n0∑
i=1

ai · pi (1− p)
n0−i

]
, (7)

where the first part corresponds to the probability that the

k1 paths deliver messages with correct content 1, so that all

the n − n0 vehicles contained in these k1 paths are therefore

normal vehicles; and the second part is the probability that the

k − k1 paths deliver messages with incorrect content 0, which

summing up all the probabilities of different malicious vehicle

combinations.

Theorem 2. Consider that a destination vehicle receives k
copies of message M1 = m1,M2 = m2, ...Mk = mk, and
among which k1 messages are with content 1 and the other
k − k1 messages are with content 0, 0 < k1 < k. Conditioned
on the source message m0 = 0, the conditional probability
of the occurrence of event M1 = m1, ...Mk = mk can be
calculated as follows:

Pr (M1 = m1, ...Mk = mk|m0 = 0)

=

{
(1− p)

n−n1 ·
[∑n1

i=1 bi · pi (1− p)
n1−i

]
, n1 > 0

0, n1 = 0
, (8)

where n1 is the number of Type 1 vehicles in the network, and
bi, i = 1, 2, ...n1 is the number of combinations that exactly i
malicious Type 1 vehicles leading to the occurrence of event
M1 = m1, ...Mk = mk.

Denote by event e
′
i that randomly choosing i columns

from sub-matrix B1 and then conducting element-wise union

operation on them, there results a column with each entry being

1. Denote by bi, i = 1, 2, ...n1 the total number of combinations

that event e
′
i occurs. Then, we have

bi =

z
′
i∑

j=1

I
(

event e
′
i occurs

)
, (9)

where z
′
i =

(
n1

i

)
. Therefore, this theorem can be readily

proved following the same method as that used in the proof of

Theorem 1, and hence is ignored.

C. Heuristic Decision Algorithm

By combining (3), (5) and (8), it is readily to have d ={
0, n0 = 0

1, n1 = 0
, and when n0 > 0 and n1 > 0,

Pr (M1 = m1, ...Mk = mk|m0 = 1)

Pr (M1 = m1, ...Mk = mk|m0 = 0)

=
(1− p)

n−n0 ·
[∑n0

i=1 ai · pi (1− p)
n0−i

]
(1− p)

n−n1 ·
[∑n1

i=1 bi · pi (1− p)
n1−i

]

=

∑n0

i=1 ai ·
(

p
1−p

)
i

∑n1

i=1 bi ·
(

p
1−p

)
i
. (10)

Recall that Type 2 vehicles (if any) can not be malicious

vehicles. Therefore, when considering potential malicious ve-

hicle combinations, we only focus on Type 1 and Type 0

vehicles. Specifically, we regard the network corresponding to

sub-matrix B1 and B0 as networks that each row represents a

complete path and each column represent a vehicle, denoted by

network T1 and network T0 respectively. In the following, with

a twist use of the term vertex cut set [13] from graph theory

which defines a vertex set whose removal would disconnect

a graph, we define malicious cut set, size of a malicious cut

set, and minimal malicious cut set of a network in this paper,

and demonstrate that the parameter ai, 1 ≤ i ≤ n0 and bi,



5

1 ≤ i ≤ n1 in (10), which was defined in (6) and (9), are

exactly the number of malicious cut sets with size i in the

networks T0 and T1 respectively.

Definition 3. A malicious cut set of a network is a combination

of vehicles, where if all vehicles in the set are malicious

vehicles, all paths of the network can be compromised. The

size of a malicious cut set is the number of vehicles contained

in the set. A minimal malicious cut set is a malicious cut set

with the smallest size.

Based on Definition 3, if a vehicle set is a malicious cut set,

then each path of the network contains at least one vehicle

belonging to this set. Recall that ai (or bi) represents the

number of combinations that randomly choosing i columns

from sub-matrix B0 (or B1) and then conducting element-wise

union on them, there results a column with each entry being

1. That is, ai (or bi) represents the number of combinations

that by choosing i vehicles from Network T0 (or T1) to form

a vehicle set, each path of network T0 (or T1) contains at least

one vehicle belongs to this set. Therefore, ai, 1 ≤ i ≤ n0 and

bi, 1 ≤ i ≤ n1 are exactly the number of malicious cut sets

with size i of the network T0 and T1 respectively.

According to the properties of malicious cut sets, it can be

readily obtained that ai = 0 if ai+1 = 0, and ai+1 > 0, if

ai > 0. Similarly, we have bi = 0 if bi+1 = 0, and bi+1 > 0,

if bi > 0. Define

r0 = min {i : ai > 0} , 1 ≤ r0 ≤ n0 (11)

and

r1 = min {i : bi > 0} , 1 ≤ r1 ≤ n1, (12)

the smallest integer that satisfies ai > 0 and bi > 0 respectively.

Therefore, r0 and r1 are the sizes of the minimal malicious cut

set of network T0 and T1 respectively, and ar0 and br1 are the

number of minimal malicious cut sets of network T0 and T1

respectively. It follows that

Pr (M1 = m1, ...Mk = mk|m0 = 1)

Pr (M1 = m1, ...Mk = mk|m0 = 0)
=

∑n0

i=r0
ai ·

(
p

1−p

)
i

∑n1

i=r1
bi ·

(
p

1−p

)
i

≈
ar0

(
p

1−p

)r0

br1

(
p

1−p

)r1 , (13)

where the first step is obtained from the fact that a1 = a2 =
... = ar0−1 = 0, ar0 > 0, and b1 = b2 = ... = br1−1 = 0,

br1 > 0, and the second step is obtained by only keeping the

first item of both the numerator and denominator. Considering

the fact that when p is small, the probability that there are

i+1 malicious vehicle in the network is much smaller than the

probability that there are i malicious vehicles in the network,

therefore, this approximation is quite accurate.

Note that when p is small, we have p
1−p � 1. Therefore,

when r0 �= r1, whether the value of
ar0(

p
1−p )

r0

br1(
p

1−p )
r1 is larger

than 1 is dominantly determined by the value of r0 − r1.

Specifically, when r0 < r1, we have
(

p
1−p

)r0−r1 � 1. In this

case, the coefficient
ar0

br1
plays a marginal role and therefore

ar0(
p

1−p )
r0

br1(
p

1−p )
r1 > 1; when r0 > r1, we have

(
p

1−p

)r0−r1 � 1,

and therefore
ar0(

p
1−p )

r0

br1(
p

1−p )
r1 < 1. On the contrary, when r0 = r1,

whether the value of
ar0(

p
1−p )

r0

br1(
p

1−p )
r1 is larger than 1 would heavily

depend on the value of the coefficient
ar0

br1
. Consequently, we

have

Pr (M1 = m1, ...Mk = mk|m0 = 1)

Pr (M1 = m1, ...Mk = mk|m0 = 0)
≈

ar0

(
p

1−p

)r0

br1

(
p

1−p

)r1

⎧⎪⎨
⎪⎩
> 1, r0 < r1

< 1, r0 > r1

=
ar0

br1
, r0 = r1

,

(14)

which shows that to compare the values

of Pr (M1 = m1, ...Mk = mk|m0 = 1) and

Pr (M1 = m1, ...Mk = mk|m0 = 0), we only need to

compare the values of r0 and r1, namely, the sizes of minimal

malicious cut sets of network T0 and T1 when r0 �= r1, or

the values of ar0 and br1 , namely, the number of minimal

malicious cut sets of networks T0 and T1 when they have the

same size of minimal malicious cut set.

From Menger’s Theorem [13], the size of the minimal vertex-

cut is equal to the maximum number of vertex-independent

paths between these two non-adjacent vertices. Therefore, it

is readily to conclude that r0 and r1 are also the numbers of

maximum number of node-disjoint paths in networks T0 and

T1 respectively. Note that calculating the maximum number

of vertex-disjoint paths from source to destination is a special

case of finding the maximum flow problem by setting every

vertex capacity to be 1 [13]. Therefore, the values of r0 and r1
can be readily obtained by existing maximum flow algorithms,

e.g., those introduced in [13], [14]. When r0 = r1, ar0 and br1
can be obtained by an exhaustive search algorithm according

to their definitions given by (6) and (9).

By combining (3) and (14), the decision rule of our proposed

heuristic algorithm can be shown as

d =

{
1, (r0 < r1) or (r0 = r1, ar0 > br1)

0, (r0 > r1) or (r0 = r1, ar0 < br1)
, (15)

and when r0 = r1, and ar0 = br1 , d is randomly chosen from

0 and 1 with equal probability.

Remark 4. The implication of the heuristic decision algorithm

(15) can also be explained straightforwardly as follows. Given

two networks that deliver conflicting message contents, by

removing the common nodes shared by these two networks

and regarding each path after the removal of the common

nodes as a completely new path, there results in two new

independent networks that deliver conflicting message contents.

Therefore, decision can be made by comparing the robustness

of the two new networks. Note that a larger size of the

minimal malicious cut set of a network implies a larger number

of minimal malicious vehicles are required to compromise

that network, and consequently, a lower probability to deliver

incorrect messages. Therefore, the decision will always be
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chosen as the message delivered by the network with a lower

probability to be compromised.

From (15), we can see that the proposed heuristic decision

algorithm is purely based on topological information so that is

fairly easy to implement in practice. In summary, the heuristic

decision algorithm works as detailed in Algorithm 1.

Algorithm 1 Heuristic Decision Algorithm

INPUT: M1...Mk

OUTPUT: d
begin

1) Construct topology matrix B based on the paths infor-

mation derived from the received k copies of message;

2) Based on the constructed topology matrix B, calculate

r0 and r1 based on maximum flow algorithm;

3) If r0 < r1 then d = 1

elseif r0 > r1 then d = 0

else calculate ar0 and br1 based on their definition

given by (6) and (9);

if ar0 > br1 then d = 1

elseif ar0 < br1 then d = 0

else d is randomly chosen from 0 and 1 with equal

probability

end

end
end

IV. SIMULATION AND DISCUSSION

In this section, we conduct simulations to establish the

validity and effectiveness of the decision algorithms proposed

in Section III. We generate a network that vehicles are Pois-

sonly distributed in the road with density ρ, and each relay

vehicle has a probability p to be a malicious vehicle. Vehicles

communicate with their neighbors adopting the unit disk model

[15] with a transmission range r0 = 250m [16]. Messages

are disseminated in a broadcast and multi-hop manner, and the

per-hop transmission delay is set to be β = 4ms [16]. We

focus on a destination vehicle located at a distance L from the

source vehicle. From the time instant the destination vehicle

receives the first message that reports road condition, it waits

time period T to receive more number of messages before it

starts to make a decision. At each simulation, the destination

vehicle makes a decision given the received messages and the

derived underlying topology information utilizing the proposed

heuristic decision algorithm. The decision result can be either

correct or incorrect. The simulation is repeated 5000 times and

the proportion of the correct decision, i.e., the probability of

correct decision Psucc, is plotted.
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Fig. 2. A comparison of the probability of correct decision achieved assuming
our proposed algorithm and that achieved assuming other existing weighted
voting algorithms.

Fig. 2 compares the security performance achieved by our

proposed heuristic algorithm (labeled: Heuristic Algorithm),

with that achieved by existing weighted voting algorithms

like the weighted voting algorithm proposed in [17] (labeled

with WV: MMSE) that considers partial correlation between

messages, the weighted voting algorithm proposed in [18]

(labeled with WV: w ∝ αh−1) that does not consider the un-

derlying topology information causing the correlation between

messages, and the majority voting (a special case of weighted

voting by assigning identical weights to each vote) that totally

ignores the underlying topological correlation. Specifically, the

weighted voting algorithm proposed in [17] set weight to each

message as wi =
∑k

j=1 C
(−1)
ij

(∑k
r,j=1 C

(−1)
rj

)−1

, where C

is the error covariance matrix whose (i, j)th entry is defined

by the error covariance between message Mi and message

Mj , calculated by Cij = E [(Mi −m0)(Mj −m0)]. C−1

is the inverse matrix of the error covariance matrix C, and

C
(−1)
ij is the (i, j)th entry of the matrix C−1. The weighted

voting algorithm proposed in [18] simply assigns weight to

each message as wi = αhi−1

∑
j αhj−1 , where α ∈ (0, 1) is a

weighting factor to reduce the oversampling impact caused

by messages generated from the same source and hi is the

number of hops traveled by the ith message from the source

to the destination. It can be seen that our proposed algorithm

outperforms the weighted voting algorithms proposed in [17],

[18], and the majority voting algorithm, which demonstrates

that our algorithm that takes the topology information and

correlation between different copies of message into account is

able to effectively improve the robustness of vehicle networks

against attacks from malicious vehicles.

Fig. 2 also reveals the relationship between the probability of

correct decision Psucc and the percentage of malicious vehicles

in the network. It can be seen that Psucc reduces to its minimum

value Psucc = 0 when the proportion of malicious vehicles

in the network is larger than a certain threshold. Beyond that

threshold, a further increase in p has little impact on the security

performance. This can be explained by the fact that the more

malicious vehicles in the network, the more tampered copies

of message will be delivered, and therefore a lower chance for

the destination vehicle to make a correct decision regardless of

which algorithm it adopts. Furthermore, when the number of
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Fig. 3. An illustration of the relationship between the probability of correct
decision and the waiting time period the destination vehicle waits before it
starts to make a final decision by adopting the proposed algorithm.

malicious vehicles in the network reaches a certain threshold,

most of the message dissemination paths will be compromised.

In that case, the destination vehicle will be totally misguided by

the incorrect messages and the message security performance

approaches its minimum value Psucc = 0.

Fig. 3 demonstrates the relationship between the probability

of correct decision Psucc achieved assuming our proposed

algorithm, and the waiting time period T the destination vehicle

waits before it starts to make a decision. Importantly, we

can see that a longer waiting time is beneficial to the secure

message dissemination because it potentially implies a larger

number of received messages. This consequently, brings more

information on the underlying network topology, and therefore

leads to a more robust result of the data consistency check.

However, when T increases beyond a certain threshold Tth,

e.g., in the case of ρ=0.01veh/m, Tth = 150ms, a further

increase in T has only marginal (less than 5%) impact on

the probability of correct decision. This is due to the fact

that when T is larger than a threshold, the marginal return

brought by waiting a longer time to the security performance

is diminishing. Furthermore, it can be seen that to achieve the

same message security performance, when the vehicular density

is lower, the waiting time needs to be longer. Therefore, when

determining the waiting time period, it is important to take the

vehicular density into account, e.g., in areas where the vehicular

density is large, the waiting time can be reduced. Thus, Fig. 3

helps to provide guidance on the choice of waiting time period

for destination vehicles.

V. CONCLUSIONS

This paper proposed a novel heuristic decision algorithm that

utilizes the underlying network topology information to address

the issue of message inconsistency caused by malicious vehi-

cles that would tamper the content of disseminated messages.

The heuristic decision algorithm proposed enables a vehicle to

make a decision when receiving conflicting messages purely

based on network topology information, without the need for a

prior knowledge of the percentage of malicious vehicles in the

network, and therefore, is fairly easy to implement in practice.

By comparing the proposed algorithm with existing algorithms

that do not consider the underlying topological information

or only partially consider message correlation, we showed

that our proposed algorithm greatly outperforms existing ones.

Moreover, we discussed the impact of some key parameters

on the performance of the algorithm, including the percentage

of malicious vehicles in the network, and the waiting time

the destination vehicle waits before making the decision. Our

results give insight on the optimum decision algorithm design

for vehicular networks to improve message security.
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