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Abstract— Secure message dissemination is an important issue
in vehicular networks, especially considering the vulnerability
of vehicle-to-vehicle message dissemination to malicious attacks.
Traditional security mechanisms, largely based on message
encryption and key management, can only guarantee secure
message exchanges between a known source and destination
pairs. In vehicular networks, however, every vehicle may learn
its surrounding environment and contributes as a source, while
in the meantime, acting as a destination or a relay of information
from other vehicles, and message exchanges often occur between
“stranger” vehicles. This makes secure message dissemination
against malicious tampering much more intricate. For secure
message dissemination in vehicular networks against insider
attackers, who may tamper the content of the disseminated mes-
sages, ensuring the consistency and integrity of the transmitted
messages becomes a major concern which the traditional message
encryption and key management-based approaches fall short to
provide. However, it is challenging for a vehicle to distinguish
which message is true when the messages received from multiple
nearby vehicles are conflicting. In this paper, by incorporating the
underlying network topology information, we propose an optimal
decision algorithm that is able to maximize the chance of making
a correct decision on the message content, assuming the prior
knowledge of the percentage of malicious vehicles in the network.
Furthermore, a novel heuristic decision algorithm is proposed
that can make decisions without the aforementioned knowledge
of the percentage of malicious vehicles. The simulations are
conducted to compare the security performance achieved by
our proposed decision algorithms with that achieved by the
existing ones that do not consider or only partially consider
the topological information to verify the effectiveness of the
algorithms. Our results show that by incorporating the network
topology information, the security performance can be much
improved. This paper sheds light on the optimum algorithm
design for secure message dissemination.
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I. INTRODUCTION

VEHICULAR networks, with the assistance of dedicated
short-range communication (DSRC) [1] and LTE tech-

nology, enable safety and non-safety information sharing
among vehicles and infrastructure through vehicle to vehi-
cle (V2V) and vehicle to infrastructure (V2I) communica-
tions, and therefore are conductive to improving road safety,
enhance traffic efficiency and increase comfort and conve-
nience to drivers and passengers [2]–[4]. On the other hand,
accompanying these benefits brought along by vehicular net-
work applications is the urgent security issue that should
be addressed. Specifically, considering the vulnerability of
V2V communications, message dissemination in vehicular
networks is susceptible to malicious attacks, e.g., malicious
vehicles who may spread false messages, tamper or drop
the received messages [5] to disrupt delivery of authentic
messages. These attacks in vehicular networks could poten-
tially result in catastrophic consequences like city-wide traffic
congestion, traffic crash, even loss of lives, and therefore
are significant security threats to transportation systems that
must be thoroughly investigated before vehicular networks
can sbe deployed.

Vehicular network security design should guarantee
authentication, non-repudiation, information integrity, and in
some specific application scenarios, confidentiality, to protect
the network against attackers [6]. Conventional security
mechanisms, largely based on message encryption and key
management [7], [8], are effective to guarantee message
integrity against outsider attackers, however fall short of
protecting the integrity of disseminated messages when
there exist insider attackers who possess valid certificates
that can pass the authentication process conducted by the
certification authorities [9], [10].

To keep the network message dissemination secure against
insider attackers, the trustworthiness of each vehicle and the
integrity of their transmitted messages are of great impor-
tance. Different from traditional security settings, in vehic-
ular networks, information collection and dissemination are
mainly conducted by distributed vehicles due to the limited
number of road side infrastructure attributable to the high
deployment cost, and also the unreliable nature of a central-
ized data base. Quite often, information may be generated
by or received from a vehicle that has never been encountered
before. Moreover, the vehicular network topology is constantly
changing considering that both V2V and V2I connections
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may emerge opportunistically. These unique characteristics
may render the entity-based trust establishment approach,
conducted at each vehicle by monitoring their instantaneous
neighbors’ behavior, futile in vehicular networks because it
is challenging to maintain a stable reputation value for an
unknown and fast-moving vehicle. Furthermore, safety-related
vehicular network applications usually require vehicles to
respond quickly to the received messages [11]. In such cases,
determining the integrity of the disseminated messages is
of greater importance than the malicious vehicle detection.
Therefore, decision algorithms based on data consistency and
integrity check emerge, e.g., [12]–[16]. However, when a
vehicle receives conflicting messages from different nearby
vehicles, it is not straightforward to assess which message is
true if focusing on data only while ignoring the underlying
network topology information that tells where these messages
come from. Indeed, messages coming from different paths can
be correlated when the these paths share some common nodes.
For instance, multiple false messages may result from the same
malicious vehicle shared by multiple paths. Therefore, taking
the underlying topological information into consideration is
essential and beneficial when designing decision algorithms
for vehicles to conduct data consistency check.

In this paper, we consider vehicular networks containing
insider malicious vehicles that may tamper the content of
messages to disrupt their successful delivery. We are interested
in investigating topology-based decision algorithms to keep
vehicles from being misguided by false messages. To the
best of our knowledge, this is the first work that takes
the underlying topology information into consideration when
checking the consistency of messages for secure message dis-
semination. Our results shed insight on the optimum decision
algorithm design for vehicular networks to improve security
performance.

The novelty and major contributions of this paper are
summarized as follows:

1) By utilizing the underlying network topology informa-
tion, we propose two message decision algorithms to
cope with the issue of message inconsistency caused by
insider malicious vehicles in the network.

2) The proposed optimum decision algorithm is able to
effectively help a vehicle maximally make a correct
decision on the content of the message when receiving
conflicting messages, and the proposed heuristic deci-
sion algorithm enables a vehicle to make a decision
purely based on topology information.

3) Simulation results show that both our proposed algo-
rithms outperform existing decision algorithms that do
not consider or only partially consider the topological
information in terms of secure message dissemination
in vehicular networks.

The rest of this paper is organized as follows: Section VI
reviews related work. Section II introduces the system model
and the problem formation. The optimum decision algo-
rithm and the heuristic decision algorithm are presented in
Section III and Section IV respectively. In Section V, we con-
duct simulations to validate the effectiveness of our proposed

decision algorithms and discuss their insight. Section VII
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMATION

In this section, we first introduce the system model, includ-
ing the network model, message dissemination model, and the
attack model. Then, we give a rigorous description of the
research problem addressed in this paper.

A. Network and Message Dissemination Model

We consider a vehicular network where each vehicle has a
unique ID number that is registered in certification authority
to represent its identity, and vehicles cannot forge their own or
other vehicles’ ID numbers. That is, we assume all vehicles are
legitimate vehicles that have passed the authentication process
conducted by the certification authority [13], [15].

Specifically, consider that there is a vehicle in the network
(termed as the source vehicle) intending to deliver a message
about the road condition to inform other vehicles further away.
The road condition information can be abnormal situations,
e.g., congestion, hazardous road conditions such as traffic acci-
dent, slippery road, etc., or normal situation, e.g., uncongested
traffic. We assume that the content of message takes value
from {0, 1}, and 1 represents abnormal road condition and
0 represents normal road condition. When the source vehicle
sends the source message m0 on road condition, it will also
send the location information applied to the road condition
along with message m0, to help other vehicles in the network
make a better route choice. It is worth noting that the road
situation can also be described as a multi-variable vector and
these variables can be correlated [13], e.g., one such variable
can be traffic congestion state and another can be accident
state. We denote the content of message on road condition
transmitted by the source vehicle, which represents the actual
road condition, by m0, m0 ∈ {0, 1}. Other vehicles do not
know the true value of m0 a priori.

The message is forwarded from the source vehicle in a
broadcast and multi-hop [17], [18] manner to other vehicles
with the help of relay vehicles. Relay vehicles can be any
vehicle along the message propagation path. Each time when
a relay vehicle receives a message from its neighbor, it will
forward the message. That is, when a relay vehicle gets the
same message several times (from different neighbors), it will
forward as many times as it receives the message. Multi-path
forwarding makes it challenging for the attackers to influence
all message forwarding paths [12], therefore helps to improve
the message security. When a vehicle transmits the message
on road condition to other vehicles, it transmits its identity
information, i.e., ID number, along with the message. This is
commonly adopted in vehicular network applications and can
be achieved by some standard signature approach [2], [19].
Using this, any vehicle in the network is able to obtain an
integrity-protected path list that records the relay vehicles of
the corresponding received message on road condition.

B. Attack Model

Vehicles in the network can be classified into two
categories: normal vehicles, which behave normally and
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Fig. 1. An illustration of a vehicular network when there exists a malicious
vehicles V2 who would tamper the content of message. Specifically, S is the
source vehicle, D is the destination vehicle, and vehicles between them are
relay vehicles. There are four paths (S−V1−V4−V8−D, S−V2−V5−V8−D,
S − V2 − V6 − V9 − D, and S − V3 − V7 − V9 − D) that deliver the source
message from S to D. Therefore, out of the four copies of messages received
by D, two copies are incorrect as there are two paths containing the malicious
vehicle V2.

will forward the received message without any alteration,
and malicious vehicles, which may tamper the received
message. It is assumed that vehicles cannot forge their
own or other vehicles’ ID numbers, and the path list transmit-
ted along with the message is protected by signature approach.
Therefore, malicious vehicles can only tamper the content
part of the message, but cannot tamper the path list record.
Malicious vehicles are uniformly and randomly distributed in
the system with proportion p. It follows that the probability
of a vehicle being a malicious vehicle is p, independent of the
event that another distinct vehicle is a malicious vehicle.

We assume that the source vehicle is normal and only
relay vehicles may be malicious. We acknowledge there is
possibility that the source vehicle can be malicious, and it is
also an important scenario when investigating the vehicular
network message security issue. In this paper, our main focus
is to design a topological approach to address the message
inconsistency issue resulted from the message dissemination
process. Therefore, we assume the source vehicle is normal,
and only relay vehicles can be malicious. We will leave the
work that removes this assumption as our future work. Besides,
we assume the normal vehicles do not know which vehicles
are normal or malicious. On the other hand, we consider the
most unfavourable situation for secure message dissemina-
tion in vehicular networks that malicious vehicles not only
know which vehicles are malicious, but also are capable of
communicating with each other via back channels of infinite
bandwidth [20]. That is, we assume malicious vehicles col-
laborate with each other and they also know what the correct
message m0 transmitted by the source vehicle is. Therefore,
if a malicious vehicle receives the correct message, it will
tamper it to the incorrect one, i.e., different from message m0;
and if it receives the incorrect message, it will directly forward
it to others. This implies that as long as a message is relayed by
at least one malicious vehicle, the message would be incorrect.
Fig. 1 gives a simple example of message dissemination
process when there are insider attackers in the network.

C. Problem Formation

Now we give a detailed description of the research problem
considered in this paper.

We consider that there is a vehicle, which is several hops
away from the source vehicle, trying to make a decision
on the message content when it receives several copies of
message, and we call it the destination vehicle. Note that
the destination vehicle can be any vehicle along the message
dissemination path. From the time instant the destination
vehicle receives the first message, it waits time period T
to receive more messages before making a final decision. T
characterizes the response time requirement on the decision,
and a larger T potentially allows the vehicle to receive more
messages. We will discuss its impact on the integrity of the
decision later in the simulation. Let k be the number of
message received by a destination vehicle during its waiting
time period T and let n be the number of relay vehicles that
participate in relaying the k copies of message from the source
vehicle to the destination vehicle. In the following analysis, we
regard k and n are known to the destination vehicle, which can
be readily obtained from the received messages. Consequently,
the network being considered has n relay vehicles and k paths
between the source vehicle and the destination vehicle. Other
nodes who do not participate in the relay have little impact
and hence can be ignored.

Denote the k messages on road condition received by the
destination vehicle by Mi , i = 1, 2, ...k, Mi ∈ {0, 1}. As
each message on road condition is transmitted together with a
specific delivery path from the source vehicle to the destination
vehicle, we number the corresponding paths by L1, L2, ...Lk .
In addition, we number the relay vehicles by V1, V2, ...Vn .
A vehicle Vi may belong to one or more paths.

Note that due to the existence of malicious vehicles who
may tamper the content of the message, the k copies of
message on road condition received by the destination vehicle
can be in conflict instead of being consistent with each other.
Furthermore, with the potential existence of some shared relay
vehicles in different paths, the k messages received from k
different paths may not be independent. These correlations
are all contained in the information of message dissemination
paths. Therefore, we construct a topology matrix to represent
the underlying network topological correlation. Specifically,
based on the path information derived from the received
messages, the destination vehicle can readily construct a k ×n
topology matrix B , where each row represents a path, each
column a node (vehicle), and the (i, j)-th entry Bij being an
indicator whether vehicle Vj belongs to path Li :

Bij =
{

1, if vehicle Vj belongs to path Li

0, else
(1)

In this paper, we are interested in designing decision
algorithms for the destination vehicle to improve the chance
of a correct decision on the content of the disseminated
message against attacks from malicious vehicles by utilizing
the underlying network topology information. Denote by d ,
d ∈ {0, 1} the final decision on the content of message made
by the destination vehicle. If the decision is the same as
the source message, i.e., if d = m0, we say the destination
vehicle makes a correct decision, otherwise we say it makes an
incorrect decision. We use the probability of correct decision,
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denoted by Psucc, as the performance metric to measure the
secure message dissemination performance, and Psucc can be
formally defined as follows:

Psucc = Pr(d = 1, m0 = 1) + Pr(d = 0, m0 = 0) (2)

In the following two sections, we will propose two decision
algorithms to improve the message security performance in
vehicular networks by utilizing the underlying network topol-
ogy information. First, we will propose an optimum decision
algorithm that maximizes the probability of correct decision
Psucc based on Bayes decision theory, assuming the percentage
of malicious vehicles in the network is known. A detailed
implementation of the algorithm will be provided to illustrate
how a destination vehicle makes the decision on the message
content according to this prior knowledge and the network
topology information. Then, we will introduce a heuristic
decision algorithm based on the Maximum Likelihood Estima-
tion. This heuristic decision algorithm will enable a vehicle to
make a decision when receiving conflicting messages purely
based on network topology information, without the need for
knowing the percentage of malicious vehicles, which can be
difficult to estimate in some circumstances. Therefore, the
heuristic algorithm is easier to implement in practice.

III. OPTIMUM DECISION ALGORITHM

In this section, we propose a decision algorithm aims to
optimize the secure message dissemination performance in
terms of maximizing the probability of correct decision Psucc,
that is,

max Psucc, (3)

where Psucc is given by (2).
In the following, we will first present the optimum decision

algorithm followed by a detailed proof to prove its optimality,
and then we will introduce its detailed implementation and
discuss its limitation in practical realization.

A. Optimum Decision Algorithm

The following theorem summarizes the optimum decision
algorithm to maximize Psucc.

Theorem 1: Consider that a destination vehicle receives k
copies of messages M1 = m1, M2 = m2, ...Mk = mk. Given
the prior knowledge of the probabilities that the occurrence
of abnormal event of interest, e.g., traffic congestion, are
P1 = Pr(m0 = 1), and P0 = 1 − P1 = Pr(m0 = 0), which
can be estimated from empirical knowledge [21], the optimum
decision algorithm that leads to (3) can be shown as follows:

d =

⎧⎪⎨
⎪⎩

1,
Pr (M1 = m1, ...Mk = mk |m0 = 1)

Pr (M1 = m1, ...Mk = mk|m0 = 0)
>

P0

P1

0,
Pr (M1 = m1, ...Mk = mk |m0 = 1)

Pr (M1 = m1, ...Mk = mk|m0 = 0)
<

P0

P1
,

(4)

and when Pr(M1=m1,...Mk=mk |m0=1)
Pr(M1=m1,...Mk=mk |m0=0) = P0

P1
, d is randomly

chosen from 0 and 1 with equal probability.
Proof: As introduced in [22] and [23], the objective of a

binary Bayes decision problem is to minimize the expectation
of the decision cost, denoted by U(d, m0). Let Uij , i = 0, 1,

j = 0, 1, represents the cost of declaring the final result d = i
when actually the source message m0 = j �= i , and Uij can be
negative to represent the benefits of making a correct decision.
As a ready consequence of the total probability theorem,
the expectation of the decision cost U(d, m0) can be expressed
as follows:

U(d, m0) =
1∑

i=0

1∑
j=0

Uij Pr (d = i, m0 = j) . (5)

When assuming U01 > U11 and U10 > U00, which
is reasonable considering the cost of making an incorrect
decision is usually larger than that making a correct decision,
the optimum decision algorithm that minimizes the expectation
of the decision cost made by the destination vehicle given its
k copies of received message M1 = m1, M2 = m2, ...Mk =
mk , is given by [23]:

d =

⎧⎪⎪⎨
⎪⎪⎩

1
Pr (M1 =m1, ...Mk =mk|m0 =1)

Pr (M1 =m1, ...Mk =mk |m0 =0)
>

P0 (U10−U00)

P1 (U01−U11)

0,
Pr (M1 =m1, ...Mk =mk|m0 =1)

Pr (M1 =m1, ...Mk =mk |m0 =0)
<

P0 (U10−U00)

P1 (U01−U11)
,

(6)

where Pr (M1 = m1, ...Mk = mk |m0 = 1) and
Pr (M1 = m1, ...Mk = mk |m0 = 0) are the two conditional
probabilities of the occurrence of event M1 = m1, M2 =
m2, ...Mk = mk , which characterize the correlations between
received messages. Besides, when a tie occurs, namely, when
Pr(M1=m1,...Mk =mk |m0=1)
Pr(M1=m1,...Mk=mk |m0=0) = P0(U10−U00)

P1(U01−U11)
, d is randomly chosen

to be 0 or 1 with equal probability.
From (5), when assuming the cost of making a correct

decision is 0 and making an incorrect decision is 1, namely,
by assuming U00 = U11 = 0 and U01 = U10 = 1, we have:

U(d, m0) = Pr (d = 0, m0 = 1) + Pr (d = 1, m0 = 0)

= 1 − Psucc. (7)

It follows that a minimization of the expectation of the deci-
sion cost, is equivalent to a maximization of the probability
of correct decision, namely, we have

min U(d, m) ⇐⇒ max Psucc (8)

Therefore, the optimum decision algorithm for the optimiza-
tion problem (3) is exactly the decision algorithm that provides
a solution to the classical Bayes decision problem in a special
case, shown as (4), which finalize the proof.

Remark 2: It can be seen from (4) that, given the proba-
bilities of the occurrence of an event of interest, P0 and P1
respectively, the decision on d = 1 or d = 0 depends
on the ratio Pr(M1=m1,...Mk =mk |m0=1)

Pr(M1=m1,...Mk=mk |m0=0) . That is, given a set of
received messages M1 = m1, M2 = m2, ...Mk = mk , the
destination vehicle need to calculate the probability that the
event M1 = m1, ...Mk = mk occurs if the true message m0
is 1, denoted as Pr (M1 = m1, ...Mk = mk |m0 = 1), and the
probability that the event occurs if the true message m0 is 0,
denoted as Pr (M1 = m1, ...Mk = mk|m0 = 0), respectively.
A decision on d is then made by comparing the value of
Pr(M1=m1,...Mk =mk |m0=1)
Pr(M1=m1,...Mk=mk |m0=0) and P0

P1
. Therefore, calculation of the
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two probabilities is the crucial part of implementing the
algorithm, and will be detailed in the following subsection.

In summary, the optimum decision algorithm for
the destination vehicle to maximally make a correct
decision on the message content works as detailed
in Algorithm 1, where the details of calculating
the two terms Pr (M1 = m1, ...Mk = mk |m0 = 1) and
Pr (M1 = m1, ...Mk = mk|m0 = 0) will be given in the
following subsection.

Algorithm 1 Optimum Decision Algorithm
INPUT: M1, M2, ...Mk , P0, P1, p
OUTPUT: d
begin

1) Construct the topology matrix B based on the paths
information derived from the received k messages;

2) Calculate Pr (M1 = m1, ...Mk = mk |m0 = 1) and
Pr (M1 = m1, ...Mk = mk|m0 = 0) according to (12)
and (13) respectively, given the network topology
information and the prior knowledge on the proportion
of malicious vehicles in the network;

3) If Pr(M1=m1,...Mk=mk |m0=1)
Pr(M1=m1,...Mk =mk |m0=0) > P0

P1
then d = 1;

elseif Pr(M1=m1,...Mk=mk |m0=1)
Pr(M1=m1,...Mk =mk |m0=0) < P0

P1
then d = 0;

else then d is randomly chosen to be 0 or 1 with
equal probability;

end
end

B. Algorithm Implementation

In this part, we will introduce the detailed imple-
mentation of the proposed optimum decision algorithm.
As discussed in Remark 2, the first step is to calculate
the two probabilities Pr (M1 = m1, ...Mk = mk |m0 = 1) and
Pr (M1 = m1, ...Mk = mk|m0 = 0) as they are prerequisite to
obtaining the final decision d .

The main idea behind the calculation of Pr(M1 =
m1, ...Mk = mk |m0 = 1) and Pr(M1 = m1, ...Mk =
mk |m0 = 0) is as follows. We classify vehicles into three
different types based on the paths they belong to. We call a
vehicle a Type 0 (or Type 1) vehicle if it only belongs to paths
that deliver messages with content 0 (or 1) to the destination
vehicle, and a vehicle is a Type 2 vehicle (if any) if it belongs
to at least one path that delivers message with content 0 and
another path that delivers message with content 1 to the
destination vehicle. That is a Type 0 vehicle only belongs
to paths that deliver consistent messages 0; a Type 1 vehicle
only belongs to paths that deliver consistent messages 1; while
a Type 2 vehicle belong to paths that delivers inconsistent
messages. Therefore, by separating the paths according to the
delivered message contents, the conclusion readily follows
that given m0 = 1, all the Type 1 and Type 2 vehicles
are normal vehicles, meanwhile malicious vehicles only exist

among Type 0 vehicles. Then, by listing and analyzing all the
different combination of malicious vehicles among the Type 0
vehicles, we can obtain the result of our target conditional
probability Pr (M1 = m1, ...Mk = mk |m0 = 1). The idea of
calculating Pr (M1 = m1, ...Mk = mk |m0 = 0) is totally the
same.

In the following, we will first demonstrate the
method of constructing topology matrix B based on
the above idea, and then calculate the two probabilities
Pr (M1 = m1, ...Mk = mk |m0 = 1) and Pr(M1 = m1, ...Mk =
mk |m0 = 0) respectively. Without loss of generality,
we assume that among the k copies of messages
M1 = m1, ...Mk = mk received by the destination vehicle,
there are exactly k1, messages with content 1 and the other
k − k1 messages with content 0. Note that k1 = 0 and k1 = k
are both trivial cases implying no conflict in the received
messages so that the decision is straightforward, therefore we
only consider the case when 0 < k1 < k.

1) Constructing the Topology Matrix B: Specifically, recall
the definition of the topology matrix given in (1), that each
row corresponds to a path and each column corresponds
to a vehicle. Based on the idea discussed above to calcu-
late the probabilities Pr (M1 = m1, ...Mk = mk|m0 = 1) and
Pr (M1 = m1, ...Mk = mk |m0 = 0), we re-arrange the network
topology matrix B in the following form:

B =
[

B1 Bs1 0
0 Bs0 B0

]
, (9)

where B1, B0, Bs1 and Bs0 , if exist, are non-zero matrices, and[
B1 Bs1 0

]
is a k1 × n sub-matrix corresponding to the paths

that deliver messages with content 1 to the destination vehicle,
and

[
0 Bs0 B0

]
is a (k − k1)×n sub-matrix corresponding to

the paths that deliver messages with content 0 to the destina-
tion vehicle. Besides, the columns of B1 and B0 correspond
to vehicles that only belong to paths that deliver messages
with content 1 and that deliver messages with content 0 to the
destination vehicle respectively, i.e., Type 1 vehicles and Type

0 vehicles respectively. The columns of sub-matrix

[
Bs1

Bs0

]
correspond to all the Type 2 vehicles. Assume that the number
of Type 1 and Type 0 vehicles are n1 and n0 respectively,
0 ≤ n1 + n0 ≤ n, and the number of Type 2 vehicles is
n2 = n − n1 − n0. It follows that matrices B1 and B0 are of
size k1 × n1 and (k − k1) × n0 respectively, and the matrix[

Bs1

Bs0

]
is of size k × (n − n1 − n0).

It is worth noting that the above arrangement of columns
and rows of matrix B corresponds to a re-numbering of
vehicles and paths and it does not change the underlying
topology in terms of paths information. Besides, the sub-
matrix B1 can be non-existent if n1 = 0, i.e., when the paths
that deliver messages 0 to the destination vehicle contains
all the n vehicles in the network. Under this circumstance,

B =
[

Bs1 0
Bs0 B0

]
. Similarly, the sub-matrix B0 (or

[
Bs1

Bs0

]
) can

also be non-existent when n0 = 0 (or n2 = 0).
2) Calculation of Pr (M1 = m1, ...Mk = mk |m0 = 1)

and Pr (M1 = m1, ...Mk = mk |m0 = 0) : In this part,
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we show the method of calculating the two conditional
probabilities Pr (M1 = m1, ...Mk = mk|m0 = 1) and
Pr (M1 = m1, ...Mk = mk|m0 = 0) using the constructed
topology matrix B . The following two theorems summarize
the results.

Theorem 3: Consider that a destination vehicle receives k
copies of message M1 = m1, M2 = m2, ...Mk = mk, and
among which k1 messages are with content 1 and the other
k − k1 messages are with content 0, 0 < k1 < k. Conditioned
on the source message m0 = 1, the conditional probability
of the occurrence of event M1 = m1, ...Mk = mk can be
calculated as follows:

Pr (M1 = m1, ...Mk = mk |m0 = 1)

=

⎧⎪⎨
⎪⎩

(1 − p)n−n0 ·
[

n0∑
i=1

ai · pi (1 − p)n0−i

]
, n0 > 0

0, n0 = 0,

(10)

where n0 is the number of vehicles that only belong to paths
that deliver messages with content 0 to the destination vehicle,
i.e., the number of Type 0 vehicles in the network, and ai ,
i = 1, 2, ...n0 is the number of combinations that contain
exactly i malicious Type 0 vehicles leading to the occurrence
of event M1 = m1, ...Mk = mk.

Proof: When n0 = 0, there are no Type 0 vehicles
in the network, which implies that the paths that deliver
messages with content 1 to the destination vehicle contain
all the n vehicles in the network, and the topology matrix

B =
[

B1 Bs1

0 Bs0

]
. Under this circumstance, conditioned on the

source message m0 = 1, when the event that k1 messages are
with content 1 occurs, all the n vehicles in the network should
be normal vehicles. It follows that the event that the other
k − k1 messages are with content 0 occurs with probability 0.
Therefore, we have Pr (M1 = m1, ...Mk = mk|m0 = 1) = 0
when n0 = 0.

When n0 > 0, from the topology matrix B , we can conclude

that if the matrix

[
Bs1

Bs0

]
exists, then the corresponding Type 2

vehicles should be all normal vehicles. Observing that there is
no possibility for two paths sharing the same malicious vehicle
to deliver different contents. Therefore, malicious vehicles
exist either among Type 1 vehicles or among Type 0 vehicles.

Given the source message m0 = 1, all the Type 1 vehicles
should be normal vehicles. Malicious vehicles can only exist
among Type 0 vehicles. Besides, the malicious Type 0 vehicles
should be able to compromise all the k −k1 paths (correspond-
ing to the sub-matrix

[
0 Bs0 B0

]
) to cause the occurrence of

the event that all the k − k1 paths delivering messages with
incorrect content 0. Therefore, any combination of malicious
vehicles should satisfy the follows condition: by implementing
element-wise union on their corresponding columns in sub-
matrix B0, i.e., implementing element-wise Boolean operation
OR on them, the result should be a column with each entry
be 1.

Note that the number of malicious type 0 vehicles can
be any integer within [1, n0]. We denote by event ei that
randomly choosing i columns from sub-matrix B0 and then

conducting element-wise union operation to them, there results
a column with each entry being 1. Denote by ai , i = 1, 2, ...n0
the total number of combinations that event ei occurs.
Therefore, we have

ai =
zi∑

j=1

I (event ei occurs) , (11)

where zi =
(

n0
i

)
, and I (x) is an indicator function that

I (x) = 1, when x is true; otherwise I (x) = 0.
It then follows from the combination theory [24] that :

Pr (M1 = m1, ...Mk = mk |m0 = 1)

= (1 − p)n−n0 ·
[

n0∑
i=1

ai · pi (1 − p)n0−i

]
, (12)

where the first part corresponds to the probability that the
k1 paths deliver messages with correct content 1, so that all
the n − n0 vehicles contained in these k1 paths are therefore
normal vehicles; and the second part is the probability that the
k − k1 paths deliver messages with incorrect content 0, which
summing up all the probabilities of different malicious vehicle
combinations.

Theorem 4: Consider that a destination vehicle receives k
copies of message M1 = m1, M2 = m2, ...Mk = mk, and
among which k1 messages are with content 1 and the other
k − k1 messages are with content 0, 0 < k1 < k. Conditioned
on the source message m0 = 0, the conditional probability
of the occurrence of event M1 = m1, ...Mk = mk can be
calculated as follows:

Pr (M1 = m1, ...Mk = mk|m0 = 0)

=

⎧⎪⎨
⎪⎩

(1 − p)n−n1 ·
[ n1∑

i=1

bi · pi (1 − p)n1−i

]
, n1 > 0

0, n1 = 0,

(13)

where n1 is the number of vehicles that only belong to
paths that deliver messages with content 1 to the destination
vehicle, i.e., the number of Type 1 vehicles in the network,
and bi , i = 1, 2, ...n1 is the number of combinations that
exactly i malicious Type 1 vehicles leading to the occurrence
of event M1 = m1, ...Mk = mk.

Denote by event e′
i that randomly choosing i columns

from sub-matrix B1 and then conducting element-wise union
operation to them, there results a column with each entry be 1.
Denote by bi , i = 1, 2, ...n1 the total number of combinations
that event e′

i occurs. Then we have

bi =
z′

i∑
j=1

I
(
event e′

i occurs
)
, (14)

where z′
i =

(
n1
i

)
. Therefore, this theorem can be readily

proved following the same method as that used in the proof
of Theorem 3, and hence is ignored.
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Fig. 2. An illustration of a vehicular network that contains 7 independent
paths from the source vehicle to the destination vehicle, each path containing
1, 8, 15, 6, 6, 6, 6 vehicles respectively.

C. Discussion

From the analysis in Section III-B, we can see that the value
of n0, n1, and ai , i = 1, 2, ...n0 in (10), bi , i = 1, 2, ...n1
in (13) can be obtained from the network topology matrix.
That is, when the k received messages M1 = m1, ...Mk = mk ,
and the network topology is given, the value of n0, n1, ai , i =
1, 2, ...n0, and bi , i = 1, 2, ...n1 are all determined. However,
the exact values of Pr (M1 = m1, ...Mk = mk |m0 = 1)
and Pr (M1 = m1, ...Mk = mk|m0 = 0), shown also in
(10) and (13), also depend on the proportion of malicious
vehicles p in the network, which usually, is not easy to be
obtained or estimated as a prior knowledge. In the following,
we use a simple example to show the dependency on p of
the proposed optimum decision algorithm.

Consider a network that contains a total of 7 independent
paths from the source vehicle to the destination vehicle. The
first three paths, containing 1, 8 and 15 vehicles respectively
deliver messages with content 1 to the destination vehicle,
and the other four paths, containing 6 vehicles each, deliver
messages with content 0 to the destination vehicle. See Fig. 2
for an illustration.

According to (10) and (13), we have:

Pr (M1 = M2 = M3 = 1, M4 = ... = M7 = 0|m0 = 1)

= (1 − p)1+8+15 ·
[
1 − (1 − p)6

]4

= (1 − p)24 ·
[
1 − (1 − p)6

]4
, (15)

and

Pr (M1 = M2 = M3 = 1, M4 = ... = M7 = 0|m0 = 0)

= (1 − p)6×4 · [1−(1− p)]
[
1−(1 − p)8

] [
1 − (1 − p)15

]
= (1 − p)24 p

[
1 − (1 − p)8

] [
1 − (1 − p)15

]
. (16)

Therefore,
Pr (M1 = M2 = M3 = 1, M4 = ... = M7 = 0|m0 = 1)

Pr (M1 = M2 = M3 = 1, M4 = ... = M7 = 0|m0 = 0)

= 1 − (1 − p)6

p
[
1 − (1 − p)8

] [
1 − (1 − p)15

] (17)

Let

f1(p) = 1 − (1 − p)6 (18)

and

f2(p) = p
[
1 − (1 − p)8

] [
1 − (1 − p)15

]
, (19)

Fig. 3. An illustration to show that the percentage of malicious vehicles is
indispensable in implementing the optimum decision algorithm to achieve an
accurate decision result.

and plot them with different values of p, see Fig. 3
for an illustration. We can see that the value of
Pr(M1=m1,...Mk =mk |m0=1)
Pr(M1=m1,...Mk=mk |m0=0) depends on the percentage of
malicious vehicles in the network. Specifically, it is shown
in Fig. 3 that when p is smaller than a threshold, e.g., pth =
0.092 in this case, the value of Pr(M1=m1,...Mk =mk |m0=1)

Pr(M1=m1,...Mk=mk |m0=0) =
f1(p)
f2(p) is smaller than 1, while when p is larger than the

threshold, the value of Pr(M1=m1,...Mk =mk |m0=1)
Pr(M1=m1,...Mk=mk |m0=0) = f1(p)

f2(p) is
larger than 1, and will further increase with an increase of p.
Therefore, given the network topology, the optimum decision
based on (4) relies on the value of p. This illustrates that the
value of p is indispensable in adopting the optimum decision
algorithm to achieve an accurate decision result.

IV. HEURISTIC DECISION ALGORITHM

As discussed in the Section III-C, the implementation of the
optimum decision algorithm proposed in the last section relies
on prior knowledge of the percentage of malicious vehicles p
in the network, which is usually not easy to be obtained or
estimated. In this section, to eliminate the dependence on p,
we propose a heuristic decision algorithm for the destination
vehicle to make a decision when receiving conflicting mes-
sages purely based on network topology information only.

The heuristic decision algorithm is derived from the prin-
ciple of Maximum Likelihood Estimation [25], which can be
described as follows:

d =

⎧⎪⎨
⎪⎩

1,
Pr (M1 = m1, ...Mk = mk |m0 = 1)

Pr (M1 = m1, ...Mk = mk|m0 = 0)
> 1

0,
Pr (M1 = m1, ...Mk = mk |m0 = 1)

Pr (M1 = m1, ...Mk = mk|m0 = 0)
< 1,

(20)

where M1 = m1, ...Mk = mk are the k messages received
by the destination vehicle, m0 is the source message and
d is the decision made by the destination vehicle. When
Pr(M1=m1,...Mk =mk |m0=1)
Pr(M1=m1,...Mk=mk |m0=0) = 1, d is randomly chosen to be
0 or 1 with equal probability.

Based on the received messages M1 = m1, M2 = m2, ...,
Mk = mk and the path information obtained from messages,
the method of constructing the topology matrix B is the

same as introduced in Section III-B, i.e., B =
[

B1 Bs1 0
0 Bs0 B0

]
.
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Fig. 4. An illustration to show the malicious cut sets and minimal malicious
cut sets of a network.

Therefore, by combining (10), (13) and (20), it is ready to

have d =
{

0, n0 = 0

1, n1 = 0
, and when n0 > 0 and n1 > 0,

Pr (M1 = m1, ...Mk = mk |m0 = 1)

Pr (M1 = m1, ...Mk = mk |m0 = 0)

= (1 − p)n−n0 · [∑n0
i=1 ai · pi (1 − p)n0−i ]

(1 − p)n−n1 · [∑n1
i=1 bi · pi (1 − p)n1−i

]
=

∑n0
i=1 ai ·

(
p

1−p

)
i

∑n1
i=1 bi ·

(
p

1−p

)
i
. (21)

Recall that both sub-matrix
[

B1 Bs1 0
]

and
[

0 Bs0 B0
]

correspond to a sub-network of the considered network and
the common nodes shared by the two sub-networks (if any)
can not be malicious vehicles. Therefore, when considering
the potential malicious vehicle combinations, we avoid these
common nodes and only focus on the sub-matrix B1 and B0.
Specifically, we regard the network corresponding to sub-
matrix B1 and B0 as networks that each row represents a
complete path and each column represent a vehicle, denoted
by T1 and T0 respectively. In the following, with a twist use
of the vertex-cut [26] terminology from graph theory which
defines a vertex set whose removal would disconnect the
graph, we define malicious cut set, size of a malicious cut
set, and minimal malicious cut set of a network in this paper,
and demonstrate that the parameter ai , 1 ≤ i ≤ n0 and bi ,
1 ≤ i ≤ n1 in (21), which was defined in (11) and (14), are
exactly the number of malicious cut sets with size i of the
network T0 and T1 respectively.

Definition 5: A malicious cut set of a network is a combi-
nation of vehicles, where if all vehicles in the set are malicious
vehicles all paths of the network can be compromised. The size
of a malicious cut set is the number of vehicles contained in
the set. A minimal malicious cut set is a malicious cut set with
the smallest size.

It is worth noting that the network may have multiple
malicious cut sets and multiple minimal malicious cut sets.
Consider the network shown in Fig. 4 for an example. Vehicle
sets {V1, V2, V3}, {V4, V5, V6, V7}, and {V8, V9} (to name a
few) are all malicious cut sets of the network, and a minimal
malicious cut set is the malicious cut set {V8, V9} with
size 2. Therefore, to compromise all paths of this network,
the minimum number of malicious vehicles needed is 2.

Based on Definition 5, if a vehicle set is a malicious cut
set, then each path of the network contains at least one vehicle

belongs to this set. Recall that ai (or bi ) represents the number
of combinations that randomly choosing i columns from sub-
matrix B0 (B1) and then conducting element-wise union to
them, there results a column with each entry be 1. That is,
ai (or bi ) represents the number of combinations that by
choosing i vehicles from Network T0 (or T1) to form a vehicle
set, each path of network T0 (or T1) contains at least one
vehicle belongs to this set. Therefore, ai , 1 ≤ i ≤ n0 and bi ,
1 ≤ i ≤ n1 are exactly the number of malicious cut sets with
size i of the network T0 and T1 respectively.

According to the properties of malicious cut sets, it can
be readily obtained that ai = 0 if ai+1 = 0, and ai+1 > 0,
if ai > 0. Similarly, we have bi = 0 if bi+1 = 0, and bi+1 > 0,
if bi > 0.

Define

r0 = min {i : ai > 0} , 1 ≤ r0 ≤ n0 (22)

and

r1 = min {i : bi > 0} , 1 ≤ r1 ≤ n1, (23)

the smallest integer that satisfies ai > 0 and bi > 0
respectively. Therefore, r0 is the size of the minimal malicious
cut set of network T0, and ar0 is the number of minimal
malicious cut sets of network T0. Similarly, r1 is the size of
the minimal malicious cut set of network T1, and br1 is the
number of minimal malicious cut sets of network T1. This
follows that

Pr (M1 = m1, ...Mk = mk|m0 = 1)

Pr (M1 = m1, ...Mk = mk |m0 = 0)
=

∑n0
i=r0

ai ·
(

p
1−p

)
i

∑n1
i=r1

bi ·
(

p
1−p

)
i

≈
ar0

(
p

1−p

)r0

br1

(
p

1−p

)r1
, (24)

where the first step is obtained from the fact that
a1 = a2 = ...ar0−1 = 0, ar0 > 0, and b1 = b2 = ...br1−1 = 0,
br1 > 0, and the second step is obtained by only keeping the
first item of both the numerator and denominator. Considering
the fact that when p is small, the probability that there are
i +1 malicious vehicle in the network is much smaller than the
probability that there are i malicious vehicles in the network,
therefore, this approximation is quite accurate.

Note that when p is small, we have p
1−p 	 1. Therefore,

when r0 �= r1, whether the value of
ar0

(
p

1−p

)r0

br1

(
p

1−p

)r1 shown as (24) is

larger than 1 is dominantly determined by the value of r0 −r1.

Specifically, when r0 < r1, we have
(

p
1−p

)r0−r1 
 1. In

this case, the coefficient
ar0
br1

plays marginal role and therefore

ar0

(
p

1−p

)r0

br1

(
p

1−p

)r1 > 1; when r0 > r1, we have
(

p
1−p

)r0−r1 	 1,

and therefore
ar0

(
p

1−p

)r0

br1

(
p

1−p

)r1 < 1. On the contrary, when r0 = r1,

whether the value of
ar0

(
p

1−p

)r0

br1

(
p

1−p

)r1 is larger than 1 would heavily
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depend on the value of the coefficient
ar0
br1

. Consequently,
we have

Pr (M1 =m1, ...Mk =mk |m0 =1)

Pr (M1 =m1, ...Mk =mk |m0 =0)
≈

ar0

(
p

1−p

)r0

br1

(
p

1−p

)r1

⎧⎪⎪⎨
⎪⎪⎩

> 1, r0 < r1

< 1, r0 > r1

= ar0

br1

, r0 = r1,

(25)

which shows that to compare the values of Pr(M1 =
m1, ...Mk = mk |m0 = 1) and Pr(M1 = m1, ...Mk =
mk |m0 = 0), we only need to compare the values of r0 and r1,
namely, the size of minimal malicious cut set of network
T0 and T1 when r0 �= r1, or the value of ar0 and br1 , namely,
the number of minimal malicious cut sets of network T0 and T1
when they have the same size of minimal malicious cut set.

From Menger’s Theorem [26], the size of the minimal
vertex-cut whose removal would disconnect two non-adjacent
vertices, is equal to the maximum number of vertex-
independent paths between these two non-adjacent vertices.
Therefore, it can be concluded that the size of minimal mali-
cious cut set of a network is also equal to the maximum num-
ber of node-disjoint paths in the network between the source
vehicle and the destination vehicle. Therefore, r0 and r1 are
also the numbers of maximum number of node-disjoint paths
exist in network T0 and T1 respectively. Note that calculating
the maximum number of vertex-disjoint paths from source to
destination is a special case of finding the maximum flow
problem by setting every vertex capacity 1 [26]. Therefore,
the values of r0 and r1 can be readily obtained by existing
maximum flow algorithms, e.g., introduced in [26]–[28]. When
r0 = r1, ar0 and br1 can be obtained by exhaustive search
algorithm according to their definitions given by (11) and (14).

In summary, by combining (20) and (25), the decision rule
of our proposed heuristic algorithm can be shown as

d =
{

1, (r0 < r1) or (r0 = r1, ar0 > br1)

0, (r0 > r1) or (r0 = r1, ar0 < br1),
(26)

and when r0 = r1, and ar0 = br1 , d is randomly chosen from
0 and 1 with equal probability.

Remark 6: It is worth noting that in the above analysis,
the network with a topology matrix B1 may not be unique.

For instance, a topology matrix B =
⎡
⎣ 1 1 1 1 0 0

1 0 1 1 1 0
1 0 0 0 0 1

⎤
⎦ can

correspond to both networks shown in Fig. 5. However,
the malicious cut sets of the networks with different topology
remain the same as there is a one-to-one correspondence
between each malicious cut set and a combination of columns
from the topology matrix that an element-wise union of them
resulting in a column with each entry being 1. That is, as long
as networks have the same topology matrix B , they would
have the same malicious cut sets. Therefore, the network T1
(or T0) corresponding to the same sub-matrix B1 (or B0) may
not unique, however it does not affect their malicious cut sets
analysis.

Fig. 5. An illustration of two networks that have the same topology matrix.
(a) Network 1. (b) Network 2.

Remark 7: The implication of the heuristic decision algo-
rithm (26) can also be explained straightforwardly as follows.
Given two networks that deliver conflicting message contents,
by removing the common nodes shared by these two networks
and regarding each path after the removal of the common
nodes as a new complete path, there results in two new inde-
pendent networks that deliver conflicting message contents.
Therefore, decision can be made by comparing the robustness
of the two new networks. Note that a smaller size of the
minimal malicious cut set of a network implies a less number
of minimal malicious vehicles are required to compromise
that network, and consequently, a higher probability to deliver
incorrect messages. Therefore, the decision will always be
chosen as the message delivered by the network with a lower
probability to be compromised.

From (26), we can see that the decision result is now entirely
determined by the network topology, and is independent of
the proportion of malicious vehicles in the network. That is,
the proposed heuristic decision algorithm is purely topology-
based so that is easy to be implemented in practice. In sum-
mary, the heuristic decision algorithm works as detailed in
Algorithm 2.

V. SIMULATION AND DISCUSSION

In this section, we conduct simulations based on real traffic
data to establish the validity of the decision algorithms pro-
posed in Section III and Section IV, as well as to demonstrate
the application of our proposed algorithms in a real life
situation to indicate their usefulness. We utilize the real traffic
data collected by inductive loop detectors in Taipei city,
including 1-minute averaged vehicular speed passing each
loop detector, and the volume, i.e., the number of vehicles,
passing the corresponding loop detectors during this 1 minute,
to model real life traffic. Specifically, we choose the traffic
data at 17:00 pm (peak hour, the traffic is congested) on
the road segment, named Jianguo North Road, covered by
6 loop detectors (labeled by ‘Loop 1’ to ‘Loop 6’), to build
the considered vehicular network for our simulation. See
Fig. 6 for an illustration. The interval distance between two
consecutive loop detectors are 700m, 550m, 300m, 280m, and
240m respectively. Vehicles are moving in the direction from
Loop 6 to Loop 1. We assume that at the specific minute
we focused on, vehicles located between two loop detectors
move at the same constant speed, the same as the average
speed passing the next loop during this minute. For instance,
we approximately regard vehicles located between Loop 1 and
Loop 2 at 17:00pm travel at the same constant speed as the
average speed vehicles passing Loop 1 at 17:00 pm.
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Algorithm 2 Heuristic Decision Algorithm
INPUT: M1...Mk

OUTPUT: d
begin

1) Construct the topology matrix B based on the path
information derived from the received k messages;

2) Based on the constructed topology matrix B , calculate
r0 and r1 using the minimum cut algorithm;

3) If r0 < r1 then d = 1

elseif r0 > r1 then d = 0

else calculate ar0 and br1 based on their definition
given by (11) and (14);

if ar0 > br1 then d = 1

elseif ar0 < br1 then d = 0

else d is randomly chosen to be 0 or 1 with equal
probability

end

end
end

Fig. 6. Target road segment.

We assume the source vehicle is exactly located at the
location of Loop 1 when it detects the congestion at its
location, and it would like to disseminate the congestion
information to other vehicles moving towards the congestion
area. Therefore, messages are disseminated in the direction
from Loop 1 to Loop 6, which is opposite to the travel-
ing direction of vehicles. Vehicles communicate with their
neighbors adopting the unit disk model [17], [29] with a
transmission range r0 = 250m [30]. Each relay vehicles in
the network has a probability p to be a malicious vehicle.

Fig. 7. A comparison of the probabilities of correct decision achieved by
the optimum decision algorithm proposed in Section III, and by the heuristic
decision algorithm proposed in Section IV.

We focus on a destination vehicle located at a distance L
from the source vehicle, and track the probability of correct
decision made by the destination vehicle. From the time instant
the destination vehicle receives the first message reporting
road condition, it waits a fixed time period T to receive more
number of messages before it starts to make a decision. The
per-hop transmission delay is assumed to be β = 4ms [30].

At each simulation, a topology matrix B can be constructed
based on the underlying network topology. Therefore, given
the malicious vehicle distribution and the topology informa-
tion, the content of the k messages M1, M2, ...Mk received by
the destination vehicle is determined. The destination vehicle
then makes a decision given the received messages and the
derived underlying topology information according to our
proposed decision algorithms at each simulation. The decision
result can be either correct or incorrect. The simulation is
repeated 5000 times and the proportion of the correct decision,
i.e., the probability of correct decision, is plotted.

In the following, we first compare our proposed two deci-
sion algorithms, and then we study the effects of topol-
ogy information, and some performance-impacting parameters
on the algorithms. The performance-impacting parameters
including the proportion of malicious vehicle in the network,
the choice of waiting time by the destination vehicle before it
starts to make the decision.

A. Comparison of the Two Proposed Algorithms

In this part, we compare the message security performance
achieved by the two proposed decision algorithms to provide
insight on the optimum decision algorithm design for secure
message dissemination.

Fig. 7 compares the probability of correct decision achieved
by the proposed optimum decision algorithm (labeled as Opti-
mum Algorithm) and by the proposed pure topology-based
heuristic decision algorithm (labeled as Heuristic Algorithm)
respectively. It is shown that when the percentage of malicious
vehicles in the network is small, e.g., when p < 0.15 in
this case, the message security performance achieved by the
optimum decision algorithm is only slightly better than the
performance achieved by the heuristic decision algorithm.
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Fig. 8. A comparison of the probability of correct decision achieved assuming
our proposed algorithms and that achieved assuming other existing weighted
voting algorithms.

This implies that the heuristic decision algorithm, that purely
based on network topology information and easily to be imple-
mented in practice, is sufficient to achieve a high message
security performance for vehicular networks.

B. Impact of Topology Information

To evaluate the effectiveness of our proposed algorithms
that takes the underlying topology information into consid-
eration, we compare the security performance, in terms of
the probability of correct decision made by the destination
vehicle, achieved by our proposed algorithms described by
Algorithm 1 and 2 respectively, with that achieved by existing
weighted voting algorithms like the weighted voting algorithm
proposed in [23] (labeled with WV: MMSE) that considers
partial correlation between messages, the weighted voting
algorithm proposed in [14] (labeled with WV: w ∝ αh−1)
that does not consider the underlying topology information
causing the correlation between messages, and the majority
voting (a special case of weighted voting by assigning iden-
tical weights to each vote) that totally ignores the underly-
ing topological correlation. Specifically, the weighted voting
algorithm proposed in [23] set weight to each message as

wi = ∑k
j=1 C(−1)

i j

(∑k
r, j=1 C(−1)

r j

)−1
, where C is the error

covariance matrix whose (i, j)th entry is defined by the error
covariance between message Mi and message M j , calculated
by Cij = E

[
(Mi − m0)(M j − m0)

]
. C−1 is the inverse matrix

of the error covariance matrix C, and C(−1)
i j is the (i, j)th

entry of the matrix C−1. The weighted voting algorithm
proposed in [14] simply assigns weight to each message as
wi = αhi −1∑

j α
h j −1 , where α ∈ (0, 1) is a weighting factor to

reduce the oversampling impact caused by messages generated
from the same source and hi is the number of hops travelled
by the i th message from the source to the destination.

It can be seen in Fig. 8 that both our proposed algorithms
outperform the weighted voting algorithms proposed in [14]
and [23] and the majority voting algorithm, which demon-
strates that our algorithms taking into account topology infor-
mation and correlation between different copies of message are

Fig. 9. An illustration of the relationship between the probability of correct
decision and the waiting time period the destination vehicle waits before
it starts to make a final decision by adopting the proposed two algorithms
respectively.

able to effectively improve the robustness of vehicle networks
against attacks from malicious vehicles.

C. Impact of the Percentage of Malicious Vehicles

Fig. 8 reveals the relationship between the probability of
correct decision Psucc and the percentage of malicious vehicles
in the network, p. It can be seen that the probability of
correct decision made by the destination vehicle decreases
to its minimum value Psucc = 0 when the proportion of
malicious vehicles in the network is larger than a certain
threshold. Beyond that threshold, a further increase in p
has little impact on the security performance. Specifically,
as shown in Fig. 8, when p is small, the security performance
achieved assuming the optimum decision algorithm decreases
with an increase of p; however, when p increases beyond a
certain threshold, a further increase in p has no impact on the
security performance. This can be explained by the fact that
the more malicious vehicles in the network, the more tampered
copies of message will be delivered, and therefore a lower
chance for the destination vehicle to make a correct decision
regardless of what algorithm it adopts. Furthermore, when the
number of malicious vehicles in the network reaches a certain
threshold, most of the message dissemination paths will be
compromised. In this case, the destination vehicle will totally
misguided by the incorrect messages and the message security
performance approaches its minimum value Psucc = 0.

D. Impact of the Waiting Time Period

As mentioned in Section II-C, the waiting time period T the
destination vehicle waits before it starts to make a decision
is an important parameter that should balance the trade-off
between the response time requirement and the integrity of the
decision. Therefore, in this part, we study the impact of the
waiting time period T on the security performance assuming
the two proposed algorithms, under different traffic densities.

Fig. 9 demonstrates the relationship between the probability
of correct decision, Psucc, and the waiting time period T
the destination vehicle waits before it starts to make a
decision, assuming our two proposed algorithms respectively,
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TABLE I

APPROACHES FOR SECURE MESSAGE DISSEMINATION IN VEHICULAR NETWORKS

and gives insight into the choice of waiting time by the
destination vehicle. Importantly, we can see that for both
algorithms, a larger number of waiting time is beneficial to
the secure message dissemination because a longer waiting
time potentially implies a larger number of received messages.
This consequently, brings more information on the underlying
network topology, and therefore leads to a more robust result
of the data consistency check. However, when T increases
beyond a certain threshold Tth , e.g., Tth = 100ms when
adopting the proposed optimum decision algorithm, a further
increase in T has marginal (less than 3%) impact on the proba-
bility of correct decision. This is due to the fact that when T is
larger than a threshold, the marginal return brought by waiting
a longer time to the security performance is diminishing.

VI. RELATED WORK

For secure message dissemination in vehicular networks
against insider malicious vehicles, the trustworthiness of each
vehicle and the integrity of each transmitted message are
two major factors need to be considered. Accordingly, three
misbehavior detection schemes are commonly adopted to
help prevent the disseminated messages from being tampered:
entity-centric misbehavior detection scheme, data-centric mis-
behavior detection scheme, and a combined use of both.
In the following, we will review works on these three schemes
separately.

Entity-centric misbehavior detection schemes are commonly
conducted at each vehicle by monitoring their instantaneous
neighbors’ behavior to assess their trustworthiness level, so as
to filter out malicious vehicles. In [31], Gazdar et al. proposed
a dynamic and distributed trust model based on the use of a
Markov chain to evaluate the evolution of each vehicle’s trust
value. In [32], Ahmed et al. proposed a trust framework to
identify malicious nodes in the network by evaluating the trust
value of each vehicle, and the trust includes node trust and
recommendation trust. In [33], motivated by the job market
signaling model, Haddadou et al. proposed a distributed trust
model for vehicular ad hoc networks (VANETs) that is able
to gradually detect all malicious nodes as well as boosting the
cooperation of selfish nodes. In [34], Sedjelmaci and Senouci
proposed a lightweight intrusion detection framework with the

help of a clustering algorithm to overcome the challenges of
intermittent and ad hoc monitoring and assessment processes
caused by the high mobility and rapid topology change in
vehicular networks.

Data-centric misbehavior detection schemes focus on the
consistency check of the disseminated data to filter out false
data. In [12], Dietzel et al. indicated that redundant data for-
warding paths are the most promising technique for effective
data consistency check in a multi-hop information dissemina-
tion environment, and proposed three graph-theoretic metrics
to measure the redundancy of dissemination protocols. In [13],
Raya et al. proposed a framework for vehicular networks
to establish data-centric trust, and evaluated the effective-
ness of four data fusion rules. In [14], Huang et al. firstly
demonstrated that information cascading and oversampling
adversely affect the performance of trust management scheme
in VANETs, and then proposed a novel voting scheme that
takes the distance between the transmitter and receiver into
account when assigning weight to the trust level of the received
data. In [15], Zaidi et al. proposed a rogue node detection
system for VANETs utilizing statistical inference techniques
to determine whether the received data are authentic. In [16],
Radak et al. applied a so-called cautious operator to deal with
data received from different sources to detect dangerous events
on the road. Their adopted cautious operator is an extension
of the Demper-Shafer theory that is known to be superior in
handling data coming from dependent sources.

A combined misbehavior detection scheme makes use of
both the trust level of vehicles and the consistency of received
data to detect misbehaving vehicles and filter out incorrect
messages. Works adopting the combined scheme are limited.
In [35], Dhurandher et al. proposed a security algorithm using
both node reputation and data plausibility checks to protect the
network against attacks. The node reputation value is obtained
by both direct monitoring and indirect recommendation from
neighbors, to detect misbehaving vehicles; and the data consis-
tency check is conducted by comparing the received data with
the sensed data by the vehicle’s own sensors. In [36], Li and
Song proposed an attack-resistant trust management scheme
to evaluate the trustworthiness of both data and vehicles
in VANETs. They adopted the Dempster-Shafer theory to
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combine the data received from different sources, and then
used this combined result to update the trust value of vehicles
for misbehavior detection.

In summary, all the aforementioned works on protecting
vehicular networks from insider attackers either focused on
node trust model establishment and management to detect
misbehaving nodes in the network, or focused on methods
to assess data from different sources to check their consis-
tency, but did not take the underlying network topological
information into consideration. Our work distinguishes from
theirs in that we focus on the received data itself, and utilize
the underlying network topology information to design the
decision algorithms for vehicles to check data consistency so
as to maximally protect the authenticity of the disseminated
messages. Concisely, Table I provides a comparative summary
of approaches in the related work and our proposed approach.

VII. CONCLUSIONS

By utilizing underlying network topology information, this
paper proposed two decision algorithms - the optimum deci-
sion algorithm and a heuristic decision algorithm - to address
the issue of message inconsistency caused by insider mali-
cious vehicles that would tamper the content of disseminated
messages in the network. The proposed optimum decision
algorithm is able to effectively help a destination vehicle maxi-
mally make a correct decision on the content of message, given
the network topology information and the prior knowledge
of the percentage of malicious vehicles in the network. The
proposed heuristic decision algorithm further enables a vehicle
to make a decision based on network topology information
only and without the need for knowing the percentage of
malicious vehicles which can be difficult to estimate in some
circumstances, at a modest cost in performance. Therefore,
the heuristic algorithm is easier to implement in practice.
Simulations based on real traffic data were conducted to eval-
uate the effectiveness of two algorithms. It was demonstrated
that the heuristic decision algorithm is able to achieve a secu-
rity performance close to that achieved by the optimum deci-
sion algorithm, especially when the percentage of malicious
vehicles is small. By comparing the two proposed algorithms
with existing algorithms that do not consider the underlying
topological information or only partially consider message
correlation, it was shown that the proposed algorithms greatly
outperform existing ones. Moreover, the impact of some key
parameters on the performance of the proposed algorithms was
discussed, including the percentage of malicious vehicles, and
the waiting time the destination vehicle waits before making
a final decision. A deeper insight revealed in our work is
that messages coming from redundant paths are not equal and
messages coming from diversified and independent paths carry
more information than those from correlated paths. In this
sense, we consider our work is just a first step towards the
big direction of harnessing the network topology information
to improve the vehicular network security. In the future,
we would like to utilize more traveling information of vehicles
in the network, like location, speed, direction, .etc, to design
a more comprehensive topological approach, so as to further
improve the vehicular network security.

REFERENCES

[1] J. B. Kenney, “Dedicated short-range communications (DSRC) standards
in the united states,” Proc. IEEE, vol. 99, no. 7, pp. 1162–1182,
Jul. 2011.

[2] M. A. Javed and E. B. Hamida, “On the interrelation of security, QoS,
and safety in cooperative ITS,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 7, pp. 1943–1957, Jul. 2017.

[3] J. E. Siegel, D. C. Erb, and S. E. Sarma, “A survey of the connected
vehicle landscape—Architectures, enabling technologies, applications,
and development areas,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 8,
pp. 2391–2406, Aug. 2018.

[4] K. Zheng, Q. Zheng, P. Chatzimisios, W. Xiang, and Y. Zhou, “Hetero-
geneous vehicular networking: A survey on architecture, challenges, and
solutions,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2377–2396,
4th Quart., 2015.

[5] E. Fonseca and A. Festag, “A survey of existing approaches for secure
ad hoc routing and their applicability to VANETS,” NEC Netw. Lab.,
Berlin, Germany, Tech. Rep. NLE-PR-2006-19, Version 1.1, Mar. 2006.

[6] J. Sun, C. Zhang, Y. Zhang, and Y. Fang, “An identity-based security
system for user privacy in vehicular ad hoc networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 21, no. 9, pp. 1227–1239, Sep. 2010.

[7] H. Tan, M. Ma, H. Labiod, A. Boudguiga, J. Zhang, and P. H. J. Chong,
“A secure and authenticated key management protocol (SA-KMP)
for vehicular networks,” IEEE Trans. Veh. Technol., vol. 65, no. 12,
pp. 9570–9584, Dec. 2016.

[8] J. Petit, F. Schaub, M. Feiri, and F. Kargl, “Pseudonym schemes in
vehicular networks: A survey,” IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 228–255, 1st Quart., 2015.

[9] Q. Yang and H. Wang, “Toward trustworthy vehicular social networks,”
IEEE Commun. Mag., vol. 53, no. 8, pp. 42–47, Aug. 2015.

[10] S. Dietzel, R. van der Heijden, H. Decke, and F. Kargl, “A flexible,
subjective logic-based framework for misbehavior detection in V2V
networks,” in Proc. IEEE Int. Symp. WoWMoM, Jun. 2014, pp. 1–6.

[11] Y. Du et al., “A distributed message delivery infrastructure for connected
vehicle technology applications,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 3, pp. 787–801, Mar. 2018.

[12] S. Dietzel, J. Petit, G. Heijenk, and F. Kargl, “Graph-based metrics
for insider attack detection in VANET multihop data dissemination
protocols,” IEEE Trans. Veh. Technol., vol. 62, no. 4, pp. 1505–1518,
May 2013.

[13] M. Raya, P. Papadimitratos, V. D. Gligor, and J.-P. Hubaux, “On data-
centric trust establishment in ephemeral ad hoc networks,” in Proc. IEEE
INFOCOM, Apr. 2008, pp. 1238–1246.

[14] Z. Huang, S. Ruj, M. A. Cavenaghi, M. Stojmenovic, and A. Nayak,
“A social network approach to trust management in VANETs,”
Peer-Peer Netw. Appl., vol. 7, no. 3, pp. 229–242, 2014.

[15] K. Zaidi, M. B. Milojevic, V. Rakocevic, A. Nallanathan, and
M. Rajarajan, “Host-based intrusion detection for VANETs: A statistical
approach to rogue node detection,” IEEE Trans. Veh. Technol., vol. 65,
no. 8, pp. 6703–6714, Aug. 2016.

[16] J. Radak, B. Ducourthial, V. Cherfaoui, and S. Bonnet, “Detecting
road events using distributed data fusion: Experimental evaluation for
the icy roads case,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 1,
pp. 184–194, Jan. 2016.

[17] G. Mao and B. D. O. Anderson, “Graph theoretic models and tools for
the analysis of dynamic wireless multihop networks,” in Proc. IEEE
WCNC, Apr. 2009, pp. 1–6.

[18] J. Ma, F. Le, A. Russo, and J. Lobo, “Detecting distributed signature-
based intrusion: The case of multi-path routing attacks,” in Proc. IEEE
INFOCOM, Apr. /May 2015, pp. 558–566.

[19] S. Dietzel, J, Gürtler, R. van der Heijden, and F. Kargl, “Redundancy-
based statistical analysis for insider attack detection in VANET aggre-
gation schemes,” in Proc. IEEE VNC, Dec. 2014, pp. 135–142.

[20] J. Ponniah, Y.-C. Hu, and P. R. Kumar, “A clean slate approach to
secure ad hoc wireless networking-open unsynchronized networks,”
IEEE Trans. Control Netw. Syst., vol. 4, no. 1, pp. 37–48, Mar. 2017.

[21] Y. Wang, H. Ieda, and F. Mannering, “Estimating rear-end accident prob-
abilities at signalized intersections: Occurrence-mechanism approach,”
J. Transp. Eng., vol. 129, no. 4, pp. 377–384, Jul. 2003.

[22] M. Kam, Q. Zhu, and W. S. Gray, “Optimal data fusion of correlated
local decisions in multiple sensor detection systems,” IEEE Trans.
Aerosp. Electron. Syst., vol. 28, no. 3, pp. 916–920, Jul. 1992.

[23] Y. Zhu, Multisensor Decision and Estimation Fusion. Boston, MA, USA:
Springer, 2003.

[24] W. Feller, An Introduction to Probability Theory and Its Applications,
vol. 2. New York, NY, USA: Wiley, 1971.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[25] M. H. DeGroot and M. J. Schervish, Probability and Statistics, 4th ed.
Boston, MA, USA: Addison-Wesley, 2002.

[26] J. L. Gross and J. Yellen, Graph Theory and Its Applications, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2006.

[27] D. R. Karger and C. Stein, “A new approach to the minimum cut
problem,” J. ACM, vol. 43, no. 4, pp. 601–640, Dec. 1996.

[28] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow
problem,” J. ACM, vol. 35, no. 4, pp. 921–940, Oct. 1988.

[29] Y. Wang, J. Zheng, and N. Mitton, “Delivery delay analysis for roadside
unit deployment in vehicular ad hoc networks with intermittent con-
nectivity,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 8591–8602,
Oct. 2016.

[30] Z. Zhang, G. Mao, and B. D. O. Anderson, “Stochastic characterization
of information propagation process in vehicular ad hoc networks,” IEEE
Trans. Intell. Transp. Syst., vol. 15, no. 1, pp. 122–135, Feb. 2014.

[31] T. Gazdar, A. Rachedi, A. Benslimane, and A. Belghith,
“A distributed advanced analytical trust model for VANETs,”
in Proc. IEEE GLOBECOM, Dec. 2012, pp. 201–206.

[32] S. Ahmed, S. Al-Rubeaai, and K. Tepe, “Novel trust framework
for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 10,
pp. 9498–9511, Oct. 2017.

[33] N. Haddadou, A. Rachedi, and Y. Ghamri-Doudane, “A job market
signaling scheme for incentive and trust management in vehicular ad
hoc networks,” IEEE Trans. Veh. Technol., vol. 64, no. 8, pp. 3657–3674,
Aug. 2015.

[34] H. Sedjelmaci and S. M. Senouci, “An accurate and efficient collab-
orative intrusion detection framework to secure vehicular networks,”
Comput. Elect. Eng., vol. 43, pp. 33–47, Apr. 2015.

[35] S. K. Dhurandher, M. S. Obaidat, A. Jaiswal, A. Tiwari, and A. Tyagi,
“Vehicular security through reputation and plausibility checks,” IEEE
Syst. J., vol. 8, no. 2, pp. 384–394, Jun. 2014.

[36] W. Li and H. Song, “ART: An attack-resistant trust management scheme
for securing vehicular ad hoc networks,” IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 4, pp. 960–969, Apr. 2016.

Jieqiong Chen (S’16) received the bachelor’s
degree in engineering from Zhejiang University,
Zhejiang, China, in 2012. She is currently pursuing
the Ph.D. degree in engineering with the University
of Technology Sydney, NSW, Australia. Her
research interests include wireless communications
and cooperative vehicular network design for
intelligent transportation systems.

Guoqiang Mao (S’98–M’02–SM’08–F’18) was
with the School of Electrical and Information Engi-
neering, The University of Sydney. He joined the
University of Technology Sydney, in 2014, as a Pro-
fessor of wireless networking. He has published over
200 papers in international conferences and journals,
which have been cited more than 7000 times. His
research interests include intelligent transport sys-
tems, applied graph theory and its applications in
telecommunications, the Internet of Things, wireless
sensor networks, wireless localization techniques,

and network performance analysis. He is a fellow of IET. He received the
Top Editor Award for outstanding contributions to the IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY in 2011, 2014, and 2015. He is the Co-Chair
of the IEEE Intelligent Transport Systems Society Technical Committee on
Communication Networks. He has served as the chair, the co-chair, and a
TPC member in a number of international conferences. He has been an
Editor of the IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION

SYSTEMS since 2018, the IEEE TRANSACTIONS ON WIRELESS COMMU-
NICATIONS since 2014, and the IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY since 2010.

Changle Li (M’09–SM’16) received the Ph.D.
degree in communication and information
system from Xidian University, China, in 2005.
He conducted his post-doctoral research in Canada
and at the National Institute of information and
Communications Technology, Japan. He was a
Visiting Scholar with the University of Technology
Sydney. He is currently a Professor with the
State Key Laboratory of Integrated Services
Networks, Xidian University. His research interests
include intelligent transportation systems, vehicular

networks, mobile ad hoc networks, and wireless sensor networks.

Degan Zhang (M’01) was born in 1969. He
received the Ph.D. degree from Northeastern Uni-
versity, China. He is currently a Professor with the
Tianjin Key Laboratory of Intelligent Computing
and Novel software Technology, Key Laboratory
of Computer Vision and System, Ministry of Edu-
cation, Tianjin University of Technology, Tianjin,
China. His research interests include ITS, WSN, and
the IOT.


