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Abstract—Identifying the root cause in urban road networks
and ranking the influential factors can benefit traffic management
for improving traffic condition. Traditional congestion identi-
fication studies paid attention to identify traffic bottlenecks,
namely the most vulnerable points in a road network, without
consideration of root causes that leading to the congestion.
In this paper, we propose a gradient boosting decision trees
(GBDTs) based method to identify the root cause of road network
congestion and rank the influential factors using different types of
explanatory variables. Based on Sioux Falls network, different
signal control strategies at intersections and number of lanes
on road segments under different traffic flows are conducted as
samples using Simulation of Urban Mobility (SUMO) to train
and test the GBDT model. Simulation results indicate that the
GBDT model can achieve superior performance in average travel
speed prediction and identify the root causes of congestion by
prioritizing the relative importance of influential factors, such as
lane numbers and signal control strategies, compared with other
algorithms.

Index Terms—Root cause of congestion, GBDT, SUMO

I. INTRODUCTION

Traffic congestion is an increasingly serious problem that
nearly all cities face, especially in metropolis. First, traffic
congestion causes a rise of trip time cost, which takes econom-
ical losses due to reduction of production time. Second, traffic
congestion causes a rise of fuel consumption and then causes
the rise of carbon and oxynitride emissions which aggravates
atmospheric pollution and greenhouse effect. Last but not the
least, with the growing increase of the retention of vehicles,
congestion is becoming increasingly fierce [1], [2], [3].

As the major congestion contributors in a road network,
traffic bottleneck identification has attracted much attention
recently [4]. Li et al. [5] developed a method with the combi-
nation of graph theory and Markov analysis to identify urban
bottlenecks. In [6], Ma et al. defined a parameters Im based
on traffic impedance Crs and network effectiveness E. They
compared the parameter Im before and after a particular road
segment failure (in congestion) and regarded the road segment
with more difference of parameter Im as a bottleneck. Ye et
al. [7] used a critical index v/c based on the ratio of traffic
flow and road capacity of a road segment to identify whether
a road segment is a bottleneck or not. Lee et al. [8] developed
a three-phrase spatio-temporal bottleneck mining model to

identify bottlenecks in urban road networks and considered
that bottlenecks most likely existed in the spatial cross section
of two congestion propagation patterns. In summary, these
works can identify the most congestion contributed points
in a road network, however, the root causes that leading to
congestion are neglected. If the root causes of congestion
can be identified effectively, more efficient strategies can be
applied to relieve congestion in the entire road network.

To fill the gap, in this paper, we utilize GBDT based
approach to identify the root cause of congestion in road
networks. Firstly, we propose a gradient boosting decision
trees (GBDTs) based method to model and predict the per-
formance of road networks with the target of average travel
speed from explanatory variables corresponding to the factors
that can be collected easily (e.g., lane numbers, signal control
strategy and traffic flows). Secondly, based on the GBDT
model, the influential factors that influence the performance
of road networks are prioritized and the major factors can be
given to identify the root cause of congestion. By choosing
the major factors as the root cause of congestion, strategies
can be implemented to relieve congestion more efficiently.
Finally, a simulation based on SUMO is used to illustrate the
effectiveness of proposed root cause of congestion identifica-
tion method. More specifically, contributions of this paper are
presented as follows:

• A gradient boosting decision trees based method is used
to model and predict the average travel speed of road
networks according to easily measuring influential factors
such as lane numbers, signal control strategies and traffic
flows, which can better quantify the different influence of
these factors on road network fluency and further estimate
the traffic condition of entire road networks.

• A prioritization of the influential factors is utilized to
identify the root cause of congestion which demonstrates
the influence of each factor on the average travel speed
of road networks and provides a reliable method to locate
the root causes of congestion.

• Simulations are conducted using Simulation of Urban
Mobility (SUMO) where different signal control strate-
gies at intersections and number of lanes on road seg-
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ments under different traffic flows are encoded as samples
to train and test the GBDT model. A comparison between
GBDT method and other algorithms are also developed,
which validates the effectiveness of GBDT method com-
pared with other algorithms.

The rest of paper is organized as follows. In Section II,
we utilize GBDT model to predict the average travel speed
of road networks and prioritize the relative importance for
congestion influential factors. Based on a traffic simulator
SUMO. Section III presents the data resources used in this
study. The simulation results of the proposed model and a
comparison with other algorithms are conducted in section IV.
Conclusion is outlined at the end.

II. METHODOLOGY

A. Gradient Boosting Decision Trees

In this study, a type of machine learning method called
gradient boosting decision trees (GBDT) is used to model and
predict the average travel speed of a road network. Assuming
that F (x) is an approximation of the label y based on a set of
predictor variables x, the least square error function is applied
as the loss function to estimate the approximation function as
follow [9], [10]:

L(y, F ) =
1

2
[y − F ]2. (1)

Assuming that the number of splits is J for each sub-
tree, which splits the input space into J regions just like
R1m, R2m, · · · , Rjm and predicts a constant value bjm into
region Rjm. Thus, each decision tree can be written as follow
[11], [17]:

hm(x) =
J∑

j=1

bjmI, (2)

where I = 1 if x ∈ Rjm; I = 0 otherwise. Considering the
data: {yi, xi}N1 , the gradient boosting decision tree iteratively
generates M different regression trees h1(x), · · · , hM (x). The
updating form function Fm(x) is given with a gradient descent
step size ρm as follows [12], [13], [14]:

Fm(x) = Fm−1(x) + ρm

J∑
j=1

bjmI(x ∈ Rjm). (3)

ρm = arg min
ρ

N∑
i=1

L(yi, Fm−1(xi)+ ρ
J∑

j=1

bjmI(x ∈ Rjm).

(4)
Finding an optimal partition γjm for each region Rjm, then

the (3) can be presented without bjm as follows [9], [12]:

Fm(x) = Fm−1(x)+

J∑
j=1

γjmI(x ∈ Rjm), (5)

and to obtain the optimal can be on the basis as follows:

γm = argmin
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ)

= argmin
γ

∑
xi∈Rjm

(
∼
y − γ)2, (6)

where

∼
y i = −

[
∂L(yi, F (xi))

∂F (xi)

]
Fm(x)=Fm−1(x)

. (7)

The gradient boosting trees build the model step by step
and update the parameter by minimizing the value of certain
loss function. To prevent over-fitting and improve the model
performance, it applies a strategy to scale the contribution of
base tree with a learning rate ξ (0 < ξ < 1) [9], [15]. Thus,
(5) can be written as below:

Fm(x) = Fm−1(x) + ξ
J∑

j=1

γjmI(x ∈ Rjm). (8)

Choosing a small learning rate can better minimize the loss
function but may add a large number of trees to the model.
Thus, the complexity of each sub-tree should be limited to
obtain a good cost-effectiveness model at the balance between
complex interactions capture and model complexity. Selecting
the combination of parameters, the GBDT model with an
optimal performance can be found.

B. Relative Importance of Influential Factors

The GBDT method can identify and rank the influences
of predictor variables on response predictions. For a single
decision tree T , relative importance of the predictor xk has an
approximation in predicting the response as follow [16]:

I2K(T ) =
J−1∑
t=1

∼
τ
2

t I(v(t) = k), (9)

where the summation over the non-terminal nodes t of J-
terminal node tree T , xk is the splitting variable associated
with node t, and

∼
τ
2

t is the corresponding empirical improve-
ment in the form of squared error as a result of using variable
xk as a splitting variable at the non-terminal node t. For a
collection of decision trees {Tm}M1 , (9) can be represented by
its average over all of the sub-trees[17]:

I2K(T ) =
1

M

M∑
m=1

I2k(Tm). (10)

III. DATA SOURCES

The data used in this study are from simulation based
on SUMO. It was simulated on a simplified network based
on the City of Sioux Falls, South Dakota, USA (the road
network has 76 edges and 24 intersections as shown in Figure
2). Each sample is a vector including traffic flow and lane
number of each edge and signal control strategy of each
intersection corresponding to a random initialization of road
network elements (lane numbers and signal control strategy).
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TABLE I
DESCRIPTION OF INDEPENDENT VARIABLES USED IN GBDT

Variables Value set

Lane number
1 = single lane edge
2 = double lane edge
3 = three-lane edge

Intersection
0.1 = without control

0.5 = fixed-time control
1 = responsive control

Traffic flow R+

Edges in the road network can have 1 to 3 lanes and traffic
lights have 3 types: without control, fixed-time control and
actuated type. A matrix A is used to describe the road network
after a lane numbers initialization: Aij is the lane number
in the link from node i to node j (if there is no link, the
value should be 0) and Aii is set to be 0. A vector

→
N is

used to describe the signal control strategy of intersections.
→
N i represents the signal control strategy of node i (without
control: 0.1, fixed-time control: 0.5, responsive control: 1). A
matrix F is used to describe the traffic flow on edges: Fi,j

represents the traffic flow during the simulation. The traffic
flow was collected and converted to hourly volume based on
a interface called Traci which links and controls the SUMO
server. Samples are obtained by flattening the matrix A, F to
vectors with deleting the zeros and splicing it with vector

→
N .

It has the form as follow:{→
A′,

→
F ′,

→
N

}T

, (11)

where
→
A′ and

→
F ′ represent the vectors converted from

matrix A and B. Label data is the average travel speed during
each simulation in road network.

Each sample of the data set used in this study has 176
dimensions (traffic flow in 76 edges, lane numbers of 76 edges
and signal control strategies of 24 intersections). An example
of getting samples is shown in Figure 1. The label data is
the mean value of all simulation step’s average travel speed
of road network which represents the congestion level in road
network which can be represented as follow:

l =
1

n

n∑
i=1

mi∑
j=1

vj
mi

, (12)

where n is the total simulation steps and mi is the vehicle
number in the road network at the step i. vj is the speed of
vehicle j.

IV. SIMULATION RESULT

A. Optimization of Model Parameter

For the performance of predicting the average travel speed
in the road network, the determination coefficient (R2 score) is
used as the evaluation criterion in this study. The determination
coefficient is defined as follows:

Fig. 1. Example of getting samples from a road network.

v =
m∑
i

(
⌢
y i −

∼
y)2, (13)

u =
m∑
i

(
a
y i − yi)

2, (14)

R2(y,
a
y) = 1− u

v
, (15)

where
⌢
y i is the ith data in label dataset, yi is the corre-

sponding predicted value and
∼
y is the mean value of the label

data. In addition, m is the sample numbers. In this study, 80%
of sample data are used for training while 20% of sample data
are used for testing. Generally, a value of R2 score close to 1
indicates a high performance of the model and the value can be
negative because the model can be arbitrarily worse. To test the
model performance of different combinations of parameters,
several GBDT models are built with various learning rates (ξ
values from 0.01 to 1 with a step of 0.01), tree max depth (d
values from 1 to 50 with a step of 1) and estimator number
(values from 1 to 200). To determine the optimal parameters,
the estimator numbers are tested firstly. Estimator numbers
represent the maximal number of weak learning regressor.
Generally, a large estimator number will make the model over-
fitting while a small estimator number will lead to the model
under-fitting. As is shown in Figure 3, it indicates that the
score tends to be stable at the value of 1.0 on training set and
stable nearby the value of 0.8 on test set after 50 iterations
with a fixed learning rate of 0.01. The score is stable at the
value of 1 on training set after 400 iterations and stable at
the value of 0.8 on test set after 600 iterations with a fixed
learning rate 0.1. The last test with a fixed learning rate 0.5
indicates that the score is stable at the value of 1.0 only after
10 iterations on training set and shocks under the value of 0.8.
For the parameter of learning rate, that is the weight reduction
coefficient of each weak learning regressor, a smaller value
means that it needs more weak learning regressor estimator
numbers to obtain the same training effect on training set.
With reference to result of above test, in this paper, the learning
rate is tested from 0.01 to 1 with estimator numbers of fixed
1000. As the result shown in Figure 4, the model performance
reaches its best with a learning rate of 0.05. Considering these
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Fig. 2. Sioux Falls network.

Fig. 3. Influence of estimator number on model performance.

two parameters as a whole, the learning rate was set to be 0.4
and the estimator number was set to be 100.

The parameter of the maximum depth and maximum leaf
nodes limit the complexity of sub-trees in GBDT model.
Without the limit of complexity of sub-trees, the model will
take a large memory space of computer and be worse on
generalizations ability, that is the model will be over-fitting.
Through experiment shown in Figure 5, the max depth was
determined and set to be 3 with the highest R2 score 0.81
and the max leaf nodes was set to be 8 with the highest R2

score 0.825 in experiment. By analyzing the result in Figure
3 to Figure 6, the best model performance can be acquired.
The optimal model is obtained when learning rate has a value
of 0.4, estimator number has a value of 100, maximum leaf
nodes has a value of 8 and tree maximum depth values 3. The
R2 score of optimal model on test dataset is 0.864.

B. Comparison with other algorithms

A comparison with other algorithms including multilayer
perceptron (MLP) and random forest (RF) is used to demon-
strate the effectiveness of GBDT model. It was tested on the
subsets of test dataset and each subset is corresponding to a
traffic flow (hourly volume). There are total three subsets and
corresponding three values of traffic flow: 3600 vehicles per
hour, 5400 vehicles per hour and 7200 vehicles per hour. Table
2 shows the comparison result. The multilayer perceptron is
a type of back propagation neural network. The multilayer
perceptron used in this paper has two hidden layers (the first
hidden layer’s dimension is 100 and the second is 11) and
uses the ReLU activation after each hidden layer. Stochastic
gradient descent (SGD) was used to train the network. For RF
algorithm, the estimator number and max depth of sub-trees
are important parameters the same as GBDT. They are set to
be 200 and 3 after search in parameter space.

Comparing the results of three algorithms, it can be seen that
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Fig. 4. Influence of learning rate on model performance.

Fig. 5. Influence of maximum leaf nodes on model performance.

GBDT model has the best performance on entire test dataset
with a R2 score of 0.866. On subsets, GBDT model gets the
highest score 0.942 when the traffic volume is 3600 vehicles
per hour, gets a score of 0.855 when traffic volume is 5400
vehicles per hour and a score of 0.807 when traffic volume
is 7200 vehicles per hour. It indicates that GBDT model has
a good performance for predicting the average travel speed at
different traffic volumes. For RF and MLP, the performance
is poor when traffic volume is 7200 vehicles per hour which
makes them cannot fit the high volume situation. Numerically,
GBDT is 27.9% higher on performance than RF and 39.2%
higher than MLP. This result shows the effectiveness of GBDT.

C. Root Cause Identification and Relative Importance Rank

To explore the different influences of each element in the
road network on the average travel speed of road network,
the relative importance of predictor variables is calculated
using the optimal model. A higher value of relative importance
indicates a more obvious influence of the predictor variable
on the performance of road network. Thus, the root causes
of congestion in a certain road network can be identified ac-

Fig. 6. Influence of max depth on model performance.

TABLE II
COMPARISON WITH OTHER ALGORITHMS

Traffic volume of subset Prediction performance (R2 score)
RF MLP GBDT

3600 0.733 0.786 0.942
5400 0.696 0.639 0.855
7200 0.358 0.455 0.807

Entire test dataset 0.677 0.622 0.866

cording to their relative importance rank. The result of relative
importance from our optimal GBDT model is shown in Figure
7. It can be seen that the most influential factor (the traffic
flow of edge A) has a relative importance of 23.3%, the most
influential intersection has a relative importance of 4.9%. As
shown in Table 3, in general, traffic flow is the most important
contributor to the average travel speed of road network with a
total relative importance of 80.2%, signal control strategy of
intersection contributes a total relative importance of 15.3%
and lane number of road segment contributes a total relative
importance of 4.7%.

To identify the root cause of congestion in road networks,
the influential factors with the highest three values of relative
importance are considered as the root cause of congestion. As
shown in Figure 8, improving traffic control strategy at node
10 from fixed-time control to responsive control and increasing
the road capacity on edge A and B can increase the average
travel speed by 36.2% in average of entire road networks.

V. CONCLUSION

Reliable prediction of average travel speed of road net-
works is of vital importance for identifying the root cause
of congestion. This study contributes to model and predicts
the average travel speed of road networks using a gradient
boosting decision tree (GBDT) based method. The GBDT
based method has a perfect performance on the test set and
rank the relative importance of each variable automatically
which benefits to identify the root cause of congestion. Data
including traffic flow, lane number and signal control strategy
on each edge and node from simulation based on SUMO
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Fig. 7. Relative importance of elements in road network.

TABLE III
RELATIVE IMPORTANCE OF DIFFERENT ELEMENTS IN ROAD NETWORK

Categories Variables Rank Relative importance
Traffic flow Hourly traffic volume 1 80.0%
Intersection signal control strategy 2 15.3%

Road segment Lane number 3 4.7%

are used to verify the effectiveness of GBDT algorithm.
Comparison results show that the GBDT model has a better
performance than other algorithms. From the optimal GBDT
model, the relative importance of each variable is calculated
to identify the root cause of congestion.

The developed method in this paper can benefit to generate
more efficient strategies to relieve the congestion in urban road
networks according to the root cause identified by our GBDT
model. In the future, more detailed traffic information such
as road segment lengths, betweenness and centrality will be
included to analyze their influence on traffic condition and
identify root causes of congestion in road networks.
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