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Abstract—Reinforcement learning is of vital significance in
machine learning and is also a promising approach for
traffic signal control in urban road networks with assistance
of deep neural networks. However, in a large scale urban
network, the centralized reinforcement learning approach is
beset with difficulties due to the extremely high dimension
of joint action space. The multi-agent reinforcement learning
(MARL) approach overcomes the high dimension problem by
employing distributed local agents whose action space is much
smaller. Even though, MARL approach introduces another issue
that multiple agents interact with environment simultaneously
causing its instability so that training each agent independently
may not converge. This paper presents an actor-critic based
decentralized MARL approach to control traffic signal which
overcomes the shortcomings of both centralized RL approach
and independent MARL approach. In particular, a distributed
critic network is designed which overcomes the difficulty to
train a large-scale neural network in centralized RL approach.
Moreover, a difference reward method is proposed to evaluate the
contribution of each agent, which accelerates the convergence of
algorithm and makes agents optimize policy in a more accurate
direction. The proposed MARL approach is compared against
the fully independent approach and the centralized learning
approach in a grid network. Simulation results demonstrate its
effectiveness in terms of average travel speed, travel delay and
queue length over other MARL algorithms.

Index Terms—Multi-agent, deep reinforcement learning, traffic
signal control, actor-critic.

I. INTRODUCTION

With the growth of vehicle ownership, current transportation
demand rises rapidly, especially in metropolises. However, the
update speed of transportation infrastructure is slow. Moreover,
the traffic signal in urban road networks is almost the fixed
phase which can not fit the high transportation demand and
causes congestion at intersections [1]. Adaptive traffic signal
control (ATSC) can capture the dynamic variation rule of
traffic flow and make a reasonable decision. Classical adaptive
traffic signal control approaches are usually based on time
gaps or time loss. Time loss based approaches work based
on that phase prolongation can be triggered by the presence
of vehicles with time loss to control a single intersection [2].
Time gap based approaches are common in Germany and work
by prolonging traffic phases whenever a continuous stream
of traffic is detected [3]. It switches to the next phase after
detecting a sufficient time gap between successive vehicles.
Several techniques such as fuzzy logic [4], evolutionary

computation [5], [6] are also applied in adaptive traffic signal
control.

In recent years, reinforcement learning (RL) approaches
which are based on the framework of the Markov decision
process (MDP) spring up in adaptive traffic signal control. It
differs from traditional time loss or time gap based approaches
which use a predesigned model. Rather it fits a parametric
model whose inputs are collected from real traffic scenarios to
learn the optimal control strategies by maximizing the reward
function [7]. Traditional RL approaches that is represented by
Q-learning usually use a simple model, leading the limited
application in practice. However, the combination of deep
neural networks and RL algorithms made great achievements
in numerous complex tasks such as deep Q-learning (DQN)
[8].

For the deep RL methods, there are three major methods:
value based, policy based and value-policy mixed [9]. In value
based methods, such as Q-learning, the action-state value
function is fitted and its parameters are updated using step-
wise experience. Tan et al. [10] adopted the bootstrapped
Deep Q-Network (DQN) algorithm to induce exploration via
an ensemble of behavior policies in traffic signal control. Wang
et al. [11] developed a co-DQN method that is applied to traffic
signal control and tested on various traffic flow scenarios of
simulators. However, the update for DQN is based on the
one-step temporal difference (TD), the non-stationary MDP
transition of traffic scenario can not guarantee its convergence.
For policy based methods, such as REINFORCE, the policy
is parameterized by a deep neural network and updates its
parameters using episode environment return by gradient
ascent. Value-policy mixed method combines advantages of
the aforementioned two methods, such as actor-critic (AC)
method. In AC methods, the critic network evaluates the policy
of each actor and guides them to optimize their policies.
AC method had a low variance on gradient estimation so it
converges fast than policy based methods [12]. A recent work
[13] demonstrated that AC methods outperform Q-learning
methods in traffic signal control.

Even though deep RL methods made its great achievements,
but it is unpractical to train a centralized agent to control
traffic signal in a large scale urban road network on
account of extremely high-dimensional joint action space
and joint state space which grow exponentially with the
number of intersection. Under this circumstance, multi-agent
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reinforcement learning (MARL) approaches are utilized in
traffic signal control. Early-stage MARL approaches use
independent deep RL agents to control traffic signal. There
is no communication among agents so that each agent
only considers its own intersection state. Multiple agents
simultaneously interact with the environment which causes
the instability of the environment so that independent agent
approaches usually have a poor convergence. Therefore, a few
recent studies focus on a centralized learning and decentralized
control MARL approach. Chu et al. [14] developed an
advantage actor-critic method which utilized a centralized
critic network and local actor to control traffic signal in a large
scale road network. By improving the observability of each
agent and considering the policies of other agents, this work
implemented cooperative learning among multiple agents. In
addition, the design of decentralized actor networks reduced
the training difficulty. Nonetheless, utilizing a centralized
critic network needs to collect all traffic measurements in
the road network and transfer them to the processing center,
which cause high latency and possibility of system breakdown
once the communication outage. Besides, the centralized critic
approach faces a credit assignment issue because it returns
the same value to all agents which can not evaluate the
contribution of each agent to global networks. In other words,
the direction of policy improvement is not precise for each
intelligent controller in traffic signal control.

To fill the gap, in this paper, we develop a decentralized
critic network method for traffic signal control. To be specific,
this study utilizes local actor networks and local critic
networks. Each local agent broadcasts its state observation
and receives state observations of other agents before learning.
Then each local critic network approximates its own value
function. For credit assignment, we utilize a difference reward
based method to evaluate the contribution of each agent in
cooperative game and accelerate the convergence. Finally,
simulations are conducted based on Simulation of Urban
Mobility (SUMO) to illustrate the effectiveness of proposed
method1. Specifically, contributions of this paper are presented
as follows:

• A distributed critic network is utilized to approximate
the state value function in traffic signal control, which
overcomes the difficulty to train a large-scale neural
network and has a much smaller amount of data than
centralized learning method. The fully decentralized
design of actor and critic network also improves the
robustness of traffic signal control systems.

• A difference reward based method is utilized in gradient
estimation for updating actor network parameters, which
can evaluate the contribution of each agent in cooperative
game. The convergence speed of algorithm can be
accelerated and policy can be optimized in a more
accurate direction to receive a higher numerical reward.

1The demonstration of the simulated road network with different signal
control strategies is available at https://github.com/albertcruzeyork/RL-for-
traffic-signal-control

Fig. 1. A road network with traffic signal control agents.

• Simulations based on SUMO are conducted for different
MARL algorithms. Reward over training steps and
average travel speed under different traffic flows are
also demonstrated, which illustrates the superiority of the
proposed signal control strategy in average travel speed,
travel delay and queue length.

II. METHODOLOGY

A. Policy Gradient

In a MDP, τ represents a series of state-action pairs
{s0, u0, s1, u1, · · · , sh, uh}, each trajectory τ receives a
discount reward:

R (τ) =

h∑
t=0

γtR (st, ut) , (1)

where γ ∈ [0, 1). For a parameterized policy πθ, it hopes to
maximize the discount reward. So the expectation of discount
reward can be regraded as a target function to be optimized:

L(θ) = E

[
h∑
t=0

γtR (st, ut) | πθ

]
=
∑
τ

P (τ, θ)R(τ). (2)

Optimization problem can be written as follows:

max
θ
L(θ) = max

θ

∑
τ

P (τ, θ)R(τ). (3)

To take the derivative of target function:

∇θL(θ) = ∇θ
∑

P (τ, θ)R(τ)

=
∑
τ

∇θP (τ, θ)R(τ)

=
∑
τ

P (τ, θ)

P (τ, θ)
∇θP (τ, θ)R(τ)

=
∑
τ

P (τ, θ)
∇θP (τ, θ)R(τ)

P (τ, θ)
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=
∑
τ

P (τ, θ)∇θ logP (τ, θ)R(τ). (4)

Eq. (4) can not be calculated directly, so Monte Carlo method
is utilized to sample R(τ) from M trajectories and empirical
average is used to estimate the gradient:

∇θL(θ) ≈ ĝ =
1

m

M∑
i=1

∇θ logP (τ, θ)R(τ (i)). (5)

Likelihood P (τ, θ) in Eq. (5) can be represented as:

P (τ (i), θ) =
h∏
t=0

P (s
(i)
t+1 | s

(i)
t , u

(i)
t ) · πθ(u(i)t | s

(i)
t ), (6)

where P (s(i)t+1 | s
(i)
t , u

(i)
t ) represents the dynamics of system.

So the gradient of logP (τ, θ) can be represented as follow:

∇θlogP (τ (i),θ)=∇θlog
h∏
t=0

P (s
(i)
t+1 |s

(i)
t ,u

(i)
t )·πθ(u(i)t |s

(i)
t )

= ∇θ[
h∑
t=0

logP (s
(i)
t+1 | s

(i)
t , u

(i)
t )

+
h∑
t=0

log πθ(u
(i)
t | s

(i)
t )]

=
h∑
t=0

∇θ log πθ(u(i)t | s
(i)
t ). (7)

Eq. (5) comes to be:

∇θL(θ) ≈ ĝ =
1

m

M∑
i=1

h∑
t=0

∇θ log πθ(u(i)t | s
(i)
t )R(τ (i)). (8)

B. Policy Gradient with Baseline

When introduce a bias item which is only relevant to current
state into reward, the gradient come to be:

∇θL(θ) = ∇θ logP (τ, θ)(R(τ (i))− b(s)). (9)

Introducing item b is unbiased for gradient estimation,
because:

E [∇θ logP (τ, θ) · b(s)] =
∑
τ

P (τ, θ)∇θ logP (τ, θ)b(s)

=
∑
τ

P (τ, θ)
∇θ logP (τ, θ)b(s)

P (τ, θ)

= ∇θb(s) = 0

An appropriate b can minimize the variance of gradient
estimation.

C. Advantage Actor-Critic

Current action is irrelevant to past reward. Based on that,
the reward item in Eq. (8) can be replaced by this type reward
as follows:

Rt(st, ut) =
h∑
τ=t

γτ−tR (st, ut) . (10)

Using expectation type:

Qπ(st, ut) = E

[
h∑
τ=t

γτ−tR (st, ut) | st, ut

]
, (11)

and utilizing a baseline:

V π(s) = Eut [Qπ(st, ut) | st] . (12)

Eq. (8) can be written as:

ĝ =
1

m

M∑
i=1

h∑
t=0

∇θ log πθ(u(i)t | s
(i)
t )(Qπ(st, ut)− V π(s)),

(13)
where At = Qπ(st, ut) − V π(s) called advantage function.
Furtherly, Qπ(st, ut) can be written as:

Qπ(st, ut)=Est+1,ut+1
[R (st, ut) +γQ

π(st+1, ut+1)] . (14)

So, At is approximated by:

R (st, ut) + γV π(st+1)− V π(st). (15)

Critic introduces a neural network regressor Vω(s) to estimate
V π(s).

D. Distributed Critic Network

In a n agents game, each agent’s state value function actually
relevant to the states of other agents. For example, the state
of agent a value function should be:

V πa (s1, s2, · · · , sn), (16)

where si represents the state of agent i. In independent
A2C method, actually the state value function was wrongly
estimated by V πa (sa). Our critic networks distribute in each
signalized intersection and broadcast its current state to all
other agents at each transition step. A neural network Vω is
utilized to approximate the function in Eq. (16) with the coded
states of all agents as the input.
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E. Difference Reward

In comparison to centralized critic method which only
considers global rewards, each agent’s advantage function in
our proposal is:

Aa = Qπa(s1, s2, · · · , sn, u)− V πa (s1, s2, · · · , sn), (17)

where a represents the agent’s serial number. Eq. (17) can be
written as a time difference type:

Aa = R
(
sta, u

t
a

)
+ γV π(st+1

1 , st+1
2 , · · · , st+1

n )

− V πa (st1, s
t
2, · · · , stn), (18)

where yat = R (sta, u
t
a) + γV π(st+1

1 , st+1
2 , · · · , st+1

n ) is called
TD target. Algorithm 1 illustrates our proposed algorithm.

Algorithm 1 Multi-Agent Actor Critic
1: for each agent i do
2: Initialise θiπ , ωic;
3: end for
4: for each training episode e do
5: Empty buffer;
6: for ec = 1 to Batchsize

n do
7: initialise s and t = 0 for each agent;
8: while s 6= terminal and t < T do
9: t = t+ 1;

10: for each agent i do
11: Sample ut from πθ;
12: Get reward rt and next state st+1;
13: end for
14: Add episode to buffer;
15: end for
16: Collate episodes in buffer into single batch;
17: end for
18: for each agent i do
19: for t = 1 to T do
20: Calculate TD targets yat using ωic;
21: end for
22: for t = 1 to T do
23: 4V it = yat − V πa (st1, s

t
2, · · · , stn);

24: ∇ωic = ∇ωic + ∂
∂ωic

(4V it )2;
25: end for
26: ωic = ωic + α∇ωic;
27: for t = 1 to T do
28: Caculate Ai;
29: ∇θiπ = ∇θiπ + ∂

∂θiπ
log πiθ(ut | st)Ai;

30: end for
31: θiπ = θiπ + α∇θiπ;
32: end for

III. SIMULATION RESULTS

A. MDP Settings

Considering a T seconds simulation environment, it is
necessary to define a switch time 4t as the period between
two RL actions. If it is too long, the traffic signal control will
not adaptive enough. If it is too short, the security can not

be guaranteed and communication latency will influence the
performance of traffic signal control systems. A yellow phase
is also enforced between each switch. In this paper, the switch
time is set to be 3s and the yellow phase duration is set to be
2s. Planing horizon is 4000 steps.

1) Action Definition: Several definitions are optional such
as phase switch [15], phase duration [13] and phase
itself [16]. This paper follow the third definition. It has
predefined phase for each intersection such as red-green
combination or yellow-red combination. Each agent will
chose a phase at each step.

2) State Definition: This paper define each agent’s state
by velocities, distance to intersections, edge vehicle
number (for nearby vehicles) from each direction, local
edge information, and traffic light phase. That is: s =
{v, l, n,phase}. Each edge in this paper is 500m long
and all the state information are measured in 100m long
to intersection.

3) Reward Definition: In this paper, each distributed agent
receives its local step reward which is defined as: R =
−delay− queue which is inspired by [16] and delay is
the average delay time of all vehicles and queue is the
length of vehicles standstill cloth to intersection. This
reward is highly correlated to state and action of the
local agent in comparison to cumulative delay [15] and
wave [13].

B. Neural Network Settings
In this paper, we utilize a fully connected network for actor

network and critic network. Fig.2 illustrates the structure of
our utilized neural network where joint state vectors (42*9
dimensions) are processed by fully connected layer as the
input. Then critic network has three hidden layers with size of
256, 128 and 64. After each layer, tanh activation is utilized.
Last linear layer output the estimated value. Actor network
use a softmax layer to output the probability distribution
of actions. The gradient optimizer was chosen as stochastic
gradient descent (SGD) with a learning rate 5e-5. In training,
we utilize a mini-bacth method with a batchsize of 128.

C. Traffic Simulation Settings
MARL based traffic signal control is evaluated in SUMO

and the utilized road network is a 3 × 3 grid like network
as shown in Fig.1 under a high vehicle flow rate of 5000
vehs/h. The edge in the road network has two lanes with
a speed limit 30m/s. To demonstrate the effectiveness and
robustness of our proposed algorithm, we compare it to several
algorithms which are utilized frequently in MARL studies
including centralized critic method, independent A2C method.
We train all algorithms up to 4M steps, which is around 1000
episodes with a episode horizon T = 4000 steps. For MDP
parameters, we set γ = 0.9. Average travel speed which is
defined as follow is utilized to evaluate the performance of
each algorithm:

s =
1

n

n∑
i=1

mi∑
j=1

vj
mi

, (19)
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(a) Critic network. (b) Actor network.

Fig. 2. Architecture of critic network and actor network.

where n is the total simulation steps and mi is the vehicle
number in the road network at the step i. vj is the speed of
vehicle j.

D. Training Results
To evaluate the performance of each signal control method,

average travel speeds of different traffic signal control methods
are illustrated in Fig.3. A time gap based responsive method
and fixed phase duration method were utilized as benchmarks.
MAAC method has a best performance on the traffic flow
of 3000 veh/h with an average travel speed of 64.04 km/h
and outperforms other methods on the traffic flow of 1000
veh/h to 7000 veh/h. When the traffic flow is higher than
5000 veh/h, MAAC method start a downtrend and get close to
the responsive method at the traffic flow of 8000 veh/h. As a
contrast, centralized critic method and idependent A2C method
start a sharp decline and even perform much worse than both
benchmark methods When the traffic flow is higher than 5000
veh/h. On average, MAAC performs 59.2% better than fixed
phase duration method, 29.3% better than responsive method,
12.8% better than centralized critic method and 35.4% better
than independent A2C method (IPG was not taken into account
because it does not converge).

Fig.4 plots the training result of each MARL algorithm with
maximum episode reward, mean episode reward and minimum
episode reward. The standard deviation of episode reward is
illustrated in the figures. In Fig.4(a) and (b), training curves
increase and then converge which shows the RL agents learn
from cumulated experience and finally come to be optimum.
But the converged reward in Fig.4(b) is approximately 260
numerical less than our MAAC approach showm in Fig.4(a)
and in particular our MAAC approach has a faster convergence
speed than centralized critic approach. In Fig.4(c), independent
A2C takes much longer time to than MAAC and centralized
critic that training curves converge and it can be found that
the reward is much less than MAAC and centralized critic
methods and the update process is noisy because the lack
of effective communication among agents. In Fig.4(d), the
training curves do not converge. Because the noisy gradient in

Fig. 3. Average travel speed in the road network.

independent policy gradient method so that agents group can
not be optimized in the right direction. The results show that
our proposed approach has a faster convergence speed than
centralized critic approach and idependent A2C approach. It
is noteworthy that our proposed MAAC approach has a better
performance than all other approaches utilized to be compared.

IV. CONCLUSION

In this paper, a novel actor-critic based MARL algorithm
for scaleable and robust traffic signal control was proposed.
Firstly, we developed a decentralized critic network method
for traffic signal control which avoid the difficulty to train
a large-scale neural network in comparison to centralized
learning method. The fully decentralized design of actor and
critic network also improves the robustness of traffic signal
control systems. Secondly, we utilized a difference reward
method to solve the issue of credit assignment in multi-agent
reinforcement learning which can evaluate the contribution
of each agent in cooperative game. In experiment, MAAC
had a highest mean episode reward of -240.11 and performed
59.2% better than fixed phase duration method, 29.3% better
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(a) MAAC. (b) Centralized critic.

(c) Independent A2C. (d) Independent PG.

Fig. 4. Training results of different MARL algorithms.

than responsive method, 12.8% better than centralized critic
method and 35.4% better than independent A2C method with
the evalution index of average travel speed.

Future works are still remaining for the MAAC algorithm
which include: 1) experiment to verify the robustness of
MAAC system when a number of agents break down; 2) utilize
a recurrent neural to model the actor for better utilizing the
history information.
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