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Abstract—In this paper, we introduce a sophisticated path loss
model incorporating both line-of-sight (LoS) and non-line-of-sight
(NLoS) transmissions to study their impact on the performance of
dense small cell networks (SCNs). Analytical results are obtained
for the coverage probability and the area spectral efficiency
(ASE), assuming both a general path loss model and a special
case with a linear LoS probability function. The performance
impact of LoS and NLoS transmissions in dense SCNs in terms
of the coverage probability and the ASE is significant, both
quantitatively and qualitatively, compared with the previous work
that does not differentiate LoS and NLoS transmissions. Our
analysis demonstrates that the network coverage probability first
increases with the increase of the base station (BS) density, and
then decreases as the SCN becomes denser. This decrease further
makes the ASE suffer from a slow growth or even a decrease
with network densification. The ASE will grow almost linearly as
the BS density goes ultra dense. For practical regime of the BS
density, the performance results derived from our analysis are
distinctively different from previous results, and thus shed new
insights on the design and deployment of future dense SCNs.

Index Terms—stochastic geometry, Homogeneous Poisson Point
Process (HPPP), Line-of-Sight (LoS), Non-Line-of-Sight (NLoS),
dense small cell networks (SCNs), coverage probability, area
spectral efficiency (ASE).

I. INTRODUCTION

Driven by a new generation of wireless user equipment
(UE) and the proliferation of bandwidth-intensive applications,
mobile data traffic and network load are increasing in an
exponential manner, and are straining current cellular networks
to a breaking point [1]. In this context, small cell networks
(SCNs), comprised of remote radio heads, metrocells, pico-
cells, and/or femtocells, have attracted much attention as one
of the most promising approaches to increase network capacity
and meet the ever-increasing capacity demands [2], [3]. SCNs
can significantly enhance network capacity through a high
spatial spectrum reuse, e.g., network capacity could potentially
grow linearly with the number of small cells [2]. Due to such
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capacity gains, the orthogonal deployment of SCNs within the
existing macrocell network, i.e., small cells and macrocells
operate on different frequency spectrum (Small Cell Scenario
#2a defined in [3]), have gained much momentum in the
design of the 4th-generation (4G) Long Term Evolution (LTE)
networks by the 3rd Generation Partnership Project (3GPP).
Orthogonal deployments of dense SCNs are also envisaged as
the workhorse for capacity enhancement in the 5th-generation
(5G) networks, aided by its easy deployment arising from
its low interaction with the macrocell tier, e.g., no inter-tier
interference [2]. In this paper, our focus is on these orthogonal
deployments of dense SCNs.

In order to deploy dense SCNs in a cost-effective manner,
vendors and operators need foremost a deep theoretical under-
standing of the implications that small cells bring about. Being
aware of the need for such knowledge, the wireless industry
and research community have been working relentlessly on
the modeling and the analysis of the dense SCN deployments.
However, up to now, most studies on SCNs have considered
only simplistic path loss models that do not differentiate Line-
of-Sight (LoS) and Non-Line-of-Sight (NLoS) transmissions
[4-7]. It is well known that LoS transmission may occur when
the distance between a transmitter and a receiver is small,
and NLoS transmission is common in office environments
and in central business districts. Moreover, when the distance
between a transmitter and a receiver decreases, the probability
that a LoS path exists between them increases, thereby causing
a transition from NLoS transmission to LoS transmission
with a higher probability. In this paper, we will study the
performance impact of such NLoS-to-LoS transition in dense
SCNs. The main contributions of this paper are as follows:

• Analytical results are obtained for the network perfor-
mance of the coverage probability and the area spectral
efficiency (ASE), using a proposed general path loss
model incorporating both LoS and NLoS transmissions.

• Using the above results, numerically tractable integral-
form expressions for the coverage probability and the
ASE are further obtained for a 3GPP path loss model
with a linear LoS probability function. Our analysis can
be readily extended to deal with more complicated path
loss models by approximating the corresponding LoS
probability function as a piece-wise linear function.

• Our theoretical analysis reveals an important finding, i.e.,
when the density of small cell base station (BSs) is larger
than a threshold, the network coverage probability will
decrease as small cells become denser, which in turn
can make the ASE suffer from a slow growth or even a
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decrease. Thereafter, the ASE will grow almost linearly
as the small cell BS density increases above another
threshold, larger than the previous one. This finding that
the ASE performance may suffer from a slow growth
or even a decrease as the BS density increases, is not
only quantitatively but also qualitatively different from
previous study results with a simplistic path loss model
that does not differentiate LoS and NLoS transmissions.
Although our conclusion is made from the investigated
set of parameters recommended by the 3GPP for SCNs,
which sheds valuable insights on the design and deploy-
ment of practical SCNs, it is of significant interest to
further study the generality of our conclusion in other
network models and with other parameter sets.

The remainder of this paper is structured as follows. Sec-
tion II provides a brief review on stochastic geometry and
compares the closest related works to our work. Section III
describes the system model. Section IV presents our main
analytical results on the coverage probability and the ASE, fol-
lowed by their application in a 3GPP study case addressed in
Section V. The numerical results are discussed in Section VI,
with remarks shedding some new light on the performance
and the deployment of dense SCNs. Finally, the conclusions
are drawn in Section VII.

II. RELATED WORK

In stochastic geometry, BS positions are typically modeled
as a Homogeneous Poisson Point Process (HPPP) on the plane,
and closed-form expressions of coverage probability can be
found for some scenarios in single-tier cellular networks [4]
and multi-tier cellular networks [5], [6]. A general treatment of
stochastic geometry can be found in [7]. The major conclusion
in [4-7] is that neither the number of cells nor the number
of cell tiers changes the coverage probability in interference-
limited fully-loaded wireless networks. However, these works
consider a simplistic path loss model that does not differentiate
LoS and NLoS transmissions. In contrast, in this paper, we
consider a more complete path loss model incorporating both
LoS and NLoS transmissions to study their impact on the
performance of dense SCNs.

Notions that are similar to LoS and NLoS transmissions
have been previously explored in the building blockage study
in [8] and the indoor communication network in [9]. In [8],
the authors proposed a microscopic performance analysis
framework to model the random blockage effect of buildings,
and analyze its impact on cellular network performance.
Further refinement and verification of the proposed model
in [8] is needed, especially to consider reflections which are
an important contributor to coverage in urban areas. In [9],
the authors present an analytical study of indoor propagation
through walls, and showed that the throughput does not scale
linearly with the density of small cells. Different from [9], in
this paper, we investigate outdoor dense SCNs.

The closest related works to the one in this paper
are [10], [11] and [12].

In [10], the authors assumed a multi-slope piece-wise path
loss function. Specifically, assuming that the distance between

a BS and a UE is denoted by r in km, then the path loss
associated with distance r can be formulated as

ζ (r) =


ζ1 (r) ,

ζ2 (r) ,
...
ζN (r) ,

when 0 ≤ r ≤ d1

when d1 < r ≤ d2

...
when r > dN−1

, (1)

where the path loss function ζ (r) is segmented into N pieces,
with each piece and each segment break point denoted by
ζn (r) and dn, respectively.

In [11], the authors treated the event of LoS or NLoS
transmission as a probabilistic event for a millimeter wave
communication scenario. Specifically, the path loss associated
with distance r is formulated as

ζ (r) =

{
ζL (r) ,

ζNL (r) ,

with probability PrL (r)

with probability
(
1− PrL (r)

) , (2)

where ζL (r), ζNL (r) and PrL (r) are the path loss function for
the case of LoS transmission, the path loss function for the
case of NLoS transmission and the LoS probability function,
respectively. To simplify the analysis, the LoS probability
function PrL (r) was approximated by a moment matched
equivalent step function in [11].

In [12], the authors used the same path loss model as
in (2) and considered the approximation of PrL (r) as an
exponentially decreasing function. The results in [12] are less
tractable than those in [10] and [11]. This is because the
exponentially decreasing LoS probability function, albeit more
practical than the step function in [11], is still difficult to deal
with in the analysis.

In this paper, we extend the works in [10-12] to an
even more general scenario to improve the following aspects.
In [10], the multi-slope piece-wise path loss model in (1) does
not fit well with the practical model defined by the 3GPP,
in which the path loss function is not a one-to-one mapping
to the distance. In [11], the single-piece path loss model
and the proposed step function are not compatible with the
practical piece-wise path loss functions, the detailed modeling
of which is presented in Section III. In [12], the considered
path loss model is very practical. However, the generality
of the study and the tractability of the analysis need to be
improved. Compared with [10-12], the novelties of our paper
are summarized as follows,

• Extending the existing works to a more general
scenario: We propose a path loss model that features
piece-wise path loss functions with probabilistic LoS and
NLoS transmissions. The proposed path loss model, to
be presented in Section III, is general and can be applied
to several channel models that capture LoS and NLoS
transmissions [10-14]. Moreover, new analytical results
are obtained for the coverage probability and the ASE.

• Presenting more tractable results for a special path
loss model with a linear LoS probability function: We
derive numerically tractable integral-form expressions for
the coverage probability and the ASE for a 3GPP path
loss model with a linear LoS probability function. The
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results are more simple and tractable than those in [12],
and no approximation such as the step function [11] is
used in our analysis. Although the results in [10] are
superior than ours in terms of tractability, our analysis
can characterize practical networks more accurately due
to the consideration of probabilistic LoS events and a
linear LoS probability function. Note that the inclusion of
a linear LoS probability function is not trivial compared
with [10] in the sense that, in our model a UE may be
associated with a BS that is not the nearest BS to the UE,
but where such BS has a LoS path to the UE resulting
in the smallest path loss (i.e., with the largest ζ (r)). In
contrast, in [10], a UE always connects with its nearest
BS. Moreover, our study on the path loss model with
the linear LoS probability function can be extended to
various cases. In this paper, we show that the approach
of approximating a LoS probability function by a piece-
wise linear function and invoking our results, can deal
with complicated path loss models in a tractable manner.

• Disclosing a new finding on the ASE performance: We
present a new finding that the ASE performance without
the assumption of near-field path loss exponents may
suffer from a slow growth or even a decrease with BS
densification. This new finding is not only quantitatively
but also qualitatively different from the results given
by [10-12]. Note that in [10], a deterministic rate based
on the signal to interference plus noise ratio (SINR)
threshold is assumed for the typical UE, no matter what
the actual SINR value is. Our definition of the ASE, to
be formally presented in Section III, considers a more
realistic SINR-dependent rate, which leads to a more
complex analysis that requires one more fold of numerical
integral compared with [10].

III. SYSTEM MODEL

We consider a downlink (DL) cellular network with BSs
deployed in a plane according to an HPPP Φ of intensity
λ BSs/km2. UEs are Poisson distributed in the considered
network with an intensity of λUE UEs/km2. Note that λUE

is assumed to be sufficiently larger than λ so that each BS
has at least one associated UE in its coverage. As in (1) and
(2), the distance between an arbitrary BS and an arbitrary UE
is denoted by r in km. Considering practical LoS and NLoS
transmissions, we propose to model the path loss with respect
to distance r as (3), which is shown on the top of next page.

In (3), the path loss function ζ (r) is segmented into N
pieces with each piece denoted by ζn (r). Besides, ζL

n (r),
ζNL
n (r) and PrL

n (r) are the n-th piece of path loss function for
the LoS transmission, the n-th piece of path loss function for
the NLoS transmission, and the n-th piece of the LoS prob-
ability function, respectively. Note that the proposed model
is general and can be applied to several channel models that
capture LoS and NLoS transmissions [10-14].

Moreover, ζL
n (r) and ζNL

n (r) in (3) are modeled as

ζn (r) =

{
ζL
n (r) = AL

nr
−αL

n ,

ζNL
n (r) = ANL

n r−α
NL
n ,

for LoS
for NLoS

, (4)

where AL
n and ANL

n , n ∈ {1, 2, . . . , N} are the path losses at
a reference distance r = 1 for the LoS and the NLoS cases
in ζn (r), respectively, and αL

n and αNL
n , n ∈ {1, 2, . . . , N}

are the path loss exponents for the LoS and the NLoS cases
in ζn (r), respectively. In practice, AL

n, ANL
n , αL

n and αNL
n are

constants obtained from field tests [13], [14]. For convenience,{
ζL
n (r)

}
and

{
ζNL
n (r)

}
are further stacked into piece-wise

functions written as

ζPath (r) =


ζPath1 (r) , when 0 ≤ r ≤ d1

ζPath2 (r) , when d1 < r ≤ d2

...
...

ζPathN (r) , when r > dN−1

, (5)

where the string variable Path takes the value of “L” and
“NL” for the LoS and the NLoS cases, respectively.

In (3), PrL
n (r) , n ∈ {1, 2, . . . , N} is the n-th piece proba-

bility function that a transmitter and a receiver separated by a
distance r has a LoS path, which is typically a monotonically
decreasing function with r. For convenience,

{
PrL
n (r)

}
is

further stacked into a piece-wise LoS probability function
expressed as

PrL (r) =


PrL

1 (r) , when 0 ≤ r ≤ d1

PrL
2 (r) , when d1 < r ≤ d2

...
...

PrL
N (r) , when r > dN−1

. (6)

Our model is consistent with the ones adopted in the
3GPP [13], [14]. It should be noted that the considered path
loss model shown in (3) includes the models in [10-12] as its
special cases. More specifically, for [10], all the LoS probabil-
ities are zero, i.e., assuming PrL

n (r) = 0,∀n ∈ {1, 2, . . . , N}
in (3). For [11] and [12], there is only one piece of path loss
function with one LoS path loss exponent and one NLoS path
loss exponent, i.e., assuming N = 1 in (3).

Another important note is on the practical usage of the pro-
posed path loss model, which is summarized in the following:
• As have been addressed in [10], the standard single-

slope path loss function does not accurately capture
the dependence of the path loss exponent on the link
distance in many future networks, such as the multi-
ray transmission environments, the dense/clustered small
cells, the millimeter wave communications with blockage,
etc. Therefore, a dual or more slope path loss function
such as (5) should be considered.

• The realistic LoS probability functions usually take com-
plicated mathematical forms, e.g., in the 3GPP stan-
dards [13], which will be addressed in more detail in
Section V. Therefore, to achieve both analytical tractabil-
ity and result accuracy, it is desirable to approximate the
complicated LoS probability function as a few pieces of
elementary functions, e.g., linear functions. Such piece-
wise LoS probability function is well captured by (6) and
can be studied in our framework.

• With the justification of both (5) and (6), we can conclude
that the proposed path loss model in (3) is versatile to
cope with various practical network scenarios.
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ζ (r) =



ζ1 (r) =

{
ζL
1 (r) ,

ζNL
1 (r) ,

with probability PrL
1 (r)

with probability
(
1− PrL

1 (r)
), when 0 ≤ r ≤ d1

ζ2 (r) =

{
ζL
2 (r) ,

ζNL
2 (r) ,

with probability PrL
2 (r)

with probability
(
1− PrL

2 (r)
), when d1 < r ≤ d2

...
...

ζN (r) =

{
ζL
N (r) ,

ζNL
N (r) ,

with probability PrL
N (r)

with probability
(
1− PrL

N (r)
), when r > dN−1

. (3)

In this paper, we assume the following user association
strategy (UAS). Each UE should be associated with the BS
having the smallest path loss (i.e., with the largest ζ (r)) to
the UE [11], [12]. Note that in our previous work [15] and
some existing works [4], [10], it was assumed that each UE
should be connected to the BS with the closest proximity. Such
assumption is not appropriate because in practice it is possible
for a UE to associate with a BS that is not the closest one but
the one with the minimum path loss.

Finally, we assume that each BS/UE is equipped with an
isotropic antenna, and as a common practice in the field [4-
6,10,12], the multi-path fading between an arbitrary BS and an
arbitrary UE is modeled as independently identical distributed
(i.i.d.) Rayleigh fading.

IV. ANALYSIS FOR THE PROPOSED PATH LOSS MODEL

Using the property of the HPPP, we study the performance
of SCNs by considering the performance of a typical UE
located at the origin o. We first investigate the probability that
the typical UE is covered by its associated BS. This coverage
probability is defined as the probability that the UE’s SINR is
above a per-designated threshold γ:

pcov (λ, γ) = Pr [SINR > γ] , (7)

where the SINR is computed by

SINR =
Pζ (r)h

Ir +N0
, (8)

where h is the channel gain of Rayleigh fading, which is
modeled as an exponential random variable (RV) with the
mean of one, and P and N0 are the transmission power
of each BS and the additive white Gaussian noise (AWGN)
power at each UE, respectively. Moreover, Ir is the aggregate
interference given by

Ir =
∑

i: bi∈Φ\bo

Pβigi, (9)

where bo is the BS serving the typical UE, which is located
at distance r from the typical UE, and bi, βi and gi are the
i-th interfering BS, the path loss associated with bi and the
multi-path fading channel gain associated with bi, respectively.

Moreover, according to [12], the area spectral efficiency
(ASE) in bps/Hz/km2 for a given λ can be defined as

AASE (λ, γ0) = λ

ˆ ∞
γ0

log2 (1 + γ) fΓ (λ, γ) dγ, (10)

where γ0 is the minimum working SINR for the considered
SCN, and fΓ (λ, γ) is the probability density function (PDF)
of SINR observed at the typical UE for a particular value of
λ. Note that the ASE defined in this paper is different from
that in [10], where a deterministic rate based on γ0 is assumed
for the typical UE, no matter what the actual SINR value is.
The ASE definition in (10) is more realistic due to the SINR-
dependent rate, but it is more complex to analyze, as it requires
one more fold of numerical integral compared with [10].

Based on the definition of pcov (λ, γ) in (7), which is the
complementary cumulative distribution function (CCDF) of
SINR, fΓ (λ, γ) can be computed by

fΓ (λ, γ) =
∂ (1− pcov (λ, γ))

∂γ
. (11)

Given the definition of the coverage probability and the ASE
respectively presented in (7) and (10), in the following we
will analyze the two performance measures for the considered
UAS. Based on the proposed path loss model in (3), we present
our main result on pcov (λ, γ) in Theorem 1.

Theorem 1. Considering the path loss model in (3), pcov (λ, γ)
can be derived as

pcov (λ, γ) =

N∑
n=1

(
T L
n + TNL

n

)
, (12)

where T L
n =

´ dn
dn−1

Pr
[
PζL

n(r)h
Ir+N0

> γ
]
fL
R,n (r) dr, TNL

n =´ dn
dn−1

Pr
[
PζNL

n (r)h
Ir+N0

> γ
]
fNL
R,n (r) dr, and d0 and dN are re-

spectively defined as 0 and∞. Moreover, fL
R,n (r) and fNL

R,n (r)
are given by

fL
R,n (r) = exp

(
−
ˆ r1

0

(
1− PrL (u)

)
2πuλdu

)
× exp

(
−
ˆ r

0

PrL (u) 2πuλdu

)
×PrL

n (r)× 2πrλ, (dn−1 < r ≤ dn) , (13)

and

fNL
R,n (r) = exp

(
−
ˆ r2

0

PrL (u) 2πuλdu

)
× exp

(
−
ˆ r

0

(
1− PrL (u)

)
2πuλdu

)
×
(
1− PrL

n (r)
)
× 2πrλ, (dn−1 < r ≤ dn) , (14)
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where r1 and r2 are determined by

r1 = arg
r1

{
ζNL (r1) = ζL

n (r)
}
, (15)

and
r2 = arg

r2

{
ζL (r2) = ζNL

n (r)
}
. (16)

Furthermore, Pr
[
PζL

n(r)h
Ir+N0

> γ
]

and Pr
[
PζNL

n (r)h
Ir+N0

> γ
]

are
respectively computed by

Pr
[
PζL

n (r)h

Ir +N0
> γ

]
=exp

(
− γN0

PζL
n (r)

)
LIr

(
γ

PζL
n (r)

)
, (17)

and

Pr
[
PζNL

n (r)h

Ir +N0
> γ

]
=exp

(
− γN0

PζNL
n (r)

)
LIr

(
γ

PζNL
n (r)

)
,

(18)
where LIr (s) is the Laplace transform of Ir evaluated at s.

Proof: See Appendix A.

As can be observed from Theorem 1, the piece-wise path
loss function for LoS transmission

{
ζL
n (r)

}
, the piece-wise

path loss function for NLoS transmission
{
ζNL
n (r)

}
, and the

piece-wise LoS probability function
{

PrL
n (r)

}
play active

roles in determining the final result of pcov (λ, γ). We will
investigate their impacts on network performance in detail in
the following sections.

Plugging pcov (λ, γ) obtained from (12) into (11), we can
get the result of the ASE using (10).

Regarding the computational process to obtain pcov (λ, γ)
presented in Theorem 1, for a general case, three folds
of integrals are respectively required for the calculation of{
fPathR,n (r)

}
,
{

LIr

(
γ

PζPathn (r)

)}
and

{
TPathn

}
, where the

string variable Path takes the value of “L” (for the LoS case)
or “NL” (for the NLoS case). Note that an additional fold of
integral is needed in (10) for the calculation of AASE (λ, γ0),
making it a 4-fold integral computation.

V. STUDY OF A 3GPP SPECIAL CASE

As a special case for Theorem 1, we consider the following
path loss function, ζ (r), adopted by the 3GPP [13], i.e.,

ζ (r) =

{
ALr−α

L

,

ANLr−α
NL

,

with probability PrL (r)

with probability
(
1− PrL (r)

) , (19)

together with a linear LoS probability function of PrL (r), also
adopted by the 3GPP [14], i.e.,

PrL (r) =

{
1− r

d1
,

0,

0 < r ≤ d1

r > d1

, (20)

where d1 is a parameter that determines the decreasing slope
of the linear function PrL (r).

Considering the general path loss model presented in (3),
the path loss model shown in (19) and (20) can be deemed as
a special case of (3) with the following substitution: N = 2,
ζL
1 (r) = ζL

2 (r) = ALr−α
L

, ζNL
1 (r) = ζNL

2 (r) = ANLr−α
NL

,
PrL

1 (r) = 1 − r
d1

, and PrL
2 (r) = 0. For clarity, this 3GPP

special case is referred to as 3GPP Case 1 in the sequel.

It should be noted that 3GPP Case 1 is compatible with
dense SCNs, because both the exponential path loss function
in [13] and the LoS probability function in [14] are valid for
small cells only (referred to as microcells in [14]). It should
also be noted that there is another LoS probability function
defined in [13], which takes a more complicated mathematical
form given by

PrL (r) = 0.5−min

{
0.5, 5 exp

(
−R1

r

)}
+ min

{
0.5, 5 exp

(
− r

R2

)}
, (21)

where R1 and R2 are shape parameters to ensure the continuity
of PrL (r).

To show how PrL (r) in (21) can be fitted into our proposed
path loss model, we can re-formulate (21) as

PrL (r) =

{
1− 5 exp (−R1/r) ,

5 exp (−r/R2) ,

0 < r ≤ d1

r > d1

, (22)

where d1 = R1

ln 10 .

The combination of the LoS probability function in (22) and
the path loss function in (19) can then be deemed as a special
case of the proposed path loss model in (3) with the following
substitution: N = 2, ζL

1 (r) = ζL
2 (r) = ALr−α

L

, ζNL
1 (r) =

ζNL
2 (r) = ANLr−α

NL

, PrL
1 (r) = 1 − 5 exp (−R1/r), and

PrL
2 (r) = 5 exp (−r/R2). For clarity, this combined case with

both the path loss function and the LoS probability function
coming from [13] is referred to as 3GPP Case 2 in our paper.
Note that 3GPP Case 2 was treated in [12] by approximating
PrL (r) in (21) as an exponentially decreasing function. How-
ever, the results in [12] are less tractable than ours as well as
those in [10] and [11], because the approximated function is
still difficult to deal with in the theoretical analysis.

In the following, we first investigate 3GPP Case 1 in our
case study, because it gives more tractable results than 3GPP
Case 2 treated in [12], as will be shown in the following
subsections. Thereafter, we will numerically investigate 3GPP
Case 2 using Theorem 1 in Section VI, and will show that
similar conclusions like those for 3GPP Case 1 can also be
drawn for 3GPP Case 2. More importantly, we will extend
3GPP Case 1 to study an approximated 3GPP Case 2 in
Section VI, thus showing the usefulness of studying 3GPP
Case 1 with the linear LoS probability function.

To sum up, taking the linear LoS probability function
from [14] to create 3GPP Case 1 not only allows us to obtain
more tractable results, but also help us to deal with more
complicated path loss models in practice.

For 3GPP Case 1, according to Theorem 1, pcov (λ, γ) can
then be computed by

pcov (λ, γ) =
2∑

n=1

(
T L
n + TNL

n

)
. (23)

In the following subsections, we investigate the computation
of T L

1 , TNL
1 , T L

2 , and TNL
2 , respectively.
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A. The Computation of T L
1

From Theorem 1, T L
1 can be obtained as

T L
1 =

ˆ d1

0

exp

(
− γN0

PζL
1 (r)

)
LIr

(
γ

PζL
1 (r)

)
fL
R,1 (r) dr

(a)
=

ˆ d1

0

exp

(
−γr

αL

N0

PAL

)
LIr

(
γrα

L

PAL

)
fL
R,1 (r) dr, (24)

where ζL
1 (r) = ALr−α

L

from (19) is plugged into the step
(a) of (24) and LIr (s) is the Laplace transform of RV Ir
evaluated at s.

In (24), according to Theorem 1 and (20), we have

fL
R,1 (r) = exp

(
−
ˆ r1

0

λ
u

d1
2πudu

)
× exp

(
−
ˆ r

0

λ

(
1− u

d1

)
2πudu

)(
1− r

d1

)
2πrλ

= exp

(
−πλr2 + 2πλ

(
r3

3d1
− r3

1

3d1

))
×
(

1− r

d1

)
2πrλ, (0 < r ≤ d1) , (25)

where r1 =
(
ANL

AL

) 1

αNL

r
αL

αNL according to (15).

Besides, to compute LIr

(
γrα

L

PAL

)
in (24) for the range of

0 < r ≤ d1, we propose Lemma 2.

Lemma 2. LIr

(
γrα

L

PAL

)
in the range of 0 < r ≤ d1 can be

calculated by

LIr

(
γrα

L

PAL

)
=

exp

(
−2πλ

(
ρ1

(
αL, 1,

(
γrα

L
)−1

, d1

)
−ρ1

(
αL, 1,

(
γrα

L
)−1

, r

)))
× exp

(
2πλ

d0

(
ρ1

(
αL, 2,

(
γrα

L
)−1

, d1

)
−ρ1

(
αL, 2,

(
γrα

L
)−1

, r

)))
× exp

(
−2πλ

d0
ρ1

(
αNL, 2,

(
γANL

AL
rα

L

)−1

, d1

)

+
2πλ

d0
ρ1

(
αNL, 2,

(
γANL

AL
rα

L

)−1

, r1

))

× exp

(
−2πλρ2

(
αNL, 1,

(
γANL

AL
rα

L

)−1

, d1

))
, (0 < r ≤ d1)

(26)

where
ρ1 (α, β, t, d) =

[
d(β+1)

β + 1

]
2F1

[
1,
β + 1

α
; 1 +

β + 1

α
;−tdα

]
,

(27)
and

ρ2 (α, β, t, d) =

[
d−(α−β−1)

t (α− β − 1)

]
× 2F1

[
1, 1− β + 1

α
; 2− β + 1

α
;− 1

tdα

]
, (α > β + 1) , (28)

where 2F1 [·, ·; ·; ·] is the hyper-geometric function [16].

Proof: See Appendix B.

To sum up, T L
1 can be evaluated as

T L
1 =

ˆ d1

0

exp

(
−γr

αL

N0

PAL

)
LIr

(
γrα

L

PAL

)
fL
R,1 (r) dr, (29)

where fL
R,1 (r) and LIr

(
γrα

L

PAL

)
are given by (25) and (26),

respectively.

B. The Computation of TNL
1

From Theorem 1, TNL
1 can be obtained as

TNL
1 =

ˆ d1

0

exp

(
− γN0

PζNL
1 (r)

)
LIr

(
γ

PζNL
1 (r)

)
fNL
R,1 (r) dr

(a)
=

ˆ d1

0

exp

(
−γr

αNL

N0

PANL

)
LIr

(
γrα

NL

PANL

)
fNL
R,1 (r) dr,

(30)

where ζNL
1 (r) = ANLr−α

NL

from (19) is plugged into the step
(a) of (30).

In (30), according to Theorem 1 and (20), we have

fNL
R,1 (r) = exp

(
−
ˆ r2

0

λPrL (u) 2πudu

)
× exp

(
−
ˆ r

0

λ
(
1− PrL (u)

)
2πudu

)
×
(
r

d1

)
2πrλ, (0 < r ≤ d1) , (31)

where r2 =
(
AL

ANL

) 1

αL

r
αNL

αL according to (16). Since the nu-
merical relationship between r2 and d1 affects the calculation
of the first multiplier in (31), i.e., exp

(
−
´ r2

0
λPrL (u) 2πudu

)
,

we should discuss the cases of 0 < r2 ≤ d1 and r2 > d1.

If 0 < r2 ≤ d1, i.e., 0 < r ≤ y1 = d
αL

αNL

1

(
ANL

AL

) 1

αNL

, we
have

fNL
R,1 (r) = exp

(
−
ˆ r2

0

λ

(
1− u

d1

)
2πudu

)
× exp

(
−
ˆ r

0

λ
u

d1
2πudu

)(
r

d1

)
2πrλ

= exp

(
−πλr2

2 + 2πλ

(
r3
2

3d1
− r3

3d1

))
×
(
r

d1

)
2πrλ, (0 < r ≤ y1) . (32)

Otherwise, if r2 > d1, i.e., y1 < r ≤ d1, we have

fNL
R,1 (r) = exp

(
−
ˆ d1

0

λ

(
1− u

d1

)
2πudu

)

× exp

(
−
ˆ r

0

λ
u

d1
2πudu

)(
r

d1

)
2πrλ

= exp

(
−πλd

2
1

3
− 2πλr3

3d1

)
×
(
r

d1

)
2πrλ, (y1 < r ≤ d1) . (33)
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Besides, to compute LIr

(
γrα

NL

PANL

)
in (30) for the range

of 0 < r ≤ d1, we propose Lemma 3 in the following.
Note that since the calculation of fNL

R,1 (r) is divided into two
cases respectively shown in (32) and (33), the calculation of

LIr

(
γrα

NL

PANL

)
should also be divided into those two cases, be-

cause the first case includes both LoS and NLoS interference,
while the second case only considers NLoS interference.

Lemma 3. LIr

(
γrα

NL

PANL

)
in the range of 0 < r ≤ d1 can be

divided into two cases, i.e., 0 < r ≤ y1 and y1 < r ≤ d1. The
results are as follows,

LIr

(
γrα

NL

PANL

)
=

exp

(
−2πλρ1

(
αL, 1,

(
γAL

ANL
rα

NL

)−1

, d1

)

+2πλρ1

(
αL, 1,

(
γAL

ANL
rα

NL

)−1

, r2

))

× exp

(
2πλ

d0
ρ1

(
αL, 2,

(
γAL

ANL
rα

NL

)−1

, d1

)

−2πλ

d0
ρ1

(
αL, 2,

(
γAL

ANL
rα

NL

)−1

, r2

))

× exp

(
−2πλ

d0
ρ1

(
αNL, 2,

(
γrα

NL
)−1

, d1

)
+

2πλ

d0
ρ1

(
αNL, 2,

(
γrα

NL
)−1

, r

))
× exp

(
−2πλρ2

(
αNL, 1,

(
γrα

NL
)−1

, d1

))
,

(0 < r ≤ y1) , (34)

and

LIr

(
γrα

NL

PANL

)
=

exp

(
−2πλ

d0
ρ1

(
αNL, 2,

(
γrα

NL
)−1

, d1

)
+

2πλ

d0
ρ1

(
αNL, 2,

(
γrα

NL
)−1

, r

))
× exp

(
−2πλρ2

(
αNL, 1,

(
γrα

NL
)−1

, d1

))
,

(y1 < r ≤ d1) , (35)

where ρ1 (α, β, t, d) and ρ2 (α, β, t, d) are defined in (27) and
(28), respectively.

Proof: See Appendix C.
To sum up, TNL

1 can be evaluated as

TNL
1 =

ˆ y1

0

exp

(
−γr

αNL

N0

PANL

)

×

[
LIr

(
γrα

NL

PANL

)
fNL
R,1(r)

∣∣∣∣∣ 0 < r ≤ y1

]
dr

+

ˆ d1

y1

exp

(
−γr

αNL

N0

PANL

)

×

[
LIr

(
γrα

NL

PANL

)
fNL
R,1(r)

∣∣∣∣∣ y1 < r ≤ d1

]
dr, (36)

where (32), (33), (34) and (35) are plugged into (36).

C. The Computation of T L
2

From Theorem 1, T L
2 can be derived as

T L
2 =

ˆ ∞
d1

exp

(
− γN0

PζL
2 (r)

)
LIr

(
γ

PζL
2 (r)

)
fL
R,2 (r) dr. (37)

According to Theorem 1 and (20), fNL
R,1 (r) is given by

fL
R,2 (r) = exp

(
−
ˆ r1

0

λ
(
1− PrL (u)

)
2πudu

)
× exp

(
−
ˆ r

0

λPrL (u) 2πudu

)
× 0× 2πrλ

= 0, (r > d1) . (38)

Plugging (38) into (37), yields

T L
2 = 0. (39)

D. The Computation of TNL
2

From Theorem 1, TNL
2 can be derived as

TNL
2 =

ˆ ∞
d1

exp

(
− γN0

PζNL
2 (r)

)
LIr

(
γ

PζNL
2 (r)

)
fNL
R,2 (r) dr

(a)
=

ˆ ∞
d1

exp

(
−γr

αNL

N0

PANL

)
LIr

(
γrα

NL

PANL

)
fNL
R,2 (r) dr, (40)

where ζNL
2 (r) = ANLr−α

NL

from (19) is plugged into the step
(a) of (40).

In (40), according to Theorem 1 and (20), we have

fNL
R,2 (r) = exp

(
−
ˆ d1

0

λ

(
1− u

d1

)
2πudu

)

× exp

(
−
ˆ d1

0

λ
u

d1
2πudu−

ˆ r

d1

λ2πudu

)
2πrλ

= exp
(
−πλr2

)
2πrλ, (r > d1) . (41)

Besides, to compute LIr

(
γrα

NL

PANL

)
in (40) for the range of

r > d1, we propose Lemma 4.

Lemma 4. LIr

(
γrα

NL

PANL

)
in the range of r > d1 can be

calculated by

LIr

(
γrα

NL

PANL

)
= exp

(
−2πλρ2

(
αNL, 1,

(
γrα

NL
)−1

, r

))
,

(r > d1) , (42)

where ρ2 (α, β, t, d) is defined in (28).

Proof: See Appendix D.
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To sum up, TNL
2 can be evaluated as

TNL
2 =

ˆ ∞
d1

exp

(
−γr

αNL

N0

PANL

)
LIr

(
γrα

NL

PANL

)
fNL
R,2 (r) dr, (43)

where fNL
R,2 (r) and LIr

(
γrα

NL

PANL

)
are computed by (41) and

(42), respectively.

E. The Results of pcov (λ, γ) and AASE (λ, γ0)

Considering (23) and bringing together the results from
Subsections V-A~V-D, pcov (λ, γ) for 3GPP Case 1 can be
evaluated as

pcov (λ, γ) = T L
1 + TNL

1 + TNL
2 , (44)

where T L
1 , TNL

1 and TNL
2 are computed from numerically

tractable integral-form expressions using (29), (36) and (43),
respectively.

Plugging pcov (λ, γ) obtained from (44) into (11), we can
get the result of AASE (λ, γ0) using (10) for 3GPP Case 1.

Regarding the computational process to obtain pcov (λ, γ)
for 3GPP Case 1, only one fold of integral is required for
the calculation of

{
T L
n , T

NL
n

}
in (44), compared with three

folds of integrals for the general case in Theorem 1. Note that
an additional fold of integral is needed for the calculation of
AASE (λ, γ0), making it a 2-fold integral computation. Thus,
the results for 3GPP Case 1 are much more tractable than those
for the general case discussed in Section IV, because the linear
LoS probability function in (20) permits good tractability.

VI. SIMULATION AND DISCUSSION

In this section, we use numerical results to establish the
accuracy of our analysis and further study the performance
of dense SCNs. According to Tables A.1-3, A.1-4 and A.1-
7 of [13] and [14], we adopt the following parameters for
3GPP Case 1: d1 = 0.3 km, αL = 2.09, αNL = 3.75, AL =
10−10.38, ANL = 10−14.54, P = 24 dBm, N0 = −95 dBm
(including a noise figure of 9 dB at the UE).

A. Validation of the Analytical Results of pcov (λ, γ) for 3GPP
Case 1

For 3GPP Case 1 studied in Section V, the results of
pcov (λ, γ) with γ = 0 dB and γ = 3 dB are plotted in
Fig. 1. For comparison, we have also included analytical
results assuming a single-slope path loss model that does not
differentiate LoS and NLoS transmissions [4]. Note that in [4],
only one path loss exponent is defined and denoted by α,
the value of which is assumed to be α = αNL = 3.75. As
can be observed from Fig. 1, our analytical results perfectly
match the simulation results. Due to the significant accuracy of
pcov (λ, γ) and since the results of AASE (λ, γ0) are computed
based on pcov (λ, γ), we will only use analytical results of
pcov (λ, γ) in our discussion hereafter.
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Fig. 1. The coverage probability pcov (λ, γ) vs. the BS density λ for 3GPP
Case 1 with various SINR thresholds γ.

From Fig. 1, we can observe that the coverage probability
given by [4] first increases with the BS density because
more BSs provide better coverage in noise-limited networks.
Then, when λ is large enough, e.g., λ > 102 BSs/km2, the
coverage probability becomes independent of λ since the
network is pushed into the interference-limited region. The
intuition behind the observation is that with the simplistic
assumption on the path loss model, the increase in interference
power is counterbalanced by the increase in signal power in a
interference-limited network, and thus the coverage probability
remains the same as λ further increases [4].

However, the coverage probability performance of the pro-
posed analysis for 3GPP Case 1 incorporating both LoS and
NLoS transmissions exhibits a significant deviation from that
of the analysis from [4]. This is because when the distance r
decreases, or equivalently when the BS density λ increases,
LoS transmission occurs with an increasingly higher probabil-
ity than NLoS transmission. In more detail,

• When the SCN is sparse and thus noise-limited, e.g.,
λ ≤ 10 BSs/km2, the coverage probability given by the
proposed analysis grows as λ increases.

• When the network is dense enough, e.g., 10 BSs/km2 <
λ < 103 BSs/km2, which is the practical range of λ for
the existing 4G networks and the future 5G network [2],
the coverage probability given by the proposed analysis
decreases as λ increases, due to the transition of a large
number of interference paths from NLoS to LoS. Hence,
some interfering BSs may be already so close to the
typical UE that their signals may start reaching the UE
via strong LoS paths.

• When the SCN is extremely dense, e.g., λ ≥
103 BSs/km2, the coverage probability decreases at a
slower pace because both the signal power and the inter-
ference power are LoS dominated and thus statistically
stable in general.

It is important to note that the coverage probability perfor-
mance of the proposed analysis for 3GPP Case 1 peaks at a
certain value λ0. Such crucial point can be readily obtained
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by setting the partial derivative of pcov (λ, γ) with regard
to λ to zero, i.e., λ∗ = arg

λ

{
∂pcov(λ,γ)

∂λ = 0
}

. The solution

to this equation can be numerically found using a standard
bisection searching [17]. In Fig. 1, the numerical results of
λ∗ are 19.01 BSs/km2 and 16.52 BSs/km2 for γ = 0 dB and
γ = 3 dB, respectively.

Note that similar trends of the coverage probability vs. the
BS density λ were also observed in [10-12], i.e., the coverage
probability will initially increase with the increase of λ, but
when λ is larger than λ0, the network coverage probability
will decrease as small cells become denser.

Considering such trend of coverage probability performance
and looking at the expression of the ASE in (10), we can
conclude that the trend of the ASE performance for SCNs
should be complicated, and it will be investigated in the next
subsection.

B. Discussion on the Analytical Results of AASE (λ, γ0) for
3GPP Case 1

In this subsection, we investigate the analytical results of
AASE (λ, γ0) with γ0 = 0, 3, 6 dB based on the analytical
results of pcov (λ, γ). Our results of AASE (λ, γ0) are plotted
in Fig. 2, comparing with the analytical results from [4] with
γ0 = 0 dB.
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Fig. 2. The ASE AASE (λ, γ0) vs. the BS density λ for 3GPP Case 1 with
various SINR thresholds γ0.

As can be seen from Fig. 2, the analysis from [4] indicates
that when the SCN is dense enough, e.g., λ ≥ 102 BSs/km2,
the ASE performance increases linearly with λ, which is log-
ically correct from the conclusion that pcov (λ, γ) is invariable
with respect to λ for a given γ when λ is sufficiently large [4].

In contrast, our proposed analysis for 3GPP Case 1 reveals
a more complicated trend for the ASE performance, which is
highlighted by the sub-figure in Fig. 2. In more detail,
• When the SCN is sparse and thus noise-limited, e.g.,
λ ≤ λ0 BSs/km2 (λ0 ≈ 20 BSs/km2 in Fig. 2), the
ASE quickly increases with λ because the network is
generally noise-limited, and thus adding more small cells
immensely benefits the ASE.

• When the network is dense enough, i.e., λ ∈[
λ0, 103

]
BSs/km2, which is the practical range of λ

for the existing 4G networks and the future 5G net-
work [2], the trend of the ASE performance is very
interesting. First, when λ ∈ [λ0, λ1] BSs/km2, where λ1

is another threshold larger than λ0 (λ1 ≈ 102 BSs/km2

in Fig. 2), the ASE exhibits a slowing-down in the rate
of growth (γ0 = 0 dB) or even a decrease (γ0 = 3, 6 dB)
due to the fast decrease of the coverage probability at
λ ∈ [λ0, λ1] BSs/km2, as shown in Fig. 1. Second, when
λ ≥ λ1, the ASE will pick up the growth rate since the
decrease of the coverage probability becomes a minor
factor compared with the increase of λ.

• When the SCN is extremely dense, e.g., λ is larger than
103 BSs/km2, the ASE exhibits a nearly linear trajectory
with regard to λ because both the signal power and the
interference power are now LoS dominated, and thus
statistically stable as explained before.

In particular, our finding that the ASE may decrease as
the BS density increases for the practical range of λ for the
existing 4G networks and the future 5G networks [2] indicates
the significant impact of the path loss model incorporating both
NLoS and LoS transmissions on the ASE performance. Such
impact makes a difference for the ASE of dense SCNs both
quantitatively and qualitatively compared with analyses with
simplistic path loss models that does not differentiate LoS and
NLoS transmissions. As a confirmation, note that in Fig. 1, we
can observe that increasing the SINR threshold γ from 0 dB to
3 dB will accelerate the decrease of the coverage probability at
λ ∈ [λ0, λ1] BSs/km2 because of the more demanding SINR
requirement, which in turn causes the decrease of the ASE
(γ0 = 3, 6 dB) at that range of λ in Fig. 2. Note that our
conclusion is made from the investigated set of parameters,
and it is of significant interest to further study the generality
of this conclusion in other network models and with other
parameter sets.

To sum up, our results are different from those in existing
studies [10-12] and those in [4] assuming a simplistic path loss
model that does not differentiate LoS and NLoS transmissions.
The implication is profound, which is summarized in the
following remarks:

• Remark 1: From the investigated set of parameters, we
find that when the density of small cells is larger than a
threshold λ0, the ASE may suffer from a slow growth or
even a decrease as the BS density increases because of
the quick decrease of the network coverage probability. It
is of significant interest to further study the generality of
this conclusion in other network models and with other
parameter sets.

• Remark 2: Our finding is of significant importance for
practical SCN deployments in the following two aspects:
(i) The valley area, where the BS density λ is tens to
hundreds of BSs/km2 and the ASE may suffer from a
slow growth or even a decrease, stands in our way of
the evolution from 4G to 5G. Since λ has been estimated
as several to tens of BSs/km2 in 4G [13], [18] and tens
to hundreds or even thousands of BSs/km2 in 5G [2],
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how to cost-efficiently march cross this undesirable valley
area using new technologies is crucial for the commercial
success of future 4G/5G networks. (ii) Our results are
not obtained on conditions such as near-field path loss
exponents, i.e., αL < 2 or αNL < 2. All the parameters
are practical ones recommended by the 3GPP standards
for the state-of-the-art SCNs. Therefore, our conclusion
can provide some valuable guidance for operators in their
quest of network densification.

• Remark 3: The ASE will grow almost linearly as the BS
density increases above λ1, which might be a candidate
BS density threshold for characterizing the ultra-dense
SCNs in future 5G networks [2].

C. Discussion on Various Values of αL for 3GPP Case 1

As discussed in Subsection VI-B, it is of interest to further
study the generality of our conclusion in other network models
and with other parameter sets. In this subsection, we change
the value of αL from 2.09 to 1.09 and 3.09 to investigate the
impact of αL on our conclusion. In Fig. 3, the analytical results
of AASE (λ, γ0) with γ0 = 0 dB and various values of αL are
compared with the results from [4] (α = 3.75).
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The proposed analysis [3GPP Case 1, αL=1.09] (Analytical)

The proposed analysis [3GPP Case 1, αL=2.09] (Analytical)

The proposed analysis [3GPP Case 1, αL=3.09] (Analytical)
The analysis in [4] [α=3.75] (Analytical)

Fig. 3. The ASE AASE (λ, γ0) vs. the BS density λ for 3GPP Case 1 with
SINR threshold γ0 = 0 dB and with various LoS path loss exponents αL.

As can be seen from Fig. 3, the slow growth or the decrease
of ASE at λ ∈ [λ0, λ1] BSs/km2 (λ0 ≈ 20 BSs/km2 and λ1 ≈
102 BSs/km2) is more obvious when the difference between
the NLoS and the LoS path loss exponents, αNL and αL, is
larger. This is because the transition of interference from NLoS
transmission to LoS transmission becomes more drastic. For
example, when αL takes a near-field path loss exponent such
as 1.09 [10], the decrease of ASE at λ ∈ [λ0, λ1] BSs/km2 is
significant, and it hardly recovers after λ1. Such observation
is in agreement with that in [10] when αL < 2. However,
the difference between our results and those in [10] is that
we have shown how the ASE may also decrease even when
αL ≥ 2. Such difference is due to the different definition of
ASE in [10] and in our paper. Note that in [10], a deterministic
rate based on γ0 is assumed for the typical UE, no matter what

the actual SINR value is. Our definition of ASE in (10) is more
realistic due to the SINR-dependent rate, but it is more difficult
to analyze, as it requires one more fold of numerical integral
compared with [10]. To sum up, we draw the following remark
from the discussion of this subsection.

• Remark 4: We observe that the behavior of the ASE
depends on the characteristics of the LoS and the NLoS
path loss functions. The larger the difference between
the LoS and the NLoS path loss exponents, the more the
ASE suffers at λ ∈ [λ0, λ1] BSs/km2 due to more drastic
transition of interference from the NLoS transmission to
the LoS transmission.

D. Investigation of 3GPP Case 2

In this subsection, we investigate the ASE performance for
3GPP Case 2, which has been discussed in Section V. Note
that the parameters of the LoS probability function PrL (r) for
3GPP Case 2 are R1 = 0.156 km and R2 = 0.03 km [13]. Due
to the complicated expressions of (22), numerically tractable
integral-form expressions for pcov (λ, γ) like those in (23)
are difficult to obtain. Instead, we directly apply numerical
integration in Theorem 1 to evaluate the analytical results for
3GPP Case 2. It is important to note that as discussed in
Section IV and Section V, 3GPP Case 1 only requires one and
two folds of integrals to obtain pcov (λ, γ) and AASE (λ, γ0),
while 3GPP Case 2 requires three and four folds of integrals
to compute pcov (λ, γ) and AASE (λ, γ0).

Besides, in order to show the versatility of the studied 3GPP
Case 1 with the linear LoS probability function shown in (20),
we propose to use a piece-wise linear LoS probability function
to approximate the complicated LoS probability function of
3GPP Case 2 given by (22). Our proposed approximation of
the LoS probability function for 3GPP Case 2 is defined as a
3-piece linear function as

PrL (r) =


1,

1− r−d1
d2−d1 ,

0,

0 < r ≤ d1

d1 < r ≤ d2

r > d2

, (45)

where d1 and d2 are set to 0.0184 km and 0.1171 km,
respectively. Note that d1 is chosen as 0.0184 km because
PrL (0.0184) = 0.999 ≈ 1 in (22). Besides, the value of d2

is chosen as 0.1171 km because PrL (r) in (45) needs to go
through point

(
0.156
ln 10 , 0.5

)
, which is the point connecting the

two segments in PrL (r) of 3GPP Case 2 given by (22).
Fig. 4 illustrates PrL (r) as defined by 3GPP Case 2 in (22)

and as approximated by a piece-wise linear function shown
in (45). For clarity, the combined case with the path loss
function in (19) and the 3-piece LoS probability function in
(45) is referred to as the Approximated 3GPP Case 2. Note that
the accuracy of our approximation can be easily improved by
fitting the LoS probability function with more than 3 pieces.
Based on Theorem 1, we can readily extend the results in
Section V to analyze the Approximated 3GPP Case 2 in a
tractable manner. The details are omitted for brevity.
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Approximation using piece-wise linear functions

Fig. 4. The LoS probability PrL (r) vs. the distance r for 3GPP Case 2 [13].

The results of AASE (λ, γ0) are plotted in Fig. 5. As can
be seen from it, the results of the Approximated 3GPP
Case 2 match those of 3GPP Case 2 well, thus showing the
accuracy and the usefulness of our analysis with the linear
LoS probability function in Section V. More importantly, all
the observations in Subsection VI-B are qualitatively valid for
Fig. 5 except for some quantitative deviation.
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0
=0 dB] (Analytical)

The proposed analysis [3GPP Case 2, γ
0
=3 dB] (Analytical)

The proposed analysis [Approx. 3GPP Case 2, γ
0
=0 dB] (Analytical)
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0
=3 dB] (Analytical)

The analysis in [4] [α=3.75, γ
0
=0 dB] (Analytical)

Fig. 5. The ASE AASE (λ, γ0) vs. the BS density λ for 3GPP Case 2 with
various SINR thresholds γ0.

Note that 3GPP Case 2 was treated in [12] by approximating
PrL (r) in (22) as an exponentially decreasing function. How-
ever, the results in [12] are less tractable than our approxima-
tion. The former results require three and four folds of integrals
to obtain pcov (λ, γ) and AASE (λ, γ0), while our approximation
only require one and two folds of integrals to obtain pcov (λ, γ)
and AASE (λ, γ0), thanks to the good tractability provided by
the linear LoS probability function.

In the following, we summarize our study in this subsection.
• Remark 5: The approach of approximating a LoS

probability function as a piece-wise linear function and
invoking the results derived in Section V, can deal with
complicated path loss models in a tractable manner,
which shows the usefulness of studying 3GPP Case 1
with the linear LoS probability function.

VII. CONCLUSION

In this paper, we show that a path loss model incorporating
both LoS and NLoS transmissions has a significant impact

on the ASE performance of SCNs. Such impact is not only
quantitative but also qualitative. Previous results predicted that
the ASE should monotonically grow with the increase of the
BS density. Instead, our theoretical analysis concludes that
when the BS density is larger than a threshold, the ASE may
suffer from a slow growth or even a decrease as the BS density
further increases. The intuition behind our conclusion is that
when the density of small cells is larger than a threshold, the
interference power will increase faster than the signal power
due to the transition of a large number of interference paths
from NLoS to LoS. Therefore, our results show that the BS
density matters regarding the ASE performance, thus shedding
valuable insights on the deployments of future dense SCNs.

As our future work, we will consider other factors of
realistic networks in the theoretical analysis for SCNs, such
as practical directional antennas. Another future work is the
introduction of Rician fading or Nakagami fading in our
analysis because the multi-path fading model is also affected
by the LoS and NLoS transmissions.
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APPENDIX A: PROOF OF THEOREM 1

For clarity, we first summarize our ideas to prove Theo-
rem 1. In order to evaluate pcov (λ, γ), the first key step is to
calculate the distance PDFs for the events that the typical UE is
associated with a BS with a LoS path or that with a NLoS path,
so that the integral of Pr [SINR > γ] can be performed over the
distance r. The second key step is to calculate Pr [SINR > γ]
for the LoS and the NLoS cases conditioned on r.

From (7) and (8), we can derive pcov (λ, γ) as

pcov (λ, γ)
(a)
=

ˆ
r>0

Pr [SINR > γ| r] fR (r) dr

=

ˆ
r>0

Pr
[
Pζ (r)h

Ir +N0
> γ

]
fR (r) dr

=

ˆ d1

0

Pr
[
PζL

1 (r)h

Ir +N0
> γ

]
fL
R,1 (r) dr

+

ˆ d1

0

Pr
[
PζNL

1 (r)h

Ir +N0
> γ

]
fNL
R,1 (r) dr

+ · · ·

+

ˆ ∞
dN−1

Pr
[
PζL

N (r)h

Ir +N0
> γ

]
fL
R,N (r) dr

+

ˆ ∞
dN−1

Pr
[
PζNL

N (r)h

Ir +N0
> γ

]
fNL
R,N (r) dr

4
=

N∑
n=1

(
T L
n + TNL

n

)
, (46)

where fL
R,n (r) and fNL

R,n (r) are the piece-wise PDF of the
RVs RL

n and RNL
n , where RL

n and RNL
n are the distance that

the UE is connected to a BS with a LoS path and the
distance that the UE is connected to a BS with a NLoS
path, respectively. Note that the two events that the typical
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UE can be successfully covered by a BS with a LoS path
and that with a NLoS path are disjoint events. Hence, the
coverage probability is the direct sum of these two proba-
bilities, which should be computed based on fL

R,n (r) and
fNL
R,n (r), respectively. Moreover, T L

n and TNL
n are piece-wise

functions defined as T L
n =
´ dn
dn−1

Pr
[
PζL

n(r)h
Ir+N0

> γ
]
fL
R,n (r) dr

and TNL
n =

´ dn
dn−1

Pr
[
PζNL

n (r)h
Ir+N0

> γ
]
fNL
R,n (r) dr, respectively.

Besides, d0 and dN are respectively defined as 0 and ∞.
All the fL

R,n (r) and fNL
R,n (r) are stacked into fR (r) shown

in the step (a) of (46), and fR (r) is formally defined in (47)
shown on the top of next page, which takes a similar form
as (3). Since the two events that the typical UE is connected
to a BS with a LoS path and that with a NLoS path are
disjoint events, we have fR,n (r) = fL

R,n (r) + fNL
R,n (r) ,∀n ∈

{1, . . . , n} and
∑N
n=1

´ dn
dn−1

fR,n (r) dr = 1.
In the following, we show how to compute fL

R,n (r) in (46).
To that end, we define two events as follows.
• Event BL: The nearest BS with a LoS path

to the typical UE, is located at distance XL.
According to [4], the CCDF of XL is written as
F̄ L
X (x) = exp

(
−
´ x

0
PrL (u) 2πuλdu

)
. Taking the

derivative of
(
1− F̄ L

X (x)
)

with regard to x, we can get
the PDF of XL as

fL
X (x) = exp

(
−
ˆ x

0

PrL (u) 2πuλdu

)
PrL (x) 2πxλ.

(48)
• Event CNL conditioned on the value of XL: Given

that XL = x, the typical UE is then associated with
such BS at distance XL = x. To make the typical UE
associated with the LoS BS at distance XL = x, such
BS should give the smallest path loss (i.e., the largest
ζ (r)) from such BS to the typical UE, i.e., there should
be no BS with a NLoS path inside the disk centered
on the UE with a radius of x1 < x to outperform
such LoS BS at distance XL = x, where x1 satisfies
x1 = arg

x1

{
ζNL (x1) = ζL (x)

}
. According to [4], such

conditional probability of CNL on condition of XL = x
can be computed by

Pr
[
CNL

∣∣XL = x
]

= exp

(
−
ˆ x1

0

(
1− PrL (u)

)
2πuλdu

)
.

(49)
Note that Event BL guarantees that the path loss value ζL (r)

associated with an arbitrary LoS BS is always smaller than that
associated with the considered LoS BS at distance x. Besides,
conditioned on XL = x, Event CNL guarantees that the path
loss value ζNL (r) associated with an arbitrary NLoS BS is
always smaller than that associated with the considered LoS
BS at distance x.

Then, we consider an unconditional event that the typical
UE is associated with a BS with a LoS path and such BS is
located at distance RL. The CCDF of RL, denoted by F̄ L

R (r),
can be derived as

F̄ L
R (r) = Pr

[
RL > r

]
(a)
= E[XL]

{
Pr
[
RL > r

∣∣XL]}

=

ˆ +∞

0

Pr
[
RL > r

∣∣XL = x
]
fL
X (x) dx

(b)
=

ˆ r

0

0× fL
X (x) dx+

ˆ +∞

r

Pr
[
CNL

∣∣XL = x
]
fL
X (x) dx

=

ˆ +∞

r

Pr
[
CNL

∣∣XL = x
]
fL
X (x) dx, (50)

where E[X] {·} in the step (a) of (50) denotes the expectation
operation taking the expectation over the RV X and the step
(b) of (50) is valid because (i) when 0 < x ≤ r, it is
apparent that Pr

[
RL > r

∣∣XL = x
]

= 0; and (ii) when x > r,
the conditional event

[
RL > r

∣∣XL = x
]

is equivalent to the
conditional event

[
CNL

∣∣XL = x
]

. Taking the derivative of(
1− F̄ L

R (r)
)

with regard to r, we can get the PDF of RL as

fL
R (r) = Pr

[
CNL

∣∣XL = r
]
fL
X (r) . (51)

Considering the distance range of dn−1 < r ≤ dn, we can
extract the segment of fL

R,n (r) from fL
R (r) as

fL
R,n (r) = exp

(
−
ˆ r1

0

(
1− PrL (u)

)
2πuλdu

)
× exp

(
−
ˆ r

0

PrL (u) 2πuλdu

)
×PrL

n (r) 2πrλ, (dn−1 < r ≤ dn) , (52)

where r1 = arg
r1

{
ζNL (r1) = ζL

n (r)
}

.

Having obtained fL
R,n (r), we move on to evaluate

Pr
[
PζL

n(r)h
Ir+N0

> γ
]

in (46) as

Pr
[
PζL

n (r)h

Ir +N0
> γ

]
=E[Ir]

{
Pr
[
h >

γ (Ir +N0)

PζL
n (r)

]}
=E[Ir]

{
F̄H

(
γ (Ir +N0)

PζL
n (r)

)}
, (53)

where F̄H (h) denotes the CCDF of RV h. Since we assume
h to be an exponential RV, we have F̄H (h) = exp (−h) and
thus (53) can be further derived as

Pr
[
PζL

n (r)h

Ir +N0
> γ

]
=E[Ir]

{
exp

(
−γ (Ir +N0)

PζL
n (r)

)}
= exp

(
− γN0

PζL
n (r)

)
E[Ir]

{
exp

(
− γ

PζL
n (r)

Ir

)}
= exp

(
− γN0

PζL
n (r)

)
LIr

(
γ

PζL
n (r)

)
, (54)

where LIr (s) is the Laplace transform of Ir evaluated at s.
Next, we discuss the computation of fNL

R,n (r) in (46).
Similar to the process to obtain fL

R,n (r), we also define two
events as follows.
• Event BNL: The nearest BS with a NLoS path to the

typical UE, is located at distance XNL. Similar to (48),
the PDF of XNL is given by

fNL
X (x) = exp

(
−
ˆ x

0

(
1− PrL (u)

)
2πuλdu

)
×
(
1− PrL (x)

)
2πxλ. (55)
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fR (r) =



fR,1 (r) =

{
fL
R,1(r) ,

fNL
R,1(r) ,

when the UE is associated with a LoS BS
when the UE is associated with a NLoS BS

, 0 ≤ r ≤ d1

fR,2 (r) =

{
fL
R,2(r) ,

fNL
R,2(r) ,

when the UE is associated with a LoS BS
when the UE is associated with a NLoS BS

, d1 < r ≤ d2

...
...

fR,N (r) =

{
fL
R,N(r) ,

fNL
R,N(r) ,

when the UE is associated with a LoS BS
when the UE is associated with a NLoS BS

, r > dN−1

. (47)

• Event CL conditioned on the value of XNL: Given
that XNL = x, the typical UE is then associated with
such BS at distance XNL = x. To make the typical UE
associated with the NLoS BS at distance XNL = x, such
BS should give the smallest path loss (i.e., the largest
ζ (r)) from such BS to the typical UE, i.e., there should
be no BS with a LoS path inside the disk centered on
the UE with a radius of x2 < x, where x2 satisfies
x2 = arg

x2

{
ζL (x2) = ζNL (x)

}
. Similar to (49), such

conditional probability of CL on condition of XNL = x
can be written as

Pr
[
CL
∣∣XNL = x

]
= exp

(
−
ˆ x2

0

PrL (u) 2πuλdu

)
. (56)

Then, we consider an unconditional event that the typical
UE is associated with a BS with a NLoS path and such BS is
located at distance RNL. Similar to (50), the CCDF of RNL,
denoted by F̄NL

R (r), can be derived as

F̄NL
R (r) = Pr

[
RNL > r

]
=

ˆ +∞

r

Pr
[
CL
∣∣XNL = x

]
fNL
X (x) dx. (57)

Taking the derivative of
(
1− F̄NL

R (r)
)

with regard to r, we
can get the PDF of RNL as

fNL
R (r) = Pr

[
CL
∣∣XNL = r

]
fNL
X (x) . (58)

Considering the distance range of dn−1 < r ≤ dn, we can
extract the segment of fNL

R,n (r) from fNL
R (r) as

fNL
R,n (r) = exp

(
−
ˆ r2

0

PrL (u) 2πuλdu

)
× exp

(
−
ˆ r

0

(
1− PrL (u)

)
2πuλdu

)
×
(
1− PrL

n (r)
)

2πrλ, (dn−1 < r ≤ dn) , (59)

where r2 = arg
r2

{
ζL (r2) = ζNL

n (r)
}

.

Similar to (54), Pr
[
PζNL

n (r)h
Ir+N0

> γ
]

can be computed by

Pr
[
PζNL

n (r)h

Ir +N0
> γ

]
=E[Ir]

{
exp

(
−γ (Ir +N0)

PζNL
n (r)

)}
= exp

(
− γN0

PζNL
n (r)

)
LIr

(
γ

PζNL
n (r)

)
. (60)

Our proof of Theorem 1 is completed by plugging (52),
(54), (59) and (60) into (46).

APPENDIX B: PROOF OF LEMMA 2

Based on the considered UAS, it is straightforward to derive
LIr (s) in the range of 0 < r ≤ d1 as

LIr (s)

= E[Ir] {exp (−sIr)| 0 < r ≤ d1}

= E[Φ,{βi},{gi}]

exp

−s ∑
i∈Φ/bo

Pβigi

∣∣∣∣∣∣ 0 < r ≤ d1


(a)
= exp

(
−2πλ

ˆ ∞
r

(
1−E[g]{exp (−sPβ (u) g)}

)
udu

∣∣∣∣0 < r ≤ d1

)
,

(61)

where the step (a) of (61) is obtained from [4].
Since 0 < r ≤ d1, E[g] {exp (−sPβ (u) g)} in (61) should

consider interference from both LoS and NLoS paths. Thus,
LIr (s) can be further derived as

LIr (s)

= exp

(
−2πλ

ˆ d1

r

(
1− u

d1

)
ˆ dummy

dummy

×
[
1− E[g]

{
exp

(
−sPALu−α

L

g
)}]

udu

)

× exp

(
−2πλ

ˆ d1

r1

u

d1ˆ dummy

dummy

×
[
1− E[g]

{
exp

(
−sPANLu−α

NL

g
)}]

udu

)

× exp

(
−2πλ

ˆ ∞
d1

1

ˆ dummy

dummy

×
[
1− E[g]

{
exp

(
−sPANLu−α

NL

g
)}]

udu

)

= exp

(
−2πλ

ˆ d1

r

(
1− u

d1

)
u

1 + (sPAL)
−1
uαL

du

)

× exp

(
−2πλ

ˆ d1

r1

u

d1

u

1 + (sPANL)
−1
uαNL

du

)

× exp

(
−2πλ

ˆ ∞
d1

u

1 + (sPANL)
−1
uαNL

du

)
. (62)

Plugging s = γrα
L

PAL into (62), and with some mathematical
manipulations considering the definition of ρ1 (α, β, t, d) and
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ρ2 (α, β, t, d) in (27) and (28), we can obtain LIr

(
γrα

L

PAL

)
shown in (26), which concludes our proof.

APPENDIX C: PROOF OF LEMMA 3

Following the recipe employed in Appendix B, we consider
interference from both LoS and NLoS paths, and we can derive

LIr

(
γrα

NL

PANL

)
in the range of 0 < r ≤ y1 as

LIr

(
γrα

NL

PANL

)

= exp

(
−2πλ

ˆ d1

r2

(
1− u

d1

)
ˆ dummy

dummy

×

[
1− E[g]

{
exp

(
− γr

αNL

PANL
PALu−α

L

g

)}]
udu

)

× exp

(
−2πλ

ˆ d1

r

u

d1ˆ dummy

dummy

×

[
1− E[g]

{
exp

(
− γr

αNL

PANL
PANLu−α

NL

g

)}]
udu

)

× exp

(
−2πλ

ˆ ∞
d1

1

ˆ dummy

dummy

×

[
1− E[g]

{
exp

(
− γr

αNL

PANL
PANLu−α

NL

g

)}]
udu

)

= exp

−2πλ

ˆ d1

r2

(
1− u

d1

)
u

1 +
(
γrαNL

PANL PAL
)−1

uαL

du


× exp

−2πλ

ˆ d1

r

u

d1

u

1 +
(
γrαNL

PANL PANL
)−1

uαNL

du


× exp

−2πλ

ˆ ∞
d1

u

1 +
(
γrαNL

PANL PANL
)−1

uαNL

du

 ,

(0 < r ≤ y1) . (63)

For LIr

(
γrα

NL

PANL

)
in the range of y1 < r ≤ d1, we consider

interference only from NLoS paths and we can derive it as

LIr

(
γrα

NL

PANL

)

= exp

−2πλ

ˆ d1

r

u

d1

u

1 +
(
γrαNL

PANL PANL
)−1

uαNL

du


× exp

−2πλ

ˆ ∞
d1

u

1 +
(
γrαNL

PANL PANL
)−1

uαNL

du

 ,

(y1 < r ≤ d1) . (64)

Our proof is thus completed by plugging (27) and (28) into
(63) and (64).

APPENDIX D: PROOF OF LEMMA 4
Following the recipe employed in Appendix B, we con-

sider interference only from NLoS paths and we can derive

LIr

(
γrα

NL

PANL

)
in the range of r > d1 as

LIr

(
γrα

NL

PANL

)

= exp

(
−2πλ

ˆ ∞
r

1

ˆ dummy

dummy

×

[
1− E[g]

{
exp

(
− γr

αNL

PANL
PANLu−α

NL

g

)}]
udu

)

= exp

(
−2πλ

ˆ ∞
r

u

1 +
(
γrαNL

)−1
uαNL

du

)
, (r > d1) . (65)

Our proof is thus completed by plugging (28) into (65).
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