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Abstract—Despite intensive research in the area of network
connectivity, there is an important category of problems that
remain unsolved: how to measure the quality of connectivity
of a wireless multi-hop network which has a realistic number
of nodes, not necessarily large enough to warrant the use of
asymptotic analysis, and has unreliable connections, reflecting the
inherent unreliable characteristics of wireless communications?
The quality of connectivity measures how easily and reliably a
packet sent by a node can reach another node. It complements the
use of capacity to measure the quality of a network in saturated
traffic scenarios and provides a native measure of the quality
of (end-to-end) network connections. In this paper, we explore
the use of probabilistic connectivity matrix as a tool to measure
the quality of network connectivity. Some interesting properties
of the probabilistic connectivity matrix and their connections to
the quality of connectivity are demonstrated. We show that the
largest eigenvalue of the probabilistic connectivity matrix can
serve as a good measure of the quality of network connectivity.

Index Terms—Connectivity, network quality, probabilistic con-
nectivity matrix

I. INTRODUCTION

Connectivity is one of the most fundamental properties of
wireless multi-hop networks [1]–[3], and is a prerequisite for
providing many network functions. A network is said to be
connected if and only if (iff) there is a (multi-hop) path
between any pair of nodes. Further, a network is said to be k-
connected iff there are k mutually independent paths between
any pair of nodes that do not share any node in common
except the starting and the ending nodes. k-connectivity is
often required for robust operations of the network.

There are two general approaches to studying the connec-
tivity problem. The first, spearheaded by the seminal work
of Penrose [3] and Gupta and Kumar [1], is based on an
asymptotic analysis of large-scale random networks, which
considers a network of n nodes that are i.i.d. on an area with
an underlying uniform distribution. A pair of nodes are directly
connected iff their Euclidean distance is smaller than or equal
to a given threshold r (n), independent of other connections.
Some interesting results are obtained on the value of r (n)
required for the above network to be asymptotically almost
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surely connected as n→∞. In [4], [5], the authors extended
the above results from the unit disk model to a random
connection model, in which any pair of nodes separated by a
displacement x are directly connected with probability g (x),
independent of other connections. We refer readers to [7] for
a more comprehensive review of related work.

The second approach is based on a deterministic setting and
studies the connectivity and other topological properties of a
network using algebraic graph theory. Specifically, consider a
network with a set of n nodes. Its property can be studied
using its underlying graph G (V,E), where V , {v1, . . . , vn}
denotes the vertex set and E denotes the edge set. The
underlying graph is obtained by representing each node in
the network uniquely using a vertex and the converse. An
undirected edge exists between two vertices iff there is a
direct connection (or link) between the associated nodes1.
Define an adjacency matrix AG of the graph G (V,E) to
be a symmetric n × n matrix whose (i, j)

th
, i 6= j entry

is equal to one if there is an edge between vi and vj and
is equal to zero otherwise. Further, the diagonal entries of
AG are all equal to zero. The eigenvalues of the graph
G (V,E) are defined to be the eigenvalues of AG. The network
connectivity information, e.g. connectivity and k-connectivity,
is entirely contained in its adjacency matrix. Many interesting
connectivity and topological properties of the network can
be obtained by investigating the eigenvalues of its underlying
graph. For example, let µ1 ≥ . . . ≥ µn be the eigenvalues of
a graph G. If µ1 = µ2, then G is disconnected. If µ1 = −µn

and G is not empty, then at least one connected component
of G is nonempty and bipartite. If the number of distinct
eigenvalues of G is r, then G has a diameter of at most r− 1
[8]. Some researchers have also studied the properties of the
underlying graph using its Laplacian matrix [9], where the
Laplacian matrix of a graph G is defined as LG , D − AG

and D is a diagonal matrix with degrees of vertices in G on
the diagonal. Particularly, the algebraic connectivity of a graph
G is the second-smallest eigenvalue of LG and it is greater
than 0 iff G is a connected graph. The algebraic connectivity
quantifies the speed of convergence of consensus algorithms
[10]. We refer readers to [8] for a comprehensive treatment of
the topic.

Despite intensive research in the area, there is an im-
portant category of problems that remain unsolved: how to
measure the quality of connectivity of a wireless multi-hop

1In this paper, we limit our discussions to a simple graph (network) where
there is at most one edge (link) between a pair of vertices (nodes) and an
undirected graph.
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network which has a realistic number of nodes, not necessarily
large enough to warrant the use of asymptotic analysis, and
has unreliable connections, reflecting the inherent unreliable
characteristics of wireless communications? The quality of
connectivity measures how easily and reliably a packet sent
by a node can reach another node. It complements the use of
capacity to measure the quality of a network in saturated traffic
scenarios and provides a native measure of the quality of (end-
to-end) network connections. In the following paragraphs, we
elaborate on the above question using two examples.

Example 1: Consider a network with a fixed number of
nodes with known transmission power to be deployed in a
region. Assume that the wireless propagation model in that
environment is known and its characteristics have been quan-
tified through a priori measurements or empirical estimation.
Further, a link exists between two nodes iff the received signal
strength from one node at the other node is greater than or
equal to a predetermined threshold and the same is also true
in the opposite direction. One can then find the probability that
a link exists between two nodes at two fixed locations: It is
determined by the probability that the received signal strength
is greater than or equal to the pre-determined threshold. Two
related questions can be asked: a) If these nodes are deployed
at a set of known locations, what is the quality of connectivity
of the network, measured by the probability that there is a
path between any two nodes, as compared to node deployment
at another set of locations? b) How to optimize the node
deployment to maximize the quality of connectivity?

Example 2: Consider a network with a fixed number of
nodes. The transmission between a pair of nodes with a direct
connection quantifying the inherent unreliable characteristics
of wireless communications. There are no direct connections
between some pairs of nodes because the probability of suc-
cessful transmission between them is too low to be acceptable.
How to measure the quality of connectivity of such a network,
in the sense that a packet transmitted from one node can easily
and reliably reach another node via a multi-hop path. Will a
single “good” path between a pair of nodes be more preferable
than multiple “bad” paths? These are further illustrated using
Fig. 1 and 2.

In this paper, we explore the use of probabilistic connec-
tivity matrix, a concept to be defined later in Section II,
as a tool to measure the quality of network connectivity.
Some interesting properties of the probabilistic connectivity
matrix and their connections to the quality of connectivity are
demonstrated. Based on the analysis, we show that the largest
eigenvalue of the probabilistic connectivity matrix can serve
as a good metric of the quality of network connectivity.

The rest of the paper is organized as follows. Section II
defines the network settings, the probabilistic connectivity
matrix and gives a method to compute the matrix. Section
III introduces certain inequalities associated with the entries
of the probabilistic connectivity matrix. Section IV proves
several important results about the probabilistic connectivity
matrix. These directly associate the largest eigenvalue of the
probabilistic connectivity matrix to the quality of connectivity
and expose a structure that holds the promise of facilitating
associated optimization tasks. Section V concludes the paper
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Figure 1: An illustration of networks with different quality
of connectivity. A solid line represents a direct connection
between two nodes and the number beside the line represents
the corresponding transmission successful probability. The
networks shown in (a), (b), and (c) are all connected networks
but not 2-connected networks, i.e. their connectivity cannot
be differentiated using the k-connectivity concept. However
intuitively the quality of the network in (b) is better than that of
the network in (a) because of the availability of the additional
high-quality link between v2 and v4 in (b). The quality of
the network in (c) is even better because of the availability
of the additional nodes and the associated high-quality links,
hence additional routes, if these additional nodes act as relay
nodes only. If these additional nodes also generate their own
traffic, it is uncertain whether the quality of the network in
(c) is better or not. Therefore it is important to develop a
measure to quantitatively compare the quality of connectivity
(for the networks in (a) and (b)) and to evaluate the benefit of
additional nodes on connectivity (for the network in (c)).
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Figure 2: The networks shown in (a) and (b) have the same
topology but different link quality. It is difficult to compare
the quality of the two networks.

and discusses future work.

II. DEFINITION AND CONSTRUCTION OF THE
PROBABILISTIC CONNECTIVITY MATRIX

Consider a network of n nodes. For some pair of nodes,
an edge (or link) may exist with a non-negligible probability.
The edges are undirected and independent.

Denote the underlying graph of the above network by
G (V,E), where V = {v1, . . . , vn} is the vertex set and
E = {e1, . . . , em} is the edge set, which contains the set of
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all possible edges. Here the vertices and the edges are indexed
from 1 to n and from 1 to m respectively. For convenience,
in some parts of this paper we also use the symbol eij to
denote an edge between vertices vi and vj when there is no
confusion. We associate with each edge ei, i ∈ {1, . . .m},
an indicator random variable Ii such that Ii = 1 if the edge
ei exists; Ii = 0 if the edge ei does not exist. The indicator
random variables Iij , i 6= j and i, j ∈ {1, . . . n}, are defined
analogously.

In the following, we give a definition of the probabilistic
adjacency matrix:

Definition 1: The probabilistic adjacency matrix of
G (V,E), denoted by AG, is a n × n matrix such that its
(i, j)th, i 6= j, entry aij , Pr (Iij = 1) and its diagonal
entries are all equal to 1.

Due to the undirected property of an edge mentioned above,
AG is a symmetric matrix, i.e. aij = aji. Note that the
diagonal entries of AG are defined to be 1, which is different
from that common in the literature. This treatment of the
diagonal entries can be associated with the fact that a node
in the network can store a packet until better transmission
opportunity arises when it finds the wireless channel busy [11].

The probabilistic connectivity matrix is defined in the fol-
lowing:

Definition 2: The probabilistic connectivity matrix of
G (V,E), denoted by QG, is a n × n matrix such that its
(i, j)th, i 6= j, entry is the probability that there exists a path
between vertices vi and vj , and its diagonal entries are all
equal to 1.

As a ready consequence of the symmetry of AG, QG is also
a symmetric matrix.

Given the probabilistic adjacency matrix AG, the probabilis-
tic connectivity matrix QG is fully determined. However the
computation of QG is not trivial because for a pair of vertices
vi and vj , there may be multiple paths between them and some
of them may share common edges, i.e. are not independent.
In the following paragraph, we give an approach to computing
the probabilistic connectivity matrix.

Let (I1, . . . , Im) be a particular instance of the indicator
random variables associated with an instance of the random
edge set. Let QG| (I1, . . . , Im) be the connectivity matrix
of G conditioned on (I1, . . . , Im). The (i, j)

th entry of
QG| (I1, . . . , Im) is either 0, when there is no path between
vi and vj , or 1 when there exists a path between vi and
vj . The diagonal entries of QG| (I1, . . . , Im) are always 1.
Conditioned on (I1, . . . , Im), G (V,E) is just a deterministic
graph. Therefore the entries of QG| (I1, . . . , Im) can be effi-
ciently computed using a search algorithm, such as breadth-
first search. Given QG| (I1, . . . , Im), QG can be computed
using the following equation:

QG = E (QG| (I1, . . . , Im)) (1)

where the expectation is taken over all possible instances of
(I1, . . . , Im).

The approach suggested in the last paragraph is essentially
a brute-force approach to computing QG. A more efficient
algorithm is suggested in Section IV.

Remark 1: A major difference between the (probabilistic)
connectivity matrix and the adjacency matrix (or the Laplacian
matrix) is that the later matrix focuses on quantifying the
relation between node pairs directly connected by an edge only
while the former matrix focuses on quantifying the end-to-
end relationship between node pairs. It is not trivial to obtain
the connectivity matrix from the adjacency matrix or use the
adjacency matrix to study network properties easily obtainable
using the connectivity matrix.

Remark 2: For simplicity, the terms used in our discussion
are based on the problems in Example 1. The discussion
however can be easily adapted to the analysis of the problems
in Example 2. For example, if aij is defined to be the
probability that a transmission between nodes vi and vj is
successful, the (i, j)

th entry of the probabilistic connectivity
matrix QG computed using (1) then gives the probability that a
transmission from vi to vj via a multi-hop path is successful
under the best routing algorithm, which can always find a
shortest and error-free path from vi to vj if it exists, or alter-
natively, the probability that a packet broadcast from vi can
reach vj where each node receiving the packet only broadcasts
the packet once. Therefore the (i, j)

th entry of QG can be used
as a quality measure of the end-to-end paths between vi and
vj , which takes into account the fact that availability of extra
paths between a pair of nodes can be exploited to improve the
probability of successful transmissions.

III. SOME KEY INEQUALITIES FOR CONNECTION
PROBABILITIES

The entries of the probabilistic connectivity matrix give a
measure of the quality of end-to-end paths. In this section,
we provide some important inequalities that may facilitate
further analysis of the quality of connectivity. Some of these
inequalities are exploited in the next section to establish
several key properties of the probabilistic connection matrix
itself. We first introduce some results that are required for the
further analysis of the probabilistic connectivity matrix QG.

For a random graph with a given set of vertices, a particular
event is increasing if the event is preserved when more
edges are added into the graph. An event is decreasing if its
complement is increasing.

Denote by ξij the event that there is a path between vertices
vi and vj , i 6= j. Denote by ξikj the event that there is a path
between vertices vi and vj and that path passes through the
third vertex vk, where k ∈ Γn\ {i, j} and Γn is the set of
indices of all vertices. Denote by ηij the event that there is
an edge between vertices vi and vj . Denote by πikj the event
that there is a path between vertices vi and vk and there is a
path between vertices vk and vj , where k ∈ Γn\ {i, j}. It can
be shown from the above definitions that

ξij = ηij ∪ (∪k 6=i,jξikj) (2)

Let qij , i 6= j, be the (i, j)
th entry of QG, i.e. qij = Pr (ξij).

The following lemma can be readily obtained from the FKG
inequality [6, Theorem 1.4] and the above definitions
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Lemma 1: For two distinct indices i, j ∈ Γn and ∀k ∈
Γn\ {i, j}

qij ≥ max
k∈Γn\{i,j}

qikqkj (3)

Proof: It follows readily from the above definitions that
the event ξij is an increasing event. Using the FKG inequality:

Pr (ξij) ≥ Pr (πikj) = Pr (ξik ∩ ξkj) ≥ Pr (ξik) Pr (ξkj)
(4)

Lemma 1 gives a lower bound of qij . The following lemma
gives an upper bound of qij :

Lemma 2: For two distinct indices i, j ∈ Γn and ∀k ∈
Γn\ {i, j},

qij ≤ 1− (1− aij)
∏

k∈Γn\{i,j}

(1− qikqkj) (5)

where aij = Pr (ηij).
Proof: We will first show that ξikj ⇔ ξik�ξkj . That is,

the occurrence of the event ξikj is a sufficient and necessary
condition for the occurrence of the event ξik�ξkj , where for
two events A and B, A�B denotes the event that there exist
two disjoint sets of edges such that the first set of edges
guarantees the occurrence of A and the second set of edges
guarantees the occurrence of B.

Using the definition of ξikj , occurrence of ξikj means that
there is a path between vertices vi and vj and that path
passes through vertex vk. It follows that there exist a path
between vertex i and vertex vk and a path between vertex
vk and vertex vj and the two paths do not have edge(s) in
common. Otherwise, it will contradict the definition of ξikj ,
particularly as the definition of a path requires the edges to be
distinct. Therefore ξikj ⇒ ξik�ξkj . Likewise, ξikj ⇐ ξik�ξkj
also follows directly from the definitions of ξikj , ξik, ξkj and
ξik�ξkj . Consequently

Pr (ξikj) = Pr (ξik�ξkj) ≤ Pr (ξik) Pr (ξkj) (6)

where the inequality is a direct result of the BK inequality [6]
.

With a little bit abuse of the terminology, in the following
derivations we also use ξikj to represent the set of edges that
make the event ξikj happen, and use ηij to denote the edge
between vertices vi and vj .

Note that the set of edges ∪k∈Γn\{i,j}ξikj does not contain
ηij . Therefore using (2) and independence of edges (used in
the third step)

qij = Pr
(
ηij ∪

(
∪k∈Γn\{i,j}ξikj

))
= 1− Pr

(
ηij ∩

(
∪k∈Γn\{i,j}ξikj

))
= 1− (1− aij) Pr

(
∩k∈Γn\{i,j}ξikj

)
≤ 1− (1− aij)

∏
k∈Γn\{i,j}

Pr
(
ξikj

)
(7)

= 1− (1− aij)
∏

k∈Γn\{i,j}

(1− Pr (ξikj))

≤ 1− (1− aij)
∏

k∈Γn\{i,j}

(1− qikqkj) (8)

where in (7), FKG inequality and the fact that ξikj is a
decreasing event are used and the last step results due to (6).

When there is no edge between vertices vi and vj , which is
the generic case, the upper and lower bounds in Lemmas 1
and 2 reduce to

max
k∈Γn\{i,j}

qikqkj ≤ qij ≤ 1−
∏

k∈Γn\{i,j}

(1− qikqkj) (9)

The above inequality sheds insight on how the quality of
paths between a pair of vertices is related to the quality
of paths between other pairs of vertices. It can be possibly
used to determine the most effective way of improving the
quality of a particular set of paths by improving the quality
of a particular (set of) edge(s), or equivalently what can be
reasonably expected from an improvement of a particular edge
on the quality of end-to-end paths.

The following lemma further shows that relation among
entries of the path matrix QG can be further used to derive
some topological information of the graph.

Lemma 3: If qij = qikqkj for three distinct vertices vi, vj
and vk, the vertex set V of the underlying graph G (V,E) can
be divided into three non-empty and non-intersecting sub-sets
V1, V2 and V3 such that vi ∈ V1, vj ∈ V3 and V2 = {vk} and
any possible path between a vertex in V1 and a vertex in V2

must pass through vk. Further, for any pair of vertices vl and
vm, where vl ∈ V1 and vm ∈ V3, qlm = qlkqkm.

Proof: Using (4) in the second step, it follows that

qij = Pr ((ξij\πikj) ∪ πikj) = Pr (ξij\πikj) + Pr (πikj)

≥ Pr (ξij\ξikj) + qikqkj

Therefore qij = qikqkj implies that Pr (ξij\πikj) = 0 or
equivalently ξij ⇔ πikj

Further, Pr (ξij\πikj) = 0 implies that a possible path (i.e.
a path with a non-zero probability) connecting vi and vk and
a possible path connecting vk and vj cannot have any edge in
common. Otherwise a path from vi to vj , bypassing vk, exists
with a non-zero probability which implies Pr (ξij\ξikj) > 0.
The conclusion follows readily that if qij = qikqkj for
three distinct vertices vi, vj and vk, the vertex set V of the
underlying graph G (V,E) can be divided into three non-
empty and non-overlapping sub-sets V1, V2 and V3 such that
vi ∈ V1, vj ∈ V3 and V2 = {vk} and a path between a vertex
in V1 and a vertex in V2, if exists, must pass through vk.

Further, for any pair of vertices vl and vm, where vl ∈ V1

and vm ∈ V3, it is easily shown that Pr (ξlm\πlkm) = 0.
Due to independence of edges and further using the fact that
Pr (ξlm\πlkm) = 0, it can be shown that

Pr (ξlm) = Pr (πlkm) = Pr (ξlk ∩ ξkm) = Pr (ξlk) Pr (ξkm)

where the last step results because under the condition of
Pr (ξlm\πlkm) = 0, a path between vl and vk and a path
between vk and vm cannot possibly have any edge in common.

An implication of Lemma 3 is that for any three distinct
vertices, vi, vj and vk, if a relationship qij = qikqkj holds,
vertex vk must be a critical vertex whose removal will render
the graph disconnected.
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IV. PROPERTIES OF THE CONNECTIVITY MATRIX

Having established some inequalities obeyed by the entries
of QG, we now turn to establishing a measure of the quality
of network connectivity. At the core of the development in
this section is the following result.

Lemma 4: Each off-diagonal entry of the probabilistic con-
nectivity matrix QG is a multiaffine2 function of aij , i ∈
{1, . . . , n} , j > i.

Proof: Observe that aij = Pr (ηij) and the events ηij ,
i ∈ {1, . . . , n} , j > i are independent. The conclusion
in the lemma follows readily from the fact that the event
associated with each qij , i.e. there exists a path between
vertices vi and vj , is a union of intersections of these events
ηij , i ∈ {1, . . . , n} , j > i.

Due to the above multiaffine property, for any four positive
integers k, l, i, j ∈ {1, . . . n}, where p 6= q and i 6= j, the
following holds:

qlk = f (E\ {eij}) aij + g (E\ {eij}) (10)

where f (E\ {eij}) and g (E\ {eij}) are non-negative con-
stants within [0, 1] determined by the state of the set of edges
excluding eij . g (E\ {eij}) = 0 implies that non-existence of
the edge eij will render the vertices vl and vk disconnected.
f (E\ {eij}) = 0 implies that the state of the edge eij is
irrelevant for the end-to-end paths between vl and vk. Further,
f (E\ {eij}) can be used to measure the criticality of the edge
eij to the end-to-end paths between vl and vk.

Remark 3: Using the multiaffine property, a more efficient
algorithm for computing QG than the one suggested earlier
using (1) can be constructed. Particularly, the probabilistic
connectivity matrix of a network forming a tree can be
easily computed. Therefore the algorithm may start by first
identifying a spanning tree in G(V,E) and computing the
associated probabilistic connectivity matrix. Then, the edges in
E but outside the spanning tree can be added recursively and
the corresponding probabilistic connectivity matrix updated
using (10).

We comment later in Remark 5 on how the multiaffine
structure is also potentially useful for performing some of the
optimization tasks inherent in maximizing connectivity. e.g.
determination of the link whose improvement will bring the
maximum benefit on connectivity.

A very desirable property of QG is established below.
Theorem 1: The probabilistic connectivity matrix QG is a

positive semi-definite matrix. Further, QG is positive semi-
definite but not positive definite iff there exist distinct i, j ∈
{1, · · · , n}, such that qij = 1.
The proof is omitted due to space limitation.

Let λ1 ≥ . . . ≥ λn be the eigenvalues of QG. Note that
λ1 + · · · + λn = n. As an easy consequence of Theorem
1, n ≥ λ1 ≥ 1 and 1 ≥ λn ≥ 0. In the best case, QG

is a matrix with all entries equal to 1. Then λ1 = n and
λ2 = · · · = λn = 0. In the worst case, QG is an identity
matrix. Then λ1 = · · · = λn = 1. This suggests that λ1, i.e.
the largest eigenvalue of QG, can be used as a measure of

2A multiaffine function is affine in each variable when the other variables
are fixed.

quality of network connectivity and a larger λ1 indicates a
better quality.

Further, let X be a vector representing the number of
packets broadcast by each node to the rest of the network and
let Y be a vector representing the random number of packets
received by each node. It is obvious that E[Y |X] = QGX
then represents the expected number of packets received by
each node. Using the property that QG is a symmetric matrix,
it can be shown that

max
||X||2=1

||E[Y |X]||2 = max
||X||2=1

||QGX||2

= max
||X||2=1

√
XTQT

GQGX = max
||X||2=1

√
XTQ2

GX

=
√
λmax(Q2

G) =
√
λ2
max(QG) = λmax(QG)

where λmax (QG) is the maximum eigenvalue of QG and
||X||2 denotes the L2-norm or Euclidean norm of X .

We will make this idea that λmax (QG) serves as a good
measure of the quality of network connectivity more concrete
in the following analysis. We start our discussion with a
connected network and then extend to more generic cases.
We will call a network connected if for all i, j ∈ {1, · · · , n},
qij > 0. Obviously the probabilistic connectivity matrix of a
connected network is irreducible [12, p. 374] as all the entries
of the matrix are non-zero. As a measure of the quality of
network connectivity, if the path probabilities qij increase,
the largest eigenvalue of the probabilistic connectivity matrix
should also increase. This is formally stated below:

Theorem 2: Let G(V,E) and G′(V,E′) be the underlying
graphs of two connected networks defined on the same vertex
set V but with different link probabilities. Let QG and QG′

be the probabilistic connectivity matrices of G and G′ respec-
tively. If Q′

G −QG is a non-zero, non-negative matrix3, then
λmax (QG) < λmax (QG′).

Proof:
We need the following lemma to prove Theorem 2.
Lemma 5: Suppose A = AT 6= B = BT are non-negative,

irreducible, real matrices, and B − A is a non-zero, non-
negative matrix. Then: λmax(A) < λmax(B).

Proof: Observe at least one element of B−A is positive.
From Perron-Frobenius theorem [12, p. 536], x ∈ Rn, the
eigenvector corresponding to the largest eigenvalue of A can
be chosen to have all elements positive. Then the result follows
from the fact that:

λmax(A)xTx = xTAx

= xTBx− xT (B −A)x

< xTBx ≤ λmax(B)xTx

as B −A is a non-zero, non-negative matrix.
Turning to the proof of Theorem 2 we note that the result

follows directly from Lemma 5 and the fact QG′ and QG

satisfy the requirements of B and A, respectively.

If the network is not connected, i.e. some entries of its
probabilistic connectivity matrix is 0, the network can be

3A matrix is non-negative if all its entries are greater than or equal to 0.
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decomposed into disjoint components. Let the total number
of components in the network be k. Let Gi be the subgraph
induced on the set of vertices in the ith component and QGi

be the probabilistic connectivity matrix of Gi. It follows that

λmax (QG) = max{λmax (QG1) , · · · , λmax (QGk
)} (11)

We consider two basic situations: a) there are increases in
some entries of QG from non-zero values but such increases
do not change the number of components in the network.
It then follows easily from Theorem 2 that λmax

(
QG′

i

)
>

λmax (QGi
). Depending on whether λmax

(
QG′

i

)
is greater

than λmax (QG) or not however, λmax (QG) may or may not
increase. b) there are increases in some entries of QG from
zero to non-zero values and such increases reduce the number
of components in the network. For situation b), we consider a
simplified scenario where increases in the path probabilities
merge two originally disjoint components, denoted by Gi

and Gj . The more complicated scenario where increases in
the path probabilities join more than two originally disjoint
components can be obtained recursively as an extension of the
above simplified scenario. Let G′ be the underlying graph of
the network after increases in path probabilities and let G′

ij be
the subgraph in G′ induced on the vertex set Vi∪Vj . Obviously
QG′

ij
is an irreducible matrix and the following result can be

established.
Lemma 6: Under the above settings,

λmax

(
QG′

ij

)
> λmax

(
diag {QGi

, QGj
}
)

(12)

The proof of Lemma 6 is straightforward and hence omitted.
Thus indeed the largest eigenvalues of the probabilistic con-

nection matrices associated with disjoint components measure
the quality of the components connection.

Remark 4: To compare two networks with different number
of nodes, the normalized maximum eigenvalue of the proba-
bilistic connectivity matrix, where the maximum eigenvalue is
divided by the number of nodes, can be used.

Remark 5: The fact that the largest eigenvalue of the prob-
abilistic connectivity matrix measures connectivity, suggests
the following obvious optimization. Modify one or more aij
under suitable constraints to maximize the largest eigenvalue
of the probabilistic connectivity matrix. Results in [13] and
[14] suggest that the multiaffine dependence of the qij on the
aij together with the fact that QG is positive semi-definite
promise to facilitate such optimization.

V. CONCLUSIONS AND FURTHER WORK

In this paper we explored the use of the probabilistic
connectivity matrix as a tool to measure the quality of network
connectivity. Some interesting properties of the probabilistic
connectivity matrix and their connections to the quality of
network connectivity were demonstrated. Particularly, the off-
diagonal entries of the probabilistic connectivity matrix pro-
vide a measure of the quality of end-to-end connections and we
have also provided theoretical analysis supporting the use of
the largest eigenvalue of the probabilistic connectivity matrix
as a measure of the quality of overall network connectivity.

Inequalities between the entries of the probabilistic connec-
tivity matrix were established. These may provide insights into
the correlations between quality of end-to-end connections.
Further, the probabilistic connectivity matrix was shown to
be a positive semi-definite matrix and its off-diagonal entries
are multiaffine functions of link probabilities. These two
properties are expected to be very helpful in optimization and
robust network design, e.g. determining the link whose quality
improvement will result in the maximum gain in network
quality, and determining quantitatively the relative criticality
of a link to either a particular end-to-end connection or to the
entire network.

The results in the paper rely on two main assumptions:
the links are symmetric and independent. We expect that our
analysis can be readily extended such that the first assumption
on symmetric links can be removed – in fact the results
in Section III do not need this assumption. While in the
asymmetric case the probabilistic connectivity matrix is no
longer guaranteed to be positive semi-definite, we conjecture
that the largest eigenvalue retains its significance. Discarding
the second assumption requires more work. However, we are
encouraged by the following observation. If we introduce
conditional edge probabilities into the mix, then QG is still
a multiaffine function of the aij and the conditional probabil-
ities. Thus we still expect all the results in Section IV to hold,
though the proof may be non-trivial. In real applications link
correlations may arise due to both physical layer correlations
and correlations caused by traffic congestion.
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