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Abstract—Despite intensive research in the area of network
connectivity, there is an important category of problems that
remain unsolved: how to characterize and measure the quality
of connectivity of a wireless network which has a realistic
number of nodes, not necessarily large enough to warrant the
use of asymptotic analysis, and which has unreliable connections,
reflecting the inherent unreliability of wireless communications?
The quality of connectivity measures how easily and reliably a
packet sent by a node can reach another node. It complements the
use of capacity to measure the quality of a network in saturated
traffic scenarios and provides an intuitive measure of the quality
of (end-to-end) network connections. In this paper, we introduce
a probabilistic connectivity matrix as a tool to measure the
quality of network connectivity. Some interesting properties of
the probabilistic connectivity matrix and their connections to the
quality of connectivity are demonstrated. We demonstrate that
the largest magnitude eigenvalue of the probabilistic connectivity
matrix, which is positive, can serve as a good measure of the
quality of network connectivity. We provide a flooding algorithm
whereby the nodes repeatedly flood the network with packets, and
by measuring just the number of packets a given node receives,
the node is able to asymptotically estimate this largest eigenvalue.

Index Terms—Connectivity, network quality, probabilistic con-
nectivity matrix

I. INTRODUCTION

Connectivity is one of the most fundamental properties of
wireless multi-hop networks [1], [2], [3], and is a prerequisite
for providing many network functions, e.g. routing, scheduling
and localization. A network is said to be connected iff there
is a (multi-hop) path between any pair of nodes. A network
is said to be k-connected iff there are k paths between any
pair of nodes that do not share any node in common except
the starting and the ending nodes. Of course, k-connectivity
is often required for robust operations of the network. These
notions however are essentially deterministic and do not allow
straightforward reflection into a mathematical model of the
fact that some links will successfully transmit some, but
not necessarily all, of the time caused by the random and
time-varying nature of wireless connections. To deal with
probabilistic connections, in this paper we introduce the notion
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of a probabilistic connectivity matrix, and demonstrate that its
largest magnitude eigenvalue, which is positive, quantifies the
quality of network connectivity. The precise computation of
the elements of this connectivity matrix, given the individ-
ual link transmission probabilities and the network topology,
involves significant calculation; as an alternative we provide
a flooding algorithm, that computes the largest magnitude
eigenvalue in a decentralized fashion using experimental data
(with multiple experiments to allow some averaging). The
topology and link probabilities do not need to be known. As
shown in the sequel, this new measure constitutes the first that
can be determined for moderate to small size networks.

We note that there are two general approaches to studying
the connectivity problem. The first, spearheaded by the seminal
work of Penrose [3] and Gupta and Kumar [1], is based on
an asymptotic analysis of large-scale random networks, which
considers a network of n nodes that are i.i.d. on an area with
an underlying uniform distribution. A pair of nodes are directly
connected iff their Euclidean distance is smaller than or equal
to a given threshold r (n), independent of other connections.
So the connection model is deterministic. Some interesting
results are obtained on the value of r (n) required for the
above network to be asymptotically almost surely connected
as n → ∞. In [4], these results are extended to provide the
radius for k-connectivity. In [5], [6], the authors extended the
above results by Penrose and Gupta and Kumar from the unit
disk model to a random connection model, in which any pair
of nodes separated by a displacement x are directly connected
with probability g (x), independent of other connections (the
well-known log normal model is a special case). The analytical
techniques used in this approach have some intrinsic connec-
tions to continuum percolation theory [7] which is usually
based on a network setting with nodes Poissonly distributed
in an infinite area and studies the conditions required for the
network to have a connected component containing an infinite
number of nodes (in other words, the network percolates). We
refer readers to [5] for a more comprehensive literature review.

The second approach is based on a deterministic setting and
studies the connectivity and other topological properties of a
network using algebraic graph theory. Specifically, consider a
network with a set of n nodes. Its properties can be studied
using its underlying graph G (V,E), where V , {v1, . . . , vn}
denotes the vertex set and E denotes the edge set. The
underlying graph is obtained by representing each node in
the network uniquely using a vertex and the converse. An
undirected edge exists between two vertices iff there is a
direct connection (or link) between the associated nodes1.
Define an adjacency matrix AG of the graph G (V,E) to

1In this paper, we limit our discussions to a simple graph (network) where
there is at most one edge (link) between a pair of vertices (nodes) and an
undirected graph.
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be a symmetric n × n matrix whose (i, j)
th
, i 6= j, entry

is equal to one if there is an edge between vi and vj and
is equal to zero otherwise. Further, the diagonal entries of
AG are all equal to zero. The eigenvalues of the graph
G (V,E) are defined to be the eigenvalues of AG. The network
connectivity information, e.g. connectivity and k-connectivity,
is entirely contained in its adjacency matrix. Many interesting
connectivity and topological properties of the network can
be obtained by investigating the eigenvalues of its underlying
graph. For example, let µ1 ≥ . . . ≥ µn be the eigenvalues of
a graph G. If µ1 = µ2, then G is disconnected. If µ1 = −µn
and G is not empty, then at least one connected component
of G is nonempty and bipartite [9, p. 28-6]. If the number
of distinct eigenvalues of G is r, then G has a diameter of
at most r − 1 [10]. Some researchers have also studied the
properties of the underlying graph using its Laplacian matrix
[11], where the Laplacian matrix of a graph G is defined as
LG , D − AG and D is a diagonal matrix with degrees
of vertices in G on the diagonal. Particularly, the algebraic
connectivity of a graph G is the second-smallest eigenvalue of
LG and it is greater than 0 iff G is a connected graph. Further,
the algebraic connectivity is also known to be a good indicator
of the convergence rate of consensus algorithms [8]. We refer
readers to [10] and [12] for a comprehensive treatment of the
topic. Reference [9] provides a concise summary of major
results in the area. The adjacency matrix, the Laplacian matrix
and their associated parameters mainly focus on describing
the connectivity between vertices with directed connections.
As demonstrated later in this section, it is not trivial to use
these tools to quantify the quality of end-to-end connections
(especially when the existence of a direct connection between
two nodes becomes probabilistic), which is of paramount
concern in many communication applications. In this paper,
we develop the probabilistic connectivity matrix, a concept
defined later in the paper, to fill this theoretical gap.

The research most related to the work to be presented in this
paper is possibly the more recent work of Brooks et al. [13].
In [13] Brooks et al. considered a probabilistic version of the
adjacency matrix and defined a probabilistic adjacency matrix
as a n×n square matrix M whose (i, j)th entry mij represents
the probability of having a direct connection between distinct
nodes i and j, and mii = 0. They observed that the probability
that there exists at least one walk of length z between nodes
i and j is mz

ij , where mz
ij is the (i, j)th entry of M ⊗M ⊗

· · · ⊗M (z times). Here C , A ⊗ B is defined by Cij =
1−

∏
l 6=i,j

(1−AilBlj) where Aij , Bij and Cij are the (i, j)th

entries of the n×n square matrix A, B and C respectively and
the operator ⊗ is associative, so that powers are well-defined.
A walk of length z between nodes i and j is a sequence of z
edges, where the first edge starts at i, the last edge ends at j,
and the starting vertex of each intermediate edge is the ending
vertex of its preceding edge. A path of length z between nodes
i and j is a walk of length z in which the edges are distinct.
Obviously, the existence of a walk implies the existence of a
path and conversely. Further, the existence of a walk of length
z implies the existence of a path of length smaller than or
equal to z. Considering that in a walk, an edge may appear

more than once whereas in a path, all edges are distinct, it
is not trivial to use their result to derive the probability of
existence of a path or the probability of existence of a path of
a particular length.

An important category of problems remain unsolved: how
to measure the quality of connectivity of a wireless multi-hop
network which has a realistic number of nodes, not necessarily
large enough to warrant the use of asymptotic analysis, and
has unreliable connections, reflecting the inherent unreliable
characteristics of wireless communications? The quality of
connectivity measures how easily and reliably packets sent by
a node can reach another. It complements the use of capacity to
measure the quality of a network in saturated traffic scenarios
and provides an intuitive measure of the quality of (end-to-end)
network connections. The following paragraphs elaborate on
the above question using two examples of networks with a
fixed number of nodes and known transmission power.

Example 1. Assume that the wireless propagation model of a
network is known and its characteristics have been quantified
through a priori measurements or empirical estimation. Fur-
ther, a link exists between two nodes iff the received signal
strength from one node at the other node, whose propagation
follows the wireless propagation model and the signal strength
is random, e.g. due to fading and shadowing, is greater than
or equal to a predetermined threshold and the same is also
true in the opposite direction. One can then find the probability
that a link exists between two nodes at two fixed locations: It is
determined by the probability that the received signal strength
is greater than or equal to the pre-determined threshold. Two
related questions can be asked: a) If these nodes are deployed
at a set of known locations, what is the quality of connectivity
of the network, measured by the probability that there is a path
between any two nodes, as compared to node deployment at
another set of locations? b) How can one optimize the node
deployment to maximize the quality of connectivity?

Example 2. The transmission between a pair of nodes with
a direct connection, say vi and vj , may fail with a known
probability, say 1 − aij , quantifying the inherent unreliable
characteristics of wireless communications. There are no di-
rect connections between some pairs of nodes because the
probability of successful transmission between them is too
low to be acceptable. How should one measure the quality
of connectivity of such a network, in the sense that a packet
transmitted from one node can easily and reliably reach
another node via a multi-hop path. Will a single “good”
path between a pair of nodes be preferable to multiple “bad”
paths? These questions are illustrated in Fig. 1 and 2.

In this paper, we introduce and explore the use of a
probabilistic connectivity matrix, a concept to be defined later
in Section II, as a tool to measure the quality of network con-
nectivity. Some key properties of the probabilistic connectivity
matrix and their connections to the quality of connectivity
are demonstrated. Armed with certain inequalities derived in
Section III, and assuming a symmetric network, in Section IV,
we derive several properties of the eigenvalues of the proba-
bilistic connectivity matrix. First we show that in a connected
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Fig. 1. An illustration of networks with different quality of connectivity.
A solid line represents a direct connection between two nodes and the
number beside the line represents the corresponding transmission successful
probability. The networks shown in (a), (b), and (c) are all connected networks
but not 2-connected networks, i.e. their connectivity cannot be differentiated
using the k-connectivity concept. However intuitively the quality of the
network in (b) is better than that of the network in (a) because of the
availability of the additional high-quality link between v2 and v4 in (b).
The quality of the network in (c) is even better because of the availability of
the additional nodes and the associated high-quality links, hence additional
routes, if these additional nodes act as relay nodes only. If these additional
nodes also generate their own traffic, it is uncertain whether the quality of the
network in (c) is better or not. Therefore it is important to develop a measure
to quantitatively compare the quality of connectivity (for the networks in (a)
and (b)) and to evaluate the benefit of additional nodes on connectivity (for
the network in (c)).
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Fig. 2. The networks shown in (a) and (b) have the same topology but different
link quality. It is difficult to compare the quality of the two networks.

network, i.e. where there is a path of non-zero probability
between every pair of nodes, the largest magnitude eigenvalue,
which is positive, does indeed quantify the quality of network
connectivity. Should the network be disconnected, then we
show that it naturally partitions into connected components.
Specifically there is a path of nonzero probability between any
two nodes in a connected component, but all inter-component
paths have zero probability. In this case the probabilistic
connectivity matrix is block diagonal, each diagonal block in
turn being the connectivity matrix of a particular component.
In this case the largest magnitude eigenvalue provides the
connectivity measure of this component. We show also that the
matrix is positive semidefinite, and is in fact positive definite,
unless there is a path in the network that has probability one.

We also show that increasing a link probability increases the
largest eigenvalue of the component to which the link belongs.
In Section V, exploiting the positive semidefiniteness of this
matrix we provide an algorithm that computes the largest
eigenvalue in a decentralized fashion using experimental mea-
surements on the network, including averaging over a number
of experiments. Specifically this flooding algorithm requires
the nodes to repeatedly flood the network with packets, and
by measuring just the number of packets a given node re-
ceives, the node is able to asymptotically estimate this largest
eigenvalue without knowing any element of the probabilistic
connectivity matrix or the number of packets received by the
other nodes. Section VI is the conclusion.

II. THE PROBABILISTIC CONNECTIVITY MATRIX

In this section we define the network to be studied, its
probabilistic adjacency matrix and probabilistic connectivity
matrix, and gives an approach to computing the probabilistic
connectivity matrix.

Consider a network of n nodes. For some pair of nodes, an
edge (or link) may exist with a non-negligible probability. The
edges are considered to be undirected. That is, if a node vi is
connected to a node vj , then the node vj is also connected
to the node vi. Further, as is commonly done in the area
[1], [3], [7], [6], it is assumed that the event that there is
an edge between a pair of nodes and the event that there
is an edge between another distinct pair of nodes (which
may include one node in common with the first pair) are
independent. In addition to such spatial independence, we also
assume temporal independence; specifically that each edge
event is i.i.d. over time, e.g. due to fading and shadowing. This
temporal independence is needed for the results of Section V,
and is formalized in that section.

Denote the underlying graph of the above network by
G (V,E), where V = {v1, . . . , vn} is the vertex set and
E = {e1, . . . , em} is the edge set, which contains the set of all
possible edges, i.e. all vertex pairs for which the probability of
being directly connected is nonzero. Here the vertices and the
edges are indexed from 1 to n and from 1 to m respectively.
For convenience, in some parts of this paper we also use
the symbol eij to denote an edge between vertices vi and
vj when there is no confusion. We associate with each edge
ei, i ∈ {1, . . .m}, an indicator random variable Ii such that
Ii = 1 if the edge ei exists; Ii = 0 if the edge ei does
not exist. The indicator random variables Iij , i 6= j and
i, j ∈ {1, . . . n}, are defined analogously. Furthermore, we
use (Ii, i ∈ {1, 2, . . . ,m}) to denote a particular instance of
the indicator random variables associated with an instance of
the random edge set.

In the following, we give a definition of the probabilistic
adjacency matrix, differing mildly from that of Brooks et al,
[13] as described further below :

Definition 1. The probabilistic adjacency matrix of G (V,E),
denoted by AG, is a n×n matrix whose (i, j)th, i 6= j, entry
aij , Pr (Iij = 1) and its diagonal entries are all equal to 1.

Due to the undirected property of an edge mentioned above,
AG is a symmetric matrix, i.e. aij = aji. Note that the
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diagonal entries of AG are defined to be 1, which is different
from the usual convention in the literature, e.g. [13]. In [14] we
have discussed the implication of this definition in the context
of mobile ad hoc networks. This treatment of the diagonal
entries reflects the fact that if a node in the network finds the
wireless channel busy, it can store a packet (or equivalently
transmit the packet to itself) until the channel is free. A pair
of nodes vi and vj are said to be directly connected if the
associated aij is greater than 0.

The probabilistic connectivity matrix is defined in the fol-
lowing way:

Definition 2. The probabilistic connectivity matrix of
G (V,E), denoted by QG, is a n × n matrix whose (i, j)th,
i 6= j, entry is the probability that there exists a path between
vertices vi and vj , and its diagonal entries are all equal to 1.

As a ready consequence of the symmetry of AG, QG is
also a symmetric matrix. Further, the following property of
QG can be easily obtained from the above definition. The
Lemma refers to the direct sum between matrices, defined as
A
⊕
B = diag {A,B}.

Lemma 1. Suppose AG defined in Definition 1 is symmetric.
Then the probabilistic connectivity matrix QG is a symmetric
nonnegative matrix. If it has a zero element then there is an
ordering of vertices under which QG is a direct sum of positive
matrices.

Proof. Symmetry of QG follows from the symmetry of AG.
Nonnegativity of QG follows from the fact that its diagonal
elements are one and the rest are probabilities. Now suppose
for some i, j, qij = qji = 0 but that for some k, qik = qki 6=
0. This indicates that all paths between vi and vj have zero
probability (henceforth, vi and vj are not connected) but at
least one between vk and vi has a nonzero probability (vk and
vi are connected). Thus qkj = qjk = 0 as otherwise there is
a path between vk and vj and consequently between vi and
vk that has nonzero probability, violating the assumption that
qij = qji = 0. Thus, one can partition the vertex set V into
sets Vl, such that all nodes in Vl are connected to each other
but are not connected to any node in Vm, m 6= l. Order the
vertices so that for each l those of Vl are consecutive. The
resulting QG is clearly a direct sum of positive matrices.

Remark 1. We call the network connected if QG is positive, as
there is then a nonzero probability that a path exists between
any two nodes. Lemma 1 and its proof also formalize the fact
that a network that is not connected partitions into disjoint
components, each of which is connected, but all paths between
nodes from different components have probability zero (we are
not distinguishing conceptually between the notion that a link
or path may not exist, and the notion that a link or path always
has zero probability).

Given the probabilistic adjacency matrix AG, the probabilis-
tic connectivity matrix QG is fully determined. However the
computation of QG is not trivial because for a pair of vertices
vi and vj , there may be multiple paths between them and
some of the paths may share common edges, i.e. paths are

not independent or are spatially correlated. In the rest of this
section, we give a method to compute QG.

A. Computation of the probabilistic connectivity matrix

We now indicate in rather formal language the conceptual
basis of computing the probabilistic connectivity matrix QG.

Let QG| (Ii, i ∈ {1, 2, . . . ,m}) be the connectivity ma-
trix of G conditioned on a particular instance of the
indicator random variables I1, . . . , Im associated with an
instance of the random edge set. The (i, j)

th entry of
QG| (Ii, i ∈ {1, 2, . . . ,m}) is either 0, when there is no
path between vi and vj , or 1 when there exists a path
between vi and vj (see also Lemma 4 ). The diagonal entries
of QG| (Ii, i ∈ {1, 2, . . . ,m}) are always 1. Conditioned on
(Ii, i ∈ {1, 2, . . . ,m}), G (V,E) is just a deterministic graph.
Therefore the entries of QG| (Ii, i ∈ {1, 2, . . . ,m}) can be
efficiently computed using a search algorithm, such as breadth-
first search. Given QG| (Ii, i ∈ {1, 2, . . . ,m}), QG can be
computed using the following:

QG = E(Ii,i∈{1,2,...,m}) (QG| (Ii, i ∈ {1, 2, . . . ,m})) (1)

where the expectation is taken over all possible instances of
(Ii, i ∈ {1, 2, . . . ,m}).

Using the technique introduced in the previous paragraph,
the probabilistic connectivity matrix of the three networks in
Fig. 1 and two networks in Fig. 2, denoted by Q1a, Q1b, Q1c,
Q2a and Q2b respectively, can be computed. For example,

Q2a =


1.0000 0.9876 0.9744 0.9823 0.9880
0.9876 1.0000 0.9812 0.9856 0.9916
0.9744 0.9812 1.0000 0.9780 0.9827
0.9823 0.9856 0.9780 1.0000 0.9926
0.9880 0.9916 0.9827 0.9926 1.0000


(2)

Q2b =


1.0000 0.9603 0.9571 0.9540 0.9614
0.9603 1.0000 0.9918 0.9854 0.9961
0.9571 0.9918 1.0000 0.9879 0.9936
0.9540 0.9854 0.9879 1.0000 0.9878
0.9614 0.9961 0.9936 0.9878 1.0000


(3)

A comparison of the entries of Q2a and Q2b leads to intuitive
and quantitative conclusion on the quality of end-to-end paths
between any pair of nodes in the two networks in Fig. 2.a and
2.b. In the rest of this paper, we will further establish properties
of the probabilistic connectivity matrix that facilitates the
analysis of network quality and connectivity.

The approach suggested in the last paragraph is essentially
a brute-force approach to computing QG. More efficient
algorithms can be possibly designed to compute QG. Indeed
in Section IV we suggest an approach to simplify the compu-
tation of QG via a recursive procedure exploiting the property
of QG. Since the main focus of the paper is on exploring
the properties of QG that facilitate the connectivity analysis,
an extensive discussion of designing computationally efficient
algorithms to compute QG is left for future work.
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That said, the complications in computing QG are mitigated
by the fact that a measure of connectivity developed in this
paper can also be estimated using experimental data without
explicitly obtaining the elements of QG. This measure is the
largest eigenvalue of QG. As shown in the sequel it can be
asymptotically estimated in a completely decentralized fashion
without knowing the entries of QG or the link probabilities and
network topology.

Remark 2. For simplicity, the terms used in our discussion
are based on the problems in Example 1. The discussion
however can be easily adapted to the analysis of the problems
in Example 2. For example, if aij is defined to be the
probability that a transmission between nodes vi and vj is
successful, the (i, j)

th entry of the probabilistic connectivity
matrix QG computed using (1) then gives the probability that a
transmission from vi to vj via a multi-hop path is successful
under the best routing algorithm, which can always find a
shortest and error-free path between from vi to vj if it exists, or
alternatively, the probability that a packet flooded from vi can
reach vj where each node receiving the packet only broadcasts
the packet to its directly-connected neighbors once. Therefore
the (i, j)

th entry of QG can be used as a quality measure
of the end-to-end paths between vi and vj , which takes into
account the fact that availability of an extra path between a
pair of nodes can be exploited to improve the probability of
successful transmissions.

III. SOME KEY INEQUALITIES FOR CONNECTION
PROBABILITIES

The entries of the probabilistic connectivity matrix give an
intuitive idea about the overall quality of end-to-end paths
in a network. In this section, we provide some important
inequalities that may facilitate the analysis of the quality
of connectivity. Some of these inequalities are exploited in
the next section to establish some key properties of the
probabilistic connection matrix itself.

We first introduce some concepts and results that are re-
quired for the further analysis of the probabilistic connectivity
matrix QG.

For a random graph with a given set of vertices, a particular
event is increasing if the event is preserved when more
edges are added into the graph. An event is decreasing if its
complement is increasing.

The following theorems summarizing a relevant form of the
FKG inequality and BK inequality respectively will be used:

Theorem 1. [7, Theorem 1.4] (FKG Inequality) If events
A and B are both increasing events or decreasing events
depending on the state of finitely many edges, then

Pr (A ∩B) ≥ Pr (A) Pr (B)

Theorem 2. [15], [7, Theorem 1.5] (BK Inequality) If events
A and B are both increasing events depending on the state of
finitely many edges, then

Pr (A�B) ≤ Pr (A) Pr (B)

where for two events A and B, A�B denotes the event that
there exist two disjoint sets of edges such that the first set of

edges guarantees the occurrence of A and the second set of
edges guarantees the occurrence of B.

Denote by ξij the event that there is a path between vertices
vi and vj , i 6= j. Denote by ξikj the event that there is a path
between vertices vi and vj and that path passes through the
third vertex vk, where k ∈ Γn\ {i, j} and Γn is the set of
indices of all vertices. Denote by ηij the event that there is an
edge between vertices vi and vj . Denote by πikj the event that
there is a path between vertices vi and vk and there is a path
between vertices vk and vj , where k ∈ Γn\ {i, j}. Obviously

πikj ⇒ ξij (4)

It is clear from the above definitions that

ξij = ηij ∪ (∪k 6=i,jξikj) (5)

Let qij , i 6= j, be the (i, j)
th entry of QG, i.e. qij = Pr (ξij).

The following theorem is obtained from the FKG inequality
and the above definitions.

Theorem 3. For two distinct indices i, j ∈ Γn and ∀k ∈
Γn\ {i, j}

qij ≥ max
k∈Γn\{i,j}

qikqkj (6)

qij ≤ 1− (1− aij)
∏

k∈Γn\{i,j}

(1− qikqkj) (7)

where aij = Pr (ηij).

Proof. We first prove inequality (6). It follows readily from
the above definitions that the event ξij is an increasing event.
Due to (4) and the FKG inequality:

Pr (ξij) ≥ Pr (πikj) ≥ Pr (ξik) Pr (ξkj) (8)

The conclusion follows.
Now we prove the second inequality (7). We will first show

that ξikj ⇔ ξik�ξkj . That is, the occurrence of the event ξikj
is a sufficient and necessary condition for the occurrence of
the event ξik�ξkj .

Using the definition of ξikj , occurrence of ξikj means that
there is a path between vertices vi and vj and that path
passes through vertex vk. It follows that there exist a path
between vertex vi and vertex vk and a path between vertex
vk and vertex vj and the two paths do not have edge(s) in
common. Otherwise, it will contradict the definition of ξikj ,
noting that the definition of a path requires its edges to be
distinct. Therefore ξikj ⇒ ξik�ξkj . Likewise, ξikj ⇐ ξik�ξkj
also follows directly from the definitions of ξikj , ξik, ξkj and
ξik�ξkj . Consequently

Pr (ξikj) = Pr (ξik�ξkj) ≤ Pr (ξik) Pr (ξkj) (9)

where the inequality is a direct result of the BK inequality.
Note that the event ∪k∈Γn\{i,j}ξikj and the event ηij are

independent because the existence of a direct connection
between vi and vj has no impact on the event ∪k∈Γn\{i,j}ξikj .
Therefore using (5) and independence of edges (used in the
second step)

qij = Pr
(
ηij ∪

(
∪k∈Γn\{i,j}ξikj

))



1536-1233 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2014.2366106, IEEE Transactions on Mobile Computing

6

= 1− (1− aij) Pr
(
∩k∈Γn\{i,j}ξikj

)
≤ 1− (1− aij)

∏
k∈Γn\{i,j}

Pr
(
ξikj

)
(10)

≤ 1− (1− aij)
∏

k∈Γn\{i,j}

(1− qikqkj) (11)

where in (10), FKG inequality and the obvious fact that ξikj is
a decreasing event are used and the last step is from (9).

Remark 3. Inequality (6) also provides another proof of a key
relationship used in Lemma 1. Specifically, if qij = 0 then this
inequality implies that at least one among qik and qkj must
be zero. Likewise if neither qik nor qkj is zero, then qij > 0.

When there is no edge between vertices vi and vj , the upper
and lower bounds in Theorem 2 reduce to

max
k∈Γn\{i,j}

qikqkj ≤ qij ≤ 1−
∏

k∈Γn\{i,j}

(1− qikqkj) (12)

The above inequality sheds insight on how the quality of
paths between a pair of vertices is related to the quality
of paths between other pairs of vertices. It can be possibly
used to determine the most effective way of improving the
quality of a particular set of paths by improving the quality
of a particular (set of) edge(s), or equivalently what can be
reasonably expected from an improvement of a particular edge
on the quality of end-to-end paths. Further, an immediate
consequence of this inequality is that: If qij = 0, then at least
one of qik and qkj must be 0 for all k 6= i, j.

The following lemma further shows that the occurrence of a
certain relation among entries of the probabilistic connectivity
matrix QG can be used to derive some topological information
of the graph.

Lemma 2. If qij = qikqkj for distinct vertices vi, vj and vk,
the vertex set V of the graph G (V,E) can be divided into
three non-empty and non-intersecting sub-sets V1, V2 and V3

such that vi ∈ V1, vj ∈ V3 and V2 = {vk} and any possible
path between a vertex in V1 and a vertex in V2 must pass
through vk, and the converse. Further, for any pair of vertices
vl and vm, where vl ∈ V1 and vm ∈ V3, qlm = qlkqkm.

Proof. Using (8) in the second step, it follows that

qij = Pr (ξij\πikj) + Pr (πikj)

≥ Pr (ξij\ξikj) + qikqkj

Therefore qij = qikqkj implies that Pr (ξij\πikj) = 0 or
equivalently ξij ⇔ πikj

Further, Pr (ξij\πikj) = 0 implies that a possible path (i.e.
a path with a non-zero probability) connecting vi and vk and
a possible path connecting vk and vj cannot have any edge in
common. Otherwise a path from vi to vj , bypassing vk, exists
with a non-zero probability which implies Pr (ξij\ξikj) > 0.
The conclusion follows readily that if qij = qikqkj for
three distinct vertices vi, vj and vk, the vertex set V of the
underlying graph G (V,E) can be divided into three non-
empty and non-overlapping sub-sets V1, V2 and V3 such that
vi ∈ V1, vj ∈ V3 and V2 = {vk} and a path between a vertex
in V1 and a vertex in V2, if exists, must pass through vk.

Further, for any pair of vertices vl and vm, where vl ∈ V1

and vm ∈ V3, it is easily shown that Pr (ξlm\πlkm) = 0.
Due to independence of edges and further using the fact that
Pr (ξlm\πlkm) = 0, it can be shown that

Pr (ξlm) = Pr (πlkm) = Pr (ξlk) Pr (ξkm) (13)

where (13) results due to the fact that under the condition of
Pr (ξlm\πlkm) = 0, a path between vertices vl and vk and
a path between vertices vk and vm cannot possibly have any
edge in common.

An implication of Lemma 2 is that for any three distinct
vertices, vi, vj and vk, if a relationship qij = qikqkj holds,
vertex vk must be a critical vertex whose removal will render
the graph disconnected.

IV. THE LARGEST EIGENVALUE OF QG

We now establish a measure of the quality of network
connectivity. Just as the eigenvalues of the adjacency matrix
provide a deterministic measure of connectivity, we now
provide a series of arguments supporting the contention that a
similar property can be ascribed to certain eigenvalues of the
probabilistic connectivity matrix QG.

From Lemma 1, QG is a non-zero nonnegative matrix. Thus
from the Perron-Frobenius Theorem, [24], its largest magni-
tude eigenvalue, known as the Perron-Frobenius eigenvalue is
real and positive. Further as QG is symmetric, all its eigenval-
ues are real, and its largest magnitude eigenvalue λmax(QG) is
also its largest singular value. Also from the Perron-Frobenius
Theorem, should the network be connected, i.e. QG is positive
as opposed to just nonnegative, this eigenvalue is simple.

We now argue that λmax(QG) quantifies the quality of net-
work connectivity. Indeed suppose that i-th node vi transmits
xi number of packets in a time interval. This means that vi
floods the packet across the entire network and each node
receiving the packet only broadcasts the packet once to its
directly connected neighbors. If the same packet is received
more than once by the same node, it is counted as one packet.
Let x = [x1, · · · , xn]> and let yi denote the expected number
of packets received by the i-th node, y = [y1, · · · , yn]>. Then
by definition: y = QGx. As the basic purpose of any network
is to transport packets from some nodes in the network to
some others, a measure of connectivity that naturally arises is
the largest size of y relative to x. One measure of the size of
y is its 2-norm, denoted by ‖y‖2. Then as QG is symmetric
and non-negative,

max
‖x‖2 6=0

‖y‖2
‖x‖2

= max
‖x‖2 6=0

√
y>y√
x>x

= max
‖x‖2 6=0

√
x>Q>GQGx√

x>x

= max
‖x‖2 6=0

√
x>Q2

Gx

x>x
= λmax(QG).

It is well known that for a symmetric QG, the maximum
ratio is attained when x is the eigenvector associated with the
eigenvalue λmax(QG). Observe also from Perron-Frobenius
theory, [24], that as QG is nonnegative, the eigenvector as-
sociated with λmax(QG) has all entries of the same sign,
without loss of generality nonnegative. Thus the largest value
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of max‖x‖2 6=0
‖y‖2
‖x‖2 is itself attained by an x with nonnegative

elements. Thus indeed one can strengthen the equality above
to state that:

max
‖x‖2 6=0,xi≥0

‖y‖2
‖x‖2

= λmax(QG).

Consequently, λmax(QG) is a natural measure of network
connectivity.

There are two other approaches to characterizing
λmax(QG): min-max and max-min flow gain:

max
x>0

min
i

yi
xi

and min
x>0

max
i

yi
xi
.

Regardless of whether QG is symmetric, its largest magni-
tude eigenvalue, obeys min-max and max-min type relations
through the Collatz-Wielandt equalities (see Corollary 8.1.31
in [17]). In particular,

max
x>0

min
i

yi
xi

= λmax(QG) = min
x>0

max
i

yi
xi
.

The case of using λmax(QG) as a measure of connectivity
is further supported by the following observation. When QG
is positive as opposed to just nonnegative, λmax(QG) strictly
increases with increasing values of its off diagonal elements,
[24]. If on the other hand, it has zero elements, then on the
face of it, it is merely nondecreasing. However, recall from
Lemma 1 and Remark 1, that if there are zero entries in
QG, the network partitions into disjoint connected components
represented by graphs Gi(Vi, Ei), and QG itself can be
expressed as QG =

⊕l
i=1QGi

, with QGi
all positive. Should

an element of a particular QGi
increase, then so must its

largest eigenvalue. On the other hand for vi ∈ Vi and vj ∈ Vj ,
qij = 0. Should now this become positive, then we argue
that with G′ij = (Vi

⋃
Vj , Ei

⋃
Ej), λmax(QG′

ij
) does indeed

strictly increase. Indeed suppose the new qij = q > 0. Then
from Lemma 1, for every 0 < qij < q, the resulting QG′

ij
is

positive and the result follows.
We next establish the remarkable fact that in fact QG is a

positive semidefinite matrix. The implications of the positive
semidefiniteness of QG will be explored later. At the core of
the development leading to this result is the following fact.

Lemma 3. Each off-diagonal entry of the probabilistic con-
nectivity matrix QG is a multiaffine2 function of aij .

Proof. Consider an arbitrary off-diagonal entry, qkl of QG.
This is the probability that there is a path between vertices
vk and vl. This event is ξkl. Enumerate the distinct events
constituting a path between vk and vl, listing first those not
containing edge eij as ξ̄1,kl, . . . ξ̄s,kl and then those containing
edge eij as ξ̄s+1,kl ∧ ηij , · · · , ξ̄t,kl ∧ ηij . Of course, the event
that a path exists is the intersection of the events ηpq for the
edges epq along the path. Evidently,

ξkl = ξ̄1,kl∨· · ·∨ ξ̄s,kl∨ (ξ̄1,kl∧ηij)∨· · ·∨ (ξ̄t,kl∧ηij) (14)

2A multiaffine function is affine in each variable when the other variables
are fixed.

Because every event ηij is independent of all the other edge
connection events, it is easy to verify that qkl equals

Pr
(
ξ̄1,kl ∨ · · · ∨ ξ̄t,kl

)
aij + Pr

(
ξ̄1,kl ∨ · · · ∨ ξ̄s,kl

)
(1− aij)

(15)
Since the probabilities multiplying aij and 1− aij in (15) are
probabilities of events independent of the event ηij , they do
not depend on aij . Thus if we hold apq with {i, j} 6= {p, q}
constant, qkl is an affine function of aij . The same applies to
every off-diagonal element of AG. The result follows.

Note that Pr(ξ̄1.kl ∨ · · · ∨ ξ̄t,kl) is the probability of a
connection between vertices vk and vl with the original
network modified by eliminating any link between vertices
{vi, vj}, while Pr(ξ̄s+1,kl ∨ · · · ∨ ξ̄t,kl) is the probability
of a connection between the same vertices with the original
network modified by imposing a perfect connection (aij = 1)
between vertices vi and vj (equivalently the two vertices are
merged); the latter is obviously greater than or equal to the
former. The associated matrices are themselves probabilistic
connectivity matrices.

Due to this multiaffine property, for k, l, i, j ∈ {1, . . . n},
where k 6= l and i 6= j, the following holds:

qlk = c1aij + c2 (16)

where c1 and c2 are in [0, 1], are determined by the state of
the set of edges in E\ {eij} only, and are not affected by the
state of eij ; c2 = 0 implies that vl and vk will be disconnected
without the edge eij . Thus eij is a critical edge for the end-
to-end paths between the vertices vl and vk. c1 = 0 implies
that the state of the edge eij is irrelevant for the end-to-end
paths between vl and vk. In fact, c1 measures the criticality
of the edge eij to the end-to-end paths between vl and vk.

Using the multiaffine property, a more efficient algorithm for
computing QG than the one suggested earlier using (1) can be
constructed. Particularly, the probabilistic connectivity matrix
of a network forming a tree can be easily computed. There-
fore the algorithm may start by first identifying a spanning
tree in G(V,E) and computing the associated probabilistic
connectivity matrix. Then, the edges in E but outside the
spanning tree can be added recursively and the corresponding
probabilistic connectivity matrix updated using (16). Since the
computational complexity of QG depends on 2|E|, let l be
the number of edges in the spanning tree, the computational
complexity improves approximately by a factor of 2l compared
with the algorithm using (1) directly. We intend to explore
in a forthcoming paper algorithms for computing QG from
the aij and network topology. That said, a key purpose of
this paper is to postulate and justify as valid, a measure
of network connectivity and to formulate a procedure for
estimating this measure, without having to explicitly obtain
QG. The following remark is also instructive.

Remark 4. Several papers have exploited multiaffine varia-
tions. These include the design of adaptive estimation algo-
rithms, [20]-[22] and stability analysis [18], [19] and [25].
All exploit the fact that variations are individually affine in
each variable as long as the other variables are fixed. The fact
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that there is an increasing relationship between the elements of
QG and λmax(QG) and the latter depend multiaffinely on the
probabilities aij , suggests the following obvious optimization.
Modify one or more aij under suitable constraints to maximize
λmax(QG). The multiaffine dependence of the qij on the aij
together with the fact that QG is positive semi-definite promise
to provide several avenues for such optimization.

The basis for these calculations is likely to be the following
observation. If QG = aijQ1G+Q2G with Q1G, Q2G indepen-
dent of aij , and if x is a positive eigenvector of QG associated
with the maximum eigenvalue λmax(QG), then it is easily seen
that ∂λmax

∂aij
= xTQ1Gx

xT x
.

We now establish that QG is positive semidefinite.

Theorem 4. The matrix QG = Q>G ∈ Rn×n, is a positive
semi-definite matrix. It is not positive definite iff there exist
i 6= j, such that qij = 1.

We prove this theorem at the end of this section. For the
moment we discuss its implications. One in particular is its use
in the analysis of the flooding algorithm of the next section.
There are also implications to the level of connectivity. Let
λmax(QG) ≥ λ2(QG) ≥ . . . ≥ λmin(QG) ≥ 0 be the eigen-
values of QG. As all diagonal elements of QG are one, the
trace of QG and hence λmax(QG) + λ2(QG) . . .+ λmin(QG)
equals n. Thus as an easy consequence of Theorem 4, n ≥
λmax(QG) ≥ 1 and 1 ≥ λmin(QG) ≥ 0. In the best case, QG
is a matrix with all entries equal to 1. Then λmax(QG) = n
and λ2(QG) = · · · = λmin(QG) = 0. In the worst case, when
no node is connected to any other, QG is an identity matrix.
Then λmax(QG) = λ2(QG) = . . . = λmin(QG) = 1. Consider
also the following consequence of Lemma 1.

Lemma 4. Suppose for all i, j, aij ∈ {0, 1}. Then there is
a relabeling of vertices under which QG is a direct sum of
matrices whose elements are all ones.

Proof. From Lemma 1 under a reordering of vertices QG =⊕
iQGi, QGi all positive. As all aij ∈ {0, 1}, there is an edge

between vi and vj surely when aij = 1; or there is no edge
between vi and vj surely when aij = 0. Thus either there is a
path between vi and vj surely or there is no path between vi
and vj surely, i.e. for all i, j, qij ∈ {0, 1}. Thus every element
of every QGi is 1.

This lemma thus characterizes QG when aij ∈ {0, 1} for all
i, j, i.e. the network is effectively deterministic. In this case,
there is an ordering of vertices for which QG is a direct sum
of square matrices of all ones. If there are m such summands
then n−m eigenvalues of QG are 0. Of course, as noted above,
in the extreme case where all aij = 1, there are n − 1 zero
eigenvalues. This also suggests that the proximity of λmin(QG)
to zero in a connected network, is a measure of connectivity,
as is the number of eigenvalues that are close to zero when
the network is not connected.
Proof of Theorem 4: To prove Theorem 4 we prove in turn
that (A) each QG is positive semidefinite (psd); (B) that should
any qij = 1 for i 6= j then QG cannot be positive definite
(pd); and that (C) if for all i 6= j, 0 ≤ qij < 1, then QG is pd.
First we recount Corollary 2.1 of [19] which exploits the facts

that all convex combinations of psd matrices are psd; and that
multiaffine functions are affine in each variable, if the others
are fixed.

Lemma 5. Suppose for integers n and N , P (α) ∈ Rn is a
multiaffine function of the elements of α = [α1, · · · , αN ]>.
Then P (α) is psd for all αi ∈ [α−i , α

+
i ] and i ∈ {1, · · · , N}

iff it is psd for all αi ∈ {α−i , α
+
i } and i ∈ {1, · · · , N}.

Proof of (A): As matrices of all ones are positive semidefinite,
Lemma 4 proves that QG is psd whenever for all i, j, aij ∈
{0, 1}. The result follows from Lemmas 3 and 5.
Proof of (B): This follows from the following lemma and the
fact that a matrix with two identical rows cannot be pd.

Lemma 6. Suppose for some i 6= j, qij = 1. Then row i and
row j of QG are identical, as are columns i and j.

Proof. Note that QG is a symmetric matrix. Thus it suffices
to show that the row property holds. One has

qij = qji = qii = qjj = 1 (17)

Now consider any k /∈ {i, j}. Using Theorem 3 and (17):
qik ≥ qijqjk = qjk and qjk ≥ qijqik = qik. Thus qjk =
qik.

Proof of (C): Denote N = n(n−1)
2 ; A ∈ RN a vector whose

elements are 0 ≤ aij < 1, i > j; Al ∈ RN the vector whose
first l elements equal the corresponding elements of A and
the rest are zeros; A+

l ∈ RN the vector whose (l + 1) − th
element is one and the rest identical to Al; and QG(A) the
QG formed when the aij are the elements of A. As AN = A
it suffices to show that QG(Al) is pd for all l ∈ {0, · · · , N}.

Use induction on l. Note that for every l, there is an αl ∈
(0, 1] such that Al+1 = αlAl+(1−αl)A+

l . Because of Lemma
3, and the fact that only the (l + 1)-th element of the three
vectors Al+1, Al and A+

l differ from each other, there holds:

QG(Al+1) = αlQG(Al) + (1− αl)QG(A+
l ), αl ∈ (0, 1].

(18)
As A0 = 0, QG(A0) = I and is pd. Suppose for some l ∈
{0, · · · , N − 1}, QG(Al) is pd. From (A), QG(A+

l ) is psd.
Thus (18) implies that QG(Al+1) is pd.

V. A DECENTRALIZED ALGORITHM FOR FINDING λmax

We now describe an algorithm for computing λmax(G) in
a decentralized fashion without having to know QG or even
the individual link probabilities. We do require the ability to
experiment by introducing packets repeatedly at nodes, and
measuring how many arrive at their intended destinations. For
this reason, we call the algorithm the flooding algorithm.

Section V-A provides a recursion and a theorem that provide
the conceptual basis for the algorithm. Section V-B explains
the theorem by exposing certain properties of positive matri-
ces. Section V-C explains how the near convergence of this
conceptual algorithm can be locally detected at each node.
The recursion in principle requires that QG be known. Section
V-D provides the flooding algorithm that under the temporal
independence of the links, implements this algorithm in a
completely decentralized fashion, without having to know QG.
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Section V-E discusses some practical issues and convergence
rates. Section V-F has simulations. Section V-G proves a
theorem in Section V-C.

A. A basic recursion.

We begin with a theorem on the conceptual recursion.

Theorem 5. Suppose QG = Q>G ∈ Rn×n is positive. Consider
z[k] = [z1[k], · · · , zn[k]]> and the recursion,

z[k + 1] = QGz[k] (19)

with z[0] strictly positive. Then for all i ∈ {1, · · · , n},

lim
k→∞

zi[k + 1]

zi[k]
= λmax (QG) (20)

Thus z[k] converges to a positive eigenvector of QG as-
sociated with its maximum eigenvalue. Further (19) induces
zi[k+1]
zi[k] , locally seen at each node, to converge to λmax (QG).
Many variations of this theorem appear in the literature,

[26], [23], [27]. In most cases it is proved under an additional
normalization, namely replacing (19) by:

z[k + 1] = QGz[k]/‖z[k]‖. (21)

Such a normalization militates against our eventual goal of
decentralization as its implementation requires each node to
know the state of all other nodes. We still omit the proof of
Theorem 5. Instead we recount properties of positive matrices
that explain this result and help derive an important refinement.

B. Properties of (19)

Consider the projective metric [27], p(x, y), between two
positive vectors x and y with elements xi and yi:

p(x, y) = ln

[
maxi

xi

yi

mini
xi

yi

]
. (22)

Evidently p(x, y) ≥ 0 with equality iff for a scalar α, x = αy.
This metric is scale invariant, i.e. for all positive scalar α, β

p(αx, βy) = p(x, y). (23)

For a strictly positive matrix such as QG there is a 0 ≤ τ < 1
such that for all positive x, y, p (QGx,QGy) ≤ τp(x, y) [27].
In fact τ is independent of x and y and depends only on QG.

Call λmax(QG) the Perron-Frobenius (PF) eigenvalue of
QG and associated eigenvectors PF eigenvectors. Then for
a positive QG, as PF eigenvectors are positive to within a
scaling, with η = [η1, · · · , ηn]> a positive PF eigenvector,
using (23) in (19) one has:

p (z[k + 1], η) = p (z[k + 1], λmax (QG) η) (24)
= p (QGz[k], QGη) ≤ τp (z[k], η) . (25)

Thus as 0 ≤ τ < 1,

lim
k→∞

p (z[k], η) = 0. (26)

Thus, for every εn > 0, there exists k1 such that for all k ≥ k1,

0 ≤ ln

[
maxi

zi[k]
ηi

mini
zi[k]
ηi

]
≤ ln(1 + εn). (27)

Then the following lemma connects (20) to (27).

Lemma 7. Suppose the probabilistic connectivity matrix
QG ∈ Rn×n is symmetric and positive, and η = [η1, · · · , ηn]>

PF eigenvector of QG with all elements strictly positive.
Consider (19) with positive z[0]. Suppose that for some β ≥ 0
there exists a k0 such that for all k ≥ k0,

1 ≤
maxi∈{1,··· ,n}

zi[k]
ηi

mini∈{1,··· ,n}
zi[k]
ηi

≤ 1 + β. (28)

Then for all i ∈ {1, · · · , n}, and k ≥ k0∣∣∣∣zi[k + 1]

zi[k]
− λmax (QG)

∣∣∣∣ ≤ βλmax(QG).

Proof. As QG and z[0] are positive so is z[k]. Consider any
k for which (28) holds. At such a k define α = mini

zi[k]
ηi
.

Then for all i ∈ {1, · · · , n}, there holds

αηi ≤ zi[k] ≤ (1 + β)αηi. (29)

Define ξ[k] = z[k]−αη and (QGξ[k])i as the i-th element of
QGξ[k]. Because of (29), ξ[k] is nonnegative. Thus, as QG is
positive, QGξ[k] is nonnegative and for each i ∈ {1, · · · , n}:

0 ≤ (QGξ[k])i
= (QG(z[k]− αη[k]))i
≤ (QG((1 + β)α− α))η[k])i
= βαλmax(QG)ηi. (30)

As z[k+1] = QGξ[k]+αλmax(QG)η, and ξ[k] is nonnegative,
from (30) for all i ∈ {1, · · · , n}, there thus holds:

αλmax(QG)ηi ≤ zi[k + 1] ≤ α(1 + β)λmax(QG)ηi. (31)

Hence (29) and (31) provide:

−βλmax(QG)

1 + β
≤ zi[k + 1]

zi[k]
− λmax (QG) ≤ βλmax(QG).

Identify εn in (27) with β in Lemma 7. Then there exists a
k1 such that for all k ≥ k1 and all i ∈ {1, · · · , n}:∣∣∣∣zi[k + 1]

zi[k]
− λmax (QG)

∣∣∣∣ ≤ εnλmax (QG) . (32)

This constitutes an explanation if not a proof of Theorem 5.
The convergence is monotonic in the sense of (25).

Remark 5. Should QG be nonnegative as opposed to positive,
the ratio for the i-th element of z[k] will converge to the
largest eigenvalue of the probabilistic connectivity matrix of
the component to which the corresponding nodes belong.

C. Local detection of convergence

Since the convergence in (20) is asymptotic, we now explore
whether each node can detect near convergence locally. Indeed
the next theorem states that should n successive ratios zi[k+1]

zi[k]
be close enough for any given i, then this ratio must be close
to λmax(QG) and will remain close in subsequent iterations.
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Theorem 6. Under the conditions of Theorem 5, consider, for
some c > 0, i ∈ {1, · · · , n}, δ > 0 and k0 the n inequalities:∣∣∣∣zi[k + 1]

zi[k]
− c
∣∣∣∣ ≤ δ, ∀k ∈ {k0, k0+1, · · · , k0+n−1}. (33)

Then for every ε > 0, there exists a δ∗ such that for all 0 <
δ ≤ δ∗ , (33) implies for all k ≥ k0∣∣∣∣zi[k + 1]

zi[k]
− λmax(QG)

∣∣∣∣ ≤ ε. (34)

We will prove this Theorem in Section V-G. While this
theorem does permit the i-th node to conclude if its ratios
are close to the postulated connectivity measure, the question
remains, whether this node can also conclude that all other
nodes are also close to convergence. We now argue that though
this is not true in general, it is true for generic values of the
probabilities aij , and hence also for generic networks.

To see this suppose for sufficiently small ε, (34) holds for
i = 1. Were one to be able to conclude that this implied that
p(z[k0], η) were small, η being a PF eigenvector of QG, then
one can conclude that (34) would hold for all i, but possibly
different, albeit small ε. So the issue boils down to whether
(34) implies a correspondingly small p(z[k0], η)?

Though a small p(z[k0], η), implies a small ε in (34), the
reverse, is generically but not always true. For all k ≥ k0,

z1[k] = e>1 Q
k−k0
G z[k0], (35)

where e1 = [1, 0, · · · , 0]>. Should the pair [QG, e
>
1 ] be

completely observable (c.o.), [28], i.e.

W =
[
e>1 , e

>
1 QG, · · · , e>1 Qn−1

G

]>
(36)

be nonsingular then the z[k0] leading to the n-successive
samples in (35) is unique. In such a case a small ε in (34), with
i = 1, forces a small p(z[k0], η). Consequently, each node can
detect near convergence of the ratios at all other nodes, from
the near convergence of its own ratios.

For every, n > 2, we now provide example networks, that
(a) for a particular choice of the probabilities aij yield a QG
for which [QG, e

>
1 ] is not c.o.; and (b) for a particular choice

of the probabilities aij yield a QG for which [QG, e
>
1 ] is c.o..

In particular (a) shows that there are networks for which
a single node cannot conclude that the near convergence of
its ratios implies that other nodes are near convergence. What
is more important from a practical point of view is (b), that
shows that almost all choices of aij yield networks for which
near convergence at one node implies near convergence at all.
This is so as QG and hence W in (36) is polynomial in the
aij . Thus, either W is singular for all values of aij or it is
nonsingular for generic values. The network is as follows.

Example 3. For n > 2, choose the aij = aji as follows.
For some 1 ≥ ri > 0 and i ∈ {1, · · · , n − 1} there holds:
a1,i+1 = ri. For all i ∈ {2, · · · , n−1} and j ∈ {i+1, · · · , n},
aij = 0. Under the independence assumption,

qij =

{
rj−1 i = 1 and j ∈ {2, · · · , n}
rirj i ∈ {2, · · · , n− 1} and j ∈ {i+ 1, · · · , n} .

(37)

Thus, e.g. for n = 4 one has

Q =


1 r1 r2 r3

r1 1 r1r2 r1r3

r2 r1r2 1 r2r3

r3 r1r3 r2r3 1


The next Lemma proves both (a) and (b) above.

Lemma 8. For n > 2, consider under 0 < ri < 1,
the symmetric probabilistic connectivity matrix with diagonal
elements qii = 1 and the remaining elements as in (37).
Then with e1 = [1, 0, · · · , 0]>, the pair [QG, e

>
1 ] is completely

observable iff the ri are all distinct.

Proof. By the Popov-Belevitch-Hautus (PBH) test, [28],
[QG, e

>
1 ] is a c.o. pair iff for all scalar complex λ:

rank
([
e1 λI −QG

])
= n. (38)

With r = [r1, · · · , rn−1]> and R = diag {r2
i }
n−1
i=1 , (37) is

QG =

[
1 r>

r I −R+ rr>

]
. (39)

Suppose the ri are distinct, but to establish a contradiction,
[QG, e

>
1 ] is not c.o., i.e. (38) is violated. Then there exists a

scalar complex λ and nonzero f ∈ R(n−1) such that

r>f = 0 (40)

and
(
(λ− 1)I +R− rr>

)
f = 0; i.e.

((λ− 1)I +R) f = 0. (41)

As ri > 0, ∀i, from (40) at least two elements of f , without
loss of generality f1 and f2, are non-zero. Thus (41) yields

λ = 1− r2
i ∀i ∈ {1, 2} (42)

which is impossible as r2
1 6= r2

2 , establishing a contradiction.
Now suppose at least two elements of r, without loss of gen-

erality, r1 and r2, are equal. Choose f = [0, 1,−1, 0, · · · , 0]>,
and the scalar λ as in (42). Then clearly e>1 f = 0. Further,

(λI −QG) f =
[
1 r1 r2 0>n−3

]>
(r1 − r2) = 0,

where 0n−3 is the zero vector in Rn−3 (empty if n = 3). Thus
(38) is violated and [QG, e

>
1 ] is not c.o..

Note that for n = 2, [QG, e
>
1 ] is c.o. iff q12 6= 0. We have

effectively shown that for almost all networks, local detection
of near convergence implies near convergence of all nodes.

D. The flooding algorithm

Observe, (19) requires that the i-th node knows all the qij
as well as all elements of z[k]. We now provide an algorithm
that sidesteps this need and can be used in our probabilistic
network setting provided the transmissions at different time
slots are i.i.d. Formally, we make the following assumption.

Assumption 1. The indicator random variables Ii defined
before Definition 1 are i.i.d. across transmission slots.

This assumption permits us to postulate a flooding algorithm
that asymptotically approximates (19) in a totally decentralized
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fashion. Suppose, for some k, z[k] has been obtained, and
in a series of simultaneous experiments the i-th node floods
the network with xi = zi[k] number of packets. Then the
expected number of packets received by this node is the i-
th entry of QGz[k]. Now suppose for some K, each node
repeats this flooding operation K times. Denote by z[k,m], i ∈
{1, ..., n},m ∈ {1, ...,K}, the number of packets received by
node vi in the m-th repetition. Then, because of Assumption
1, by the law of large numbers, for sufficiently large K:

z[k + 1] ≈ 1

K

K∑
m=1

z[k,m]. (43)

There are clearly two approximations inherent in (43). First,
implicitly for noninteger z[k], we quantize to the nearest vector
of integers. Secondly (43) represents a better approximation
as K grows. We comment on the size of K in Section V-E.

Accordingly, the flooding algorithm we postulate is as
follows: For some K, l = 0 and positive vector y[l,K],
let the i-th node flood the network with yi[l,K] number of
packets. Every node repeats this experiment K times in the l-th
iteration. The number of packets transmitted by the i-th node
in the (l + 1)-th iteration is the number of packets averaged
over K transmissions, received by it in the l-th iteration. Then

lim
l→∞

{
lim
K→∞

yi[l + 1,K]

yi[l,K]

}
= λmax (QG) . (44)

In principle, the number of packets from a node increases
by a factor approximately equal to λmax (QG) in each iteration
of (19). In a large network, this leaves open the risk that
after a modest number of iterations, the number of packets
becomes very large. As explained in Section V-E, this may
require larger values of K for the approximation in (43) to be
sufficiently good. The implementation of (21), rather than just
(19) would avoid this difficulty. However, the normalization by
‖z[k]‖ in (21), does not permit a decentralized implementation.
Instead we propose an optional renormalization to combat
this challenge. Specifically, should the yi[l,K] exceed a pre-
specified threshold at a particular node i, then this node must
divide the number of packets it transmits by a pre-specified
factor. It can then piggyback this scaling information in every
packet it transmits, so that all the other nodes are alerted of
this scaling, and scale the number of packets they transmit by
the the same factor. If the pre-designated threshold is chosen
to be sufficiently large, the chance of missing this scaling
information is negligible. As only the convergence of ratios
are at issue, there is no resulting impact on convergence speed
to speak of. As argued later, this option is rarely needed.

Despite quantization, and approximate averaging, simula-
tions in Section V-F show that relatively small l and K, suffice
for the ratios yi[l+1,K]

yi[l,K] , i ∈ {1, ..., n}, to converge to a value
that is very close to λmax (QG).

E. Practical issues and convergence rates

To avoid the effect of network delays, packets must be
accumulated over large intervals. The convergence speed of
(19) is measured by λ2(QG)/λmax(QG), where λ2(QG) is
the second largest eigenvalue of QG. Inter alia, this suggests
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Fig. 3. An illustration of the convergence of the ratio yi[l+1]
yi[l]

to λmax (QG).
The simulation result is obtained from a random network with six nodes. aijs,
1 ≤ i < j ≤ 6, are drawn uniformly, randomly and independently from [0, 1].
K is chosen to be 10. The horizontal axis is the number of iterations and the
vertical axis is the difference between yi[l+1]

yi[l]
and λmax (QG). Since there

are six nodes, six curves are shown in the figure corresponding to the value
of yi[l+1]

yi[l]
for each of the six nodes.

faster convergence in highly connected networks. To see why,
observe that as QG is positive semidefinite, and its trace is
always n, λ2(QG) is upper bounded by n−λmax(QG). Thus
λmax (QG) lower bounds the convergence rate.

The slowest part of the convergence is determined by the
law of large numbers. In fact K is proportional to the variance
of the i.i.d. variables being averaged. As QG is positive
semidefinite and has trace n, λmax(QG) ≥ 1. Thus, in (19)
zi[k] is potentially unbounded though ratios of successive
values is not. Nonetheless the flooding algorithm does not
estimate these ratios directly, but rather estimates the zi[k].

Just as the zi[k], yi[l,K] grow in size with l. Larger they are,
the larger their initial variance. This in turn correspondingly
increases the required K, thus slowing convergence. This
underscores the importance of the renormalization proposed
in Section V-D, and used in the simulations. There are other
mechanisms of renormalization one may invoke. For example,
for some predetermined integer m all nodes scale down
yi[l,K] by a factor C whenever l is a multiple of m.

Actually, in practice renormalization is rarely needed. As
shown in the simulations in Section V-F, in networks with even
moderate connectivity, convergence is so rapid that it can be
detected well before packet growth becomes unmanageable. In
networks with low connectivity, λmax(QG) is relatively small,
and larger number of iterations can be sustained before packet
growth becomes so large as to require normalization.

F. Simulations

The simulation shown in Fig. 3 and Fig. 4 involves six
nodes, and K = 10. Within just seven iterations, the ratio
(44) converges to within half a percent of the true λmax (QG).

Fig. 5, considers a network with 50 nodes where aijs,
1 ≤ i < j ≤ 50, are drawn uniformly from [0, P ]. Varying
P , which controls network connectivity, illustrates the effect
of connectivity to convergence speed. Note that when the
number of nodes equals 50, the number of edges equals
1225. It becomes computationally prohibitive to compute QG
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Fig. 4. A further illustration of the convergence of the ratio yi[l+1]
yi[l]

to
λmax (QG). The simulation result is obtained from a random network with
six nodes. aijs, 1 ≤ i < j ≤ 6, are drawn uniformly, randomly and
independently from [0, 1]. K is chosen to be 10. The horizontal axis is the
number of iterations and the vertical axis is the average absolute difference
between yi[l+1]

yi[l]
and λmax (QG), i.e. | yi[l+1]

yi[l]
−λmax (QG) | averaged over

six nodes. Further the simulation is repeated 50 times and each point in the
curve corresponds to the average value over 50 simulations.

and λmax (QG) whose computational complexity increases
approximately with the number of edges according to 2|E|

with |E| being the number of edges. Therefore in the figure
we use yi[10]

yi[9] averaged over 50 nodes as an approximation
of λmax (QG). Further, as explained in Section V-D, to make
the algorithm more efficient, whenever the number of packets
flooded by a node in an iteration exceeds 5000, the number
of packets flooded by all nodes in the next iteration is divided
by a common factor equal to the number of nodes.

A feature of note is that foreshadowed at the end of Section
V-E. Observe in Figure 5, that even with P = 0.5, representing
a network of moderate connectivity, convergence is virtually
immediate. When P > 0.5, this convergence occurs by l = 1,
obviating the need for renormalization.

G. Proof of Theorem 6

We conclude this Section by proving Theorem 6 which
requires the following lemma.

Lemma 9. Suppose F = F> ∈ Rn×n is positive and h ∈ Rn
is nonnegative. Suppose also that there exists a ψ ∈ Rn such
that: [

h>, h>F, · · · , h>Fn−1
]>
ψ = 0 (45)

Consider any eigenvector ωi of F , other than the PF eigen-
vector, and a nonzero γ ∈ Rn that is given by αψ + βωi for
some constants α, β. Then γ must have at least one element
negative and another positive.

Proof. As F = F>, its eigenvalues are real and the eigenvec-
tors can be chosen to form an orthonormal basis. Suppose
λ1 > λ2 ≥ · · · ≥ λn, where the strictness of the first
inequality is a consequence of F being positive. Suppose ωi
is a unit norm eigenvector corresponding to λi, with at least
one element positive. From the PF Theorem ω1 is positive.
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Fig. 5. A further illustration of the convergence of the ratio yi[l+1]
yi[l]

to
λmax (QG). The simulation result is obtained from a random network with
50 nodes. aijs, 1 ≤ i < j ≤ 50, are drawn uniformly, randomly and
independently from [0, P ]. K is chosen to be 10. The horizontal axis is the
number of iterations and the vertical axis is the average absolute difference
between yi[l+1]

yi[l]
and λmax (QG), i.e. | yi[l+1]

yi[l]
− λmax (QG) | averaged

over 50 nodes. Further the simulation is repeated 10 times and each point
in the curve corresponds to the average value over 10 simulations. As P
increases above 0.5, the ratio converges to the true value of λmax (QG) = 50
immediately in the first iteration.

Suppose γ is a linear combination of ψ with some ωi,
i ∈ {2, · · · , n}. To establish a contradiction suppose all
elements of γ 6= 0 are nonnegative. Define the orthogonal
matrix U =

[
ω1 Ω

]
with Ω =

[
ω2, · · · , ωn

]
. Observe:

ψ = UU>ψ =
∑n
i=1 ωi

(
U>ψ

)
i
, where

(
U>ψ

)
i

denotes the
i-th element of U>ψ. Now consider two cases.
Case I

(
U>ψ

)
1

= 0: Then ψ is in the range space of
Ω. Then as γ is a linear combination of ψ and a column
of Ω, γ is in the range space of Ω as well. Now as every
column of Ω is orthogonal to ω1, so must be γ. Then as ω1 is
positive, γ cannot be nonnegative and nonzero, establishing a
contradiction.
Case II

(
U>ψ

)
1
6= 0: Observe that F = UΛU>, with

Λ = diag {λ1, · · · , λn}. Thus, [28], (45) implies for all t:

0 = h>eFtψ = h>UeΛtU>ψ =

N∑
i=1

(
h>U

)
i

(
U>ψ

)
i
eλit

As λ1 6= λi, for all i ∈ {2, · · · , n}, this in particular implies
that

(
h>U

)
1

(
U>ψ

)
1

= 0, i.e. 0 =
(
h>U

)
1

= h>ω1. As h 6=
0 is nonnegative and ω1 is positive, this cannot be true.

We now prove Theorem 6 by showing in turn the following:
For small enough δ, (A) c in (33) is close to an eigenvalue of
QG; (B) that this is λmax(QG); and (C) that subsequent ratios
zi[k+1]
zi[k] remain close to λmax(QG).

Proof of (A): With ei a vector with i-th element 1 and rest 0,

zi[k] = e>i Q
k
Gz[0] ∀k ≥ 0. (46)

Because of (33), there exist |δi| < δ, such that for all k ∈
{k0, · · · , k0 + n}, there holds:

zi[k] =


k∏

j=k0

(c+ δj)

 zi[k0] (47)
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Suppose the characteristic polynomial of QG is given by:
det (λI −QG) = λn −

∑n−1
i=0 αiλ

i. Then

QnG =

n−1∑
i=0

αiQ
i
G. (48)

From (47), (46) and (48), there obtains,
n∏

j=k0

(c+ δj)

 zi[k0] = zi[k0 + n]

= e>i Q
k0+n
G z[0] = e>i

(
n−1∑
l=0

αlQ
l
G

)
Qk0G z[0]

=

n−1∑
l=0

αle
>
i Q

k0+l
G z[0] =

n−1∑
l=0

αlzi[l + k0]

=

n−1∑
l=0

αl


k0+l∏
j=k0

(c+ δj)


 zi[k0].

A positive z[0] implies z[k] is positive for all k > 0. Thus:{
k0+n∏
i=k0

(c+ δi)

}
=

(
n−1∑
l=0

αl

{
k0+l∏
i=k0

(c+ δi)

})
. (49)

As the roots of a monic polynomial vary continuously with
its coefficients, with λmax (QG) = λ1 > λ2 ≥ · · · ≥ λn the
eigenvalues of QG, for every ε > 0 there exists a δ∗ such that
for all 0 < δ ≤ δ∗ under (33)

c ∈
n⋃
i=1

[λi − ε, λi + ε] (50)

Proof of (B): We will now show that in fact for every ε > 0
there exists a δ∗ such that for all 0 < δ ≤ δ∗ under (33)
c ∈ [λ1 − ε, λ1 + ε].

Suppose instead that for some l ∈ {2, · · · , n}, c ∈ [λl −
ε, λl+ε]. As (46) holds for all k ∈ {k0, · · · , k0+n−1}, under
(36) we have

[
zi[k0] · · · zi[k0 + n− 1]

]
= z>[k0]W>.

Suppose χ is an eigenvector of QG corresponding to λl, and χi
is its i-th element. Then:

[
χi · · · λk0+n−1

l χi
]

= χ>W>.
Then a standard continuity argument shows that for every ε
there exists a δ∗ such that for all 0 < δ ≤ δ∗ under (33)

z[k0] = ψ + χ+ e, ‖e‖ ≤ ε, and Wψ = 0. (51)

As z[0] is positive, so is z[k0]. Yet, because of Lemma 9, ψ+χ
has at least one negative element. Thus, because of (51) for
sufficiently small ε, z[k0] has at least one negative element.
Proof of (C): Thus with η a PF eigenvector of QG, and ψ
obeying (51), for every ε there exists a δ∗ such that for all
0 < δ ≤ δ∗ under (33), (51) holds. Thus

e>i Q
m
Gψ = 0; ∀ m. (52)

Now consider the alternative recursion: s[k + 1] =
QGs[k]; s[k0] = η + e. Because of (52) for all k ≥ k0,

zi[k] = si[k]. (53)

Further, as η is a PF eigenvector, for every ε there exists a δ∗

such that for all 0 < δ ≤ δ∗ under (33) p(s[k0], η) ≤ ln(1+ε).

Consequently from (25) and Lemma 7 for every ε there exists a
δ∗ such that for all 0 < δ ≤ δ∗ under (33) the following holds
for all j ∈ {1, · · · , n} and k ≥ k0:

∣∣∣ sj [k+1]
sj [k] − λmax (QG)

∣∣∣ ≤
ελmax (QG) . The result follows as this also holds for j = i,
λmax (QG) is finite and (53).

VI. CONCLUSIONS AND FURTHER WORK

We have considered the probabilistic connectivity matrix
QG as a tool to measure the quality of network connectivity.
Key properties of this matrix and their relation to the quality
of network connectivity have been demonstrated. In particular,
the off-diagonal entries of the probabilistic connectivity matrix
provide a measure of the quality of end-to-end connections.
We have provided theoretical analysis supporting the use of the
largest eigenvalue of QG as a measure of the quality of overall
network connectivity. Our analysis compares networks with
the same number of nodes. For networks with different number
of nodes, the largest eigenvalue of QG, normalized by the
number of nodes may be used as the quality metric. A flooding
algorithm is presented for experimentally estimating the largest
eigenvalue in a decentralized fashion, without knowledge of
the individual link probabilities or the network topology.

Inequalities between the entries of the probabilistic con-
nectivity matrix have been established. These may provide
insights into the correlations between quality of end-to-end
connections. We have also shown that QG is positive semidef-
inite and its off-diagonal entries are multiaffine functions
of link probabilities. These two properties should facilitate
optimization and robust network design, e.g. determining the
link that maximally impacts network quality, and determining
quantitatively the relative criticality of a link to either a
particular end-to-end connection or to the entire network.

We assume that the links are symmetric and independent.
We expect that our analysis can be extended with nontrivial
work to the case where the assumption on symmetric links
is removed. We conjecture that the largest singular value,
as opposed to the largest eigenvalue of QG is a more ap-
propriate measure of connectivity. Relaxing the independence
assumption requires more work. Yet, we are encouraged by
the fact that the elements of QG, being probabilities of union
of edge events, are multiaffine functions of the aij and the
conditional link probabilities, as P (A

⋃
B) = P (A)+P (B)−

P (B|A)P (A). Thus we still expect all the results in Section
IV to hold, though the proof may be non-trivial. In real
applications link correlations may arise due to both physical
layer correlations and correlations caused by traffic congestion.

Another implicit assumption in the paper is that traffic
is uniformly distributed and traffic between every source-
destination pair is equally important. If this is not the case, a
weighted version of the probabilistic connectivity matrix can
be contemplated. Whether our results can be extended to a
weighted probabilistic connectivity matrix is an open issue.
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