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Abstract—In this paper, we study the impact of the base station
(BS) idle mode capability (IMC) on the network performance in
dense small cell networks (SCNs). Different from existing works,
we consider a sophisticated path loss model incorporating both
line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions.
Analytical results are obtained for the coverage probability and
the area spectral efficiency (ASE) performance for SCNs with
IMCs at the BSs. The upper bound, the lower bound and
the approximate expression of the activated BS density are
also derived. The performance impact of the IMC is shown
to be significant. As the BS density surpasses the UE density,
thus creating a surplus of BSs, the coverage probability will
continuously increase toward one. For the practical regime of the
BS density, the results derived from our analysis are distinctively
different from existing results, and thus shed new light on the
deployment and the operation of future dense SCNs.

I. INTRODUCTION

Dense small cell networks (SCNs) have attracted much
attention as one of the most promising approaches to rapidly
increase network capacity and meet the ever-increasing ca-
pacity demands [1]. Indeed, the orthogonal deployment1 of
dense SCNs within the existing macrocell networks [2] has
been selected as the workhorse for capacity enhancement in
the 3rd Generation Partnership Project (3GPP) 4th-generation
(4G) and the 5th-generation (5G) networks. This is due to its
large spectrum reuse and its easy management [3]; the latter
one arising from its low interaction with the macrocell tier,
e.g., no inter-tier interference. In this paper, the focus is on the
analysis of these dense SCNs with an orthogonal deployment
in the existing macrocell networks.

Before 2015, the common understanding on dense SCNs
was that the density of base stations (BSs) would not affect
the per-BS coverage probability performance in interference-
limited fully-loaded wireless networks [4], where the coverage
probability is defined as the probability that the signal-to-
interference-plus-noise ratio (SINR) of a typical user equip-
ment (UE) is above a SINR threshold γ. Consequently, the

♣Guoqiang Mao’s research is supported by the Australian Research Council
(ARC) Discovery projects DP110100538 and DP120102030 and the Chinese
National Science Foundation project 61428102.

1The orthogonal deployment means that small cells and macrocells operate
on different frequency spectrum, i.e., Small Cell Scenario #2a defined in [2].
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Theoretical results before 2015 [4] (single-slope PL, +∞ UEs/km2)

Our recent theoretical results [10] (LoS/NLoS PL, +∞ UEs/km2)

New theoretical results in this paper (LoS/NLoS PL, 300 UEs/km2

4G 5G~
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Fig. 1. Theoretical comparison of the coverage probability performance when
the SINR threshold γ = 0 dB. Note that all the results are obtained using
practical 3GPP channel models [5, 6], which will be introduced in details
later. Moreover, the BS density regions for the 4G and the 5G networks have
been illustrated in the figure, considering that the typical BS density of the
4G SCNs is in the order of tens of BSs/km2 [2, 3].

area spectral efficiency (ASE) performance in bps/Hz/km2

would scale linearly with the network densification [4]. The
intuition of such conclusion is that the increase in the inter-
ference power caused by a denser network would be exactly
compensated by the increase in the signal power due to the
reduced distance between transmitters and receivers. Fig. 1
shows this theoretical coverage probability behavior predicted
in [4]. However, it is important to note that such conclusion
was obtained with considerable simplifications on the UE
deployment and propagation environment, e.g., all BSs were
activated considering an infinite UE density. Moreover, a
single-slope path loss model was used, which should be placed
under scrutiny when evaluating practical dense SCNs, since
they are fundamentally different from sparse ones [3].

A few noteworthy studies have been carried out in the
last year to revisit the network performance analysis for
dense SCNs under more practical propagation assumptions.
In [7], the authors considered a multi-slope piece-wise path
loss function, while in [8], the authors investigated line-
of-sight (LoS) and non-line-of-sight (NLoS) transmission as
a probabilistic event for a millimeter wave communication
scenario. In our very recent work [9, 10], we took a step
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further and generalized these works by considering both piece-
wise path loss functions and probabilistic LoS and NLoS
transmissions. Our new finding was not only quantitatively
but also qualitatively different from the results in [4, 7, 8].
In more detail, our analysis demonstrated that when the BS
density is larger than a threshold λ∗, the coverage probability
performance will decrease as the SCN becomes denser, which
in turn may make the ASE suffer from a slow growth or
even a decrease on the journey from 4G to 5G. The intuition
behind this result is that the interference power increases faster
than the signal power due to the transition of a large number
of interference paths from NLoS to LoS with the network
densification. Our analysis also demonstrated that the decrease
of the coverage probability gradually slows down as the SCN
becomes ultra-dense. This is because both the interference
power and the signal power are LoS dominated and thus
statistically stable. Fig. 1 shows this new theoretical coverage
probability result, where λ∗ is around 20 BSs/km2.

Fortunately, the UE density is finite in practice, and thus a
large number of SCN BSs could be switched off in dense
SCNs, if there is no active UE within their coverage ar-
eas, which mitigates unnecessary inter-cell interference and
reduces energy consumption [11–13]. In more detail, by
dynamically turning off idle BSs, the interference suffered
by UEs from always-on channels, e.g., synchronization and
broadcast channels, and data channels can be reduced, thus
improving UEs’ coverage probability. Besides, the energy
efficiency of the SCNs can be significantly enhanced because
(i) BSs without any active UE can be put into a zero/low-
power idle mode until a UE becomes active in its coverage
area, and (ii) activated BSs usually enjoy high-SINR links,
i.e., energy-efficient links, with their associated UEs thanks to
the BS selection from a surplus of BSs. Such capability of
idle mode at the BSs is referred to as the idle mode capability
(IMC) hereafter.

In this paper, we investigate for the first time the impact of
the IMC on the coverage probability performance. Our new
theoretical results with a UE density of 300 UEs/km2, a typical
UE density in 5G [3], are compared with the existing results [4,
10] in Fig. 1. The performance impact of the IMC is shown
to be significant: as the BS density surpasses the UE density,
thus creating a surplus of BSs, the coverage probability will
continuously increase toward one, addressing the issue caused
by the NLoS to LoS transition of interfering paths. Such
performance behavior is referred to as the Coverage Prob-
ability Takeoff hereafter. The intuition behind the Coverage
Probability Takeoff is that the interference power will remain
constant with the network densification due to the IMC at
the BSs, while the signal power will continuously grow due
to the BS selection and the shorter BS-to-UE distance, thus
permitting stronger serving BS links.

The main contributions of this paper are as follows:
• Analytical results are obtained for the coverage proba-

bility and the ASE performance for SCNs with IMC at
the BSs using a general path loss model incorporating
both LoS and NLoS transmissions. Note that the existing

works on the IMC only treat single-slope path loss models
where UEs are always associated with the nearest BS [11,
13], while our work considers more practical path loss
models with LoS and NLoS transmissions where UEs
may connect to a farther BS with a LoS path.

• The upper bound, the lower bound and the approximate
expression of the activated BS density are derived for the
SCNs with IMCs considering practical path loss models
with LoS and NLoS transmissions.

II. SYSTEM MODEL

We consider a downlink (DL) cellular network with BSs
deployed on a plane according to a homogeneous Poisson
point process (HPPP) Φ of intensity λ BSs/km2. Active UEs
are Poisson distributed in the considered network with an
intensity of ρ UEs/km2. Here, we only consider active UEs
in the network because non-active UEs do not trigger data
transmission, and thus they are ignored in our analysis.

In our previous works [9, 10] and other related works [7, 8],
ρ was assumed to be sufficiently larger than λ so that each BS
has at least one associated UE in its coverage. In this work,
we impose no such constraint on ρ, and hence a BS with
the IMC will be switched off if there is no UE connected to
it, which reduces interference to neighboring UEs as well as
energy consumption. Since UEs are randomly and uniformly
distributed in the network, we adopt a common assumption
that the activated BSs also follow an HPPP distribution Φ̃ [11],
the intensity of which is denoted by λ̃ BSs/km2. Note that
0 ≤ λ̃ ≤ λ and a larger ρ requires more BSs with a larger λ̃
to serve the active UEs.

Following [9, 10], we adopt a very general and practical
path loss model, in which the path loss ζ (r) associated with
distance r is segmented into N pieces written as

ζ (r) =


ζ1 (r) , when 0 ≤ r ≤ d1

ζ2 (r) , when d1 < r ≤ d2

...
...

ζN (r) , when r > dN−1

, (1)

where each piece ζn (r) , n ∈ {1, 2, . . . , N} is modeled as

ζn (r)=

{
ζL
n (r) = AL

nr
−αL

n ,

ζNL
n (r) = ANL

n r−α
NL
n ,

LoS: PrL
n (r)

NLoS: 1− PrL
n (r)

, (2)

where ζL
n (r) and ζNL

n (r) , n ∈ {1, 2, . . . , N} are the n-th
piece path loss functions for the LoS transmission and the
NLoS transmission, respectively, AL

n and ANL
n are the path

losses at a reference distance r = 1 for the LoS and the
NLoS cases, respectively, and αL

n and αNL
n are the path loss

exponents for the LoS and the NLoS cases, respectively. In
practice, AL

n, ANL
n , αL

n and αNL
n are constants obtainable from

field tests [5, 6]. Moreover, PrL
n (r) is the n-th piece LoS

probability function that a transmitter and a receiver separated
by a distance r have a LoS path, which is assumed to be a
monotonically decreasing function with regard to r.

For convenience,
{
ζL
n (r)

}
and

{
ζNL
n (r)

}
are further

stacked into piece-wise functions written as



ζPath (r) =


ζPath1 (r) , when 0 ≤ r ≤ d1

ζPath2 (r) , when d1 < r ≤ d2

...
...

ζPathN (r) , when r > dN−1

, (3)

where the string variable Path takes the value of “L” and
“NL” for the LoS and the NLoS cases, respectively.

Besides,
{

PrL
n (r)

}
is stacked into a piece-wise function as

PrL (r) =


PrL

1 (r) , when 0 ≤ r ≤ d1

PrL
2 (r) , when d1 < r ≤ d2

...
...

PrL
N (r) , when r > dN−1

. (4)

Note that the generality and the practicality of the adopted
path loss model (1) have been well established in [10].

In this paper, we also assume a practical user association
strategy (UAS), in which each UE should be connected to the
BS with the smallest path loss (i.e., with the largest ζ (r))
to the UE [8, 10]. Note that in our previous work [9] and
some existing works [4, 7], it was assumed that each UE
should be associated with the BS at the closest proximity.
Such assumption is not appropriate for the considered path
loss model in (1), because in practice it is possible for a UE
to connect to a BS that is not the nearest one but with a
LoS path, which is stronger that the NLoS path of the nearest
one. Moreover, we assume that each BS/UE is equipped with
an isotropic antenna, and that the multi-path fading between a
BS and a UE is modeled as independently identical distributed
(i.i.d.) Rayleigh fading [7–10].

III. MAIN RESULTS

Using the HPPP theory, we study the performance of the
SCNs by considering the performance of a typical UE located
at the origin o.

A. The Coverage Probability

First, we investigate the coverage probability that the typical
UE’s SINR is above a designated threshold γ:

pcov (λ, γ) = Pr [SINR > γ] , (5)

where the SINR is computed by

SINR =
Pζ (r)h

Iagg + PN
, (6)

where h is the channel gain, which is modeled as an expo-
nential random variable (RV) with the mean of one due to our
consideration of Rayleigh fading mentioned above, P and PN

are the BS transmission power and the additive white Gaussian
noise (AWGN) power at each UE, respectively, and Iagg is the
cumulative interference given by

Iagg =
∑

i: bi∈Φ̃\bo

Pβigi, (7)

where bo is the BS serving the typical UE located at distance
r from the typical UE, and bi, βi and gi are the i-th interfering
BS, the path loss associated with bi and the multi-path fading
channel gain associated with bi, respectively. Note that in our

previous works [9, 10], all BSs were assumed to be powered
on, and thus Φ was used in the expression of Iagg. Here, in (7),
only the activated BSs in Φ̃ \ bo inject effective interference
into the network, and thus the other BSs in idle modes are not
taken into account in the analysis of Iagg.

Based on the path loss model in (1) and the considered
UAS, we present our result of pcov (λ, γ) in Theorem 1 shown
on the top of the next page. It is important to note that:

• The impact of the BS selection on the coverage probabil-
ity is measured in (9) and (10), the expressions of which
are thus based on λ.

• The impact of Iagg on the coverage probability is mea-
sured in (14) and (16). Instead of λ, we plug λ̃ into (14)
and (16) because only the activated BSs emit effective
interference into the considered SCN.

For convenience,
{
fL
R,n (r)

}
and

{
fNL
R,n (r)

}
in Theorem 1

are further stacked into piece-wise functions written as

fPathR (r) =


fPathR,1 (r) , when 0 ≤ r ≤ d1

fPathR,2 (r) , when d1 < r ≤ d2

...
...

fPathR,N (r) , when r > dN−1

. (17)

Furthermore, we define the cumulative distribution function
(CDF) of fPathR (r) as

FPathR (r) =

∫ r

0

fPathR (u) du, (18)

and we have F L
R (+∞) + FNL

R (+∞) = 1.

B. The Area Spectral Efficiency

Similar to [9, 10], we also investigate the area spectral
efficiency (ASE) in bps/Hz/km2, which can be defined as

AASE (λ, γ0) = λ̃

∫ +∞

γ0

log2 (1 + γ) fΓ (λ, γ) dγ, (19)

where γ0 is the minimum working SINR for the considered
SCN, and fΓ (λ, γ) is the probability density function (PDF)
of the SINR observed at the typical UE at a particular value
of λ. It is important to note that:
• Unlike [9, 10], λ̃ is used in the expression of AASE (λ, γ0)

because only the activated BSs make an effective contri-
bution to the ASE.

• The ASE defined in this paper is different from that in [7],
where a constant rate based on γ0 is assumed for the
typical UE, no matter what the actual SINR value is.
The definition of the ASE in (19) is more realistic due to
the SINR-dependent rate, but it requires one more fold
of numerical integral compared with [7].

Based on the definition of pcov (λ, γ) in (5), which is the
complementary cumulative distribution function (CCDF) of
SINR, fΓ (λ, γ) can be computed by

fΓ (λ, γ) =
∂ (1− pcov (λ, γ))

∂γ
. (20)

Considering the results of pcov (λ, γ) and AASE (λ, γ0)
respectively presented in (5) and (19), we can now analyze



Theorem 1. Considering the path loss model in (1) and the presented UAS, the probability of coverage pcov (λ, γ) can be derived as

pcov (λ, γ) =

N∑
n=1

(
TL
n + TNL

n

)
, (8)

where TL
n =

∫ dn
dn−1

Pr
[
PζL

n(r)h

Iagg+PN
> γ

]
fL
R,n (r) dr, TNL

n =
∫ dn
dn−1

Pr
[
PζNL

n (r)h

Iagg+PN
> γ

]
fNL
R,n (r) dr, and d0 and dN are defined as 0 and

+∞, respectively. Moreover, fL
R,n (r) and fNL

R,n (r) (dn−1 < r ≤ dn), are represented by

fL
R,n (r) = exp

(
−
∫ r1

0

(
1− PrL (u)

)
2πuλdu

)
exp

(
−
∫ r

0

PrL (u) 2πuλdu

)
PrLn (r) 2πrλ, (9)

and

fNL
R,n (r) = exp

(
−
∫ r2

0

PrL (u) 2πuλdu

)
exp

(
−
∫ r

0

(
1− PrL (u)

)
2πuλdu

)(
1− PrLn (r)

)
2πrλ, (10)

where r1 and r2 are given implicitly by the following equations as

r1 = arg
r1

{
ζNL (r1) = ζLn (r)

}
, (11)

and
r2 = arg

r2

{
ζL (r2) = ζNL

n (r)
}
. (12)

In addition, Pr
[
PζL

n(r)h

Iagg+PN
> γ

]
and Pr

[
PζNL

n (r)h

Iagg+PN
> γ

]
are respectively computed by

Pr

[
PζLn (r)h

Iagg + PN
> γ

]
= exp

(
− γPN

PζLn (r)

)
L L
Iagg

(
γ

PζLn (r)

)
, (13)

where L L
Iagg

(s) is the Laplace transform of Iagg for LoS signal transmission evaluated at s, which can be further written as

L L
Iagg

(s) = exp

(
−2πλ̃

∫ +∞

r

PrL (u)u

1 + (sPζL (u))−1 du

)
exp

(
−2πλ̃

∫ +∞

r1

[
1− PrL (u)

]
u

1 + (sPζNL (u))−1 du

)
, (14)

and

Pr

[
PζNL

n (r)h

Iagg + PN
> γ

]
= exp

(
− γPN

PζNL
n (r)

)
L NL
Iagg

(
γ

PζNL
n (r)

)
, (15)

where L NL
Iagg

(s) is the Laplace transform of Iagg for NLoS signal transmission evaluated at s, which can be further written as

L NL
Iagg

(s) = exp

(
−2πλ̃

∫ +∞

r2

PrL (u)u

1 + (sPζL (u))−1 du

)
exp

(
−2πλ̃

∫ +∞

r

[
1− PrL (u)

]
u

1 + (sPζNL (u))−1 du

)
. (16)

Proof: We omit the proof here due to the page limitation. We will provide the full proof in the journal version of this
paper.

the two performance measures. The key step to do so is to
accurately derive the activated BS density, i.e., λ̃.

In [11], the authors assumed that each UE should be
associated with the nearest BS and derived an approximate
density of the activated BSs based on the distribution of the
HPPP Voronoi cell size. The main result in [11] is as follows,

λ̃minDis ≈ λ

1− 1(
1 + ρ

qλ

)q
 4= λ0 (q) , (21)

where λ̃minDis is the activated BS density under the assump-
tion that each UE is associated with the closest BS. The
empirical value of q is set to 3.5 [11]. The approximation
was shown to be very accurate in the existing works [11, 13].
However, the assumed UAS in [11] is not inline with that in
our work. Therefore, we need to carefully derive λ̃ based on
the considered UAS of the smallest path loss and our main
results are presented in the following subsections.

C. An Upper Bound of λ̃

First, we propose an upper bound of λ̃ in Theorem 2.

Theorem 2. Based on the path loss model in (1) and the
presented UAS, λ̃ can be upper bounded by

λ̃ ≤ λ
(
1−Qoff

) 4
= λ̃UB, (22)

where

Qoff = lim
rmax→+∞

+∞∑
k=0

{Pr [w � b]}k λ
k
Ωe
−λΩ

k!
, (23)

where λΩ = ρπr2
max, and

Pr [w � b] =

∫ rmax

0

Pr [w � b| r] 2r

r2
max

dr, (24)

and
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Pr [w � b| r] =
[
FL
R (r) + FNL

R (r1)
]

PrL (r)

+
[
FL
R (r2) + FNL

R (r)
] [

1− PrL (r)
]
, (25)

where FL
R (r) and FNL

R (r) are defined in (18), and r1 and r2

are defined in (11) and (12), respectively.

Proof: We omit the proof here due to the page limitation.
We will provide the full proof in the journal version of this
paper.

D. A Lower Bound of λ̃

Next, we propose a lower bound of λ̃ in Theorem 3.

Theorem 3. Based on the path loss model in (1) and the
presented UAS, λ̃ can be lower bounded by

λ̃ ≥ λ̃minDis 4= λ̃LB, (26)

where the approximate expression of λ̃minDis is shown in (21).

Proof: We omit the proof here due to the page limitation.
We will provide the full proof in the journal version of this
paper.

E. The Proposed Approximation of λ̃

Considering the lower bound of λ̃ derived in Theorem 3,
and the fact that the approximate expression of λ̃minDis, i.e.,
λ0 (q), is an increasing function with respect to q, we propose
Proposition 4 to approximate λ̃.

Proposition 4. Based on the path loss model in (1) and the
considered UAS, we propose to approximate λ̃ by

λ̃ ≈ λ0 (q∗) , (27)

where 3.5 ≤ q∗ ≤ arg
x

{
λ0 (x) = λ̃UB

}
and λ̃UB is in (22).

Note that the range of q∗ in Proposition 4 is obtained accord-
ing to the derived upper bound and lower bound of λ̃ presented
in Theorem 3 and Theorem 2, respectively. Apparently, the
value of q∗ depends on the specific forms of the path loss
model in (3) and (4). Hence, q∗ should be numerically found
for specific path loss models, which can be performed offline
with the aid of simulation and the bisection method [14].
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Fig. 3. pcov (λ, γ) vs. λ with γ = 0 dB and q∗ = 4.18.

IV. SIMULATION AND DISCUSSION

In this section, we investigate the network performance and
use numerical results to validate the accuracy of our analysis.

As a special case of Theorem 1, following [10], we consider
a two-piece path loss and a linear LoS probability functions de-
fined by the 3GPP [5], [6]. Specifically, in the path loss model
presented in (1), we use N = 2, ζL

1 (w) = ζL
2 (w) = ALw−α

L

,
and ζNL

1 (w) = ζNL
2 (w) = ANLw−α

NL

[5]. Moreover, in the
LoS probability model shown in (4), we use PrL

1 (w) = 1− w
d1

and PrL
2 (w) = 0, where d1 is a constant [6]. For clarity, this

3GPP special case is referred to as 3GPP Case 1. As justified
in [10], we use 3GPP Case 1 for the case study because it
provides tractable results for (9)-(16) in Theorem 1.

Following [9, 10], we adopt the following parameters for
3GPP Case 1: d1 = 300 m, αL = 2.09, αNL = 3.75, AL =
10−10.38, ANL = 10−14.54, P = 24 dBm, PN = −95 dBm.
Besides, the UE density is set to ρ = 300 UEs/km2.

To check the impact of different path loss models on our
conclusions, we have also investigated the results for a single-
slope path loss model that does not differentiate LoS and NLoS
transmissions [4] where only one path loss exponent α is
defined, the value of which is assumed to be α = αNL = 3.75.
Note that in this single-slope path loss model, the activated BS
density is assumed to be λ0 (3.5) shown in (21) [11].

A. Discussion on the Value of q∗ for the Approximate λ̃

Considering 3GPP Case 1 and Proposition 4, we conduct
simulations to numerically find the optimal q∗ for the approx-
imate λ̃. Based on the minimum mean squared error (MMSE)
criterion, we obtain q∗ = 4.18. Fig. 2 shows the average errors
of the number of activated BS for λ̃UB, λ̃LB, and λ0 (q∗). Note
that in Fig. 2 all results are compared against the simulation
results, which create baseline results with zero errors. We can
draw the following conclusions from Fig. 2:
• The proposed upper bound λ̃UB and lower bound λ̃LB are

valid compared with the simulation results, i.e., λ̃UB and
λ̃LB are always larger and smaller than the simulation
baseline results, respectively.

• λ̃UB is tighter than λ̃LB when λ is relatively small, e.g.,
λ ∈ [10, 30] BSs/km2.



• λ̃LB is much tighter than λ̃UB for dense and ultra-dense
SCNs, e.g., λ > 100 BSs/km2.

• The maximum error associated with λ0 (q∗) is around
±0.5 BSs/km2, which is smaller than that of λ̃LB, e.g.,
an error around -2 BSs/km2 when λ = 100 BSs/km2.

B. Validation of Theorem 1 on the Coverage Probability

Fig. 3 shows the results of pcov (λ, γ) with γ = 0 dB and
q∗ = 4.18 plugged into Proposition 4. As one can observe,
our analytical results given by Theorem 1 match the simulation
results very well, which validates the accuracy of our analysis.
In fact, Fig. 3 is essentially the same as Fig. 1 with the same
marker styles, except that the results for the single-slope path
loss model with ρ = 300 UEs/km2 are also plotted. Fig. 3
confirms the key observations presented in Section I:

• For the single-slope path loss with ρ = +∞UEs/km2,
the coverage probability approaches a constant for dense
SCNs [4].

• For 3GPP Case 1 with ρ = +∞UEs/km2, the coverage
probability decreases as λ increases when the network is
dense enough, i.e., λ > 20 BSs/km2, due to the NLoS to
LoS transition of interfering paths [10]. When λ is very
large, i.e., λ ≥ 103 BSs/km2, the coverage probability
decreases at a slower pace because both the interference
and the signal powers are LoS dominated [10].

• For both path loss models with ρ = 300 UEs/km2, the
coverage probability performance continuously increases
toward one in dense SCNs due to the IMCs, i.e., the
Coverage Probability Takeoff, as discussed in Section I.

C. The Theoretical Results of the ASE

In Fig. 4, we show the results of AASE (λ, γ0) with γ0 =
0 dB and q∗ = 4.18 plugged into Proposition 4. We can draw
the following conclusions from Fig. 4:

• For the 3GPP Case 1 with ρ = +∞UEs/km2, the ASE
suffers from a slow growth when λ ∈ [20, 200] BSs/km2

because of the interference transition from NLoS to
LoS [10]. After that BS density region, for both path
loss models with the IMC and ρ = 300 UEs/km2, the
ASEs monotonically grow as λ increases in dense SCNs,
but with performance gaps with regards to those of
ρ = +∞UEs/km2 due to the finite number of UEs.

• The takeaway message should not be that the IMC gener-
ates an inferior ASE in dense SCNs. Instead, as explained
in Section I, since there is a finite number of UEs in the
network, some BSs are put to sleep and thus the spectrum
reuse and in turn the area spectral efficiency decreases.
However, the per-UE performance should increase as
indicated by the probability of coverage shown in Fig. 3.

• Moreover, the IMC can greatly improve the SCN energy
efficiency, i.e., the ratio of the ASE over the total energy
consumption, which will be investigated in our future
work considering practical power models for various
levels of IMCs [3].
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Fig. 4. AASE (λ, γ0) vs. λ with γ0 = 0 dB and q∗ = 4.18.

V. CONCLUSION

In this paper, we have studied the impact of the IMC
on the network performance in dense SCNs with LoS and
NLoS transmissions. The impact is significant, i.e., as the BS
density surpasses the UE density, the coverage probability
will continuously increase toward one in dense SCNs (the
Coverage Probability Takeoff ), addressing the issue caused by
the NLoS to LoS transition of interfering paths.
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