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†School of Computing and Communications, The University of Technology Sydney, Australia

‡Data61, Australia
∗School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
§School of Electronic Information & Communications, Huazhong University of Science & Technology, Wuhan, China

?The University of Sydney, Australia
¶Bell Labs Alcatel-Lucent, Ireland

Abstract—In this paper, we analyse the coverage probability
and the area spectral efficiency (ASE) in the uplink (UL) of dense
small cell networks (SCNs) considering a piecewise linear path
loss model incorporating both line-of-sight (LoS) and non-line-
of-sight (NLoS) transmissions. The performance impact of LoS
and NLoS transmissions in the ASE of the UL of dense SCNs
is shown to be significant, both quantitatively and qualitatively,
compared with previous works that do not differentiate LoS and
NLoS transmissions. In particular, previous works predicted that
a larger UL power compensation factor would always result in
a better ASE in the practical range of user equipment (UE)
density, i.e., 100 ∼ 103 UEs/km2. However, our results show that
a smaller UL power compensation factor can greatly boost the
ASE in the UL of dense SCNs, i.e., 102 ∼ 103 UEs/km2, while a
larger UL power compensation factor is more suitable for sparse
SCNs, i.e., 100 ∼ 102 UEs/km2.

I. INTRODUCTION

Small cell networks (SCNs) can achieve a high spatial reuse
through network densification, which in turn can significantly
enhance network capacity [1, 2]. Particularly, the orthogonal
deployment of SCNs within the existing macrocell network,
i.e., small cells and macrocells operating on different fre-
quency spectrum (Small Cell Scenario #2a defined in [3]), was
prioritized in the design of the 4th generation (4G) Long Term
Evolution (LTE) networks by the 3rd Generation Partnership
Project (3GPP), and dense SCNs are envisaged to be the
workhorse for capacity enhancement in the 5th generation
(5G) networks due to its large performance gains and its
easy deployment [1]. Thus, this paper focuses on studying the
performance of these orthogonal deployments of dense SCNs.

In order to deploy dense SCNs in a cost-effective manner,
a deep theoretical understanding of the implications that small
cells bring about is needed. Using stochastic geometry theory,
the authors of [4] and [5] respectively conducted network
performance analyses for the downlink (DL) and the uplink
(UL) of SCNs, assuming that user equipments (UEs) and/or
base stations (BSs) are randomly deployed according to a
homogeneous Poisson distribution. In [6], the authors con-
sidered UE spatial blocking, which is referred to the outage
caused by limited number of usable channels, and derived
approximate expressions for the UL blocking probability and

the UL coverage probability. In [7], the authors proposed a
tractable model to characterize the UL rate distribution in a
K-tier heterogeneous cellular networks (HCNs) considering
power control and load balancing. In [8], the authors con-
sidered the maximum power limitation for UEs and obtained
approximate expressions for the UL outage probability and UL
spectral efficiency. However, none of these UL related works
considered a realistic path loss model with line-of-sight (LoS)
and non-line-of-sight (NLoS) transmissions.

In our previous work [9], we conducted a study on the DL of
dense SCNs considering a sophisticated path loss model that
differentiates LoS and NLoS transmissions. LoS transmission
may occur when the distance between a transmitter and a
receiver is small, and NLoS transmission is more common in
office environments and in central business districts. Moreover,
the probability that there exists a LoS path between the
transmitter and receiver increases as the distance decreases.
The decrease of the distance between the transmitter and
receiver will cause a transition from NLoS transmission to
LoS transmission with a higher probability.

In this paper, we extend our previous work [9] to study the
performance impact of such NLoS-to-LoS transition in the UL
of dense SCNs. The main contributions of this paper are as
follows:
• Numerically tractable results are obtained for the UL

coverage probability and the UL area spectral efficiency
(ASE) performance using a piecewise path loss model,
incorporating both LoS and NLoS transmissions. To
evaluate the numerical results and calcualte integrals
efficiently, we apply the Gauss-Laguerre quadrature [11].

• Our theoretical analysis of the UL of dense SCNs shows
a similar performance trend that was found for the DL
of dense SCNs in our previous work [9], i.e., when the
density of UEs is larger than a threshold, the ASE may
suffer from a slow growth or even a decrease. Then,
the ASE will grow almost linearly as the UE density
increases above another larger threshold. This finding is
in stark contrast with previous results using a simplistic
path loss model that does not differentiate LoS and NLoS
transmissions [5].



• Our theoretical analysis also indicates that the perfor-
mance impact of LoS and NLoS transmissions on the UL
of SCNs with UL power compensation is significant both
quantitatively and qualitatively with respect to existing
works in the literature. In particular, the previous work [5]
showed that a larger UL power compensation factor
should always deliver better ASE performance in the
practical range of UE density, i.e., 100 ∼ 103 UEs/km2.
However, our results show that a smaller UL power
compensation factor can greatly boost the ASE perfor-
mance in dense SCNs, i.e., 102 ∼ 103 UEs/km2, while a
larger UL power compensation factor is more suitable
for sparse SCNs, i.e., 100 ∼ 102 UEs/km2. Our new
finding indicates that it is possible to save UE battery and
meanwhile obtain high ASE in the UL of dense SCNs in
5G, if the UL power compensation factor is optimized.

II. SYSTEM MODEL

In this paper, UEs are distributed following a homogeneous
Poisson point process (HPPP) with density λ UEs/km2, and
associate with its nearest BS, thus creating Voronoi cells. The
distance from the typical BS located at the origin to the typical
UE is denoted as R, where R is a random variable i.i.d.
Rayleigh distributed [5] and its probability density function
(PDF) can be calculated as

fR (r) = 2πλR× exp
(
−λπR2

)
. (1)

The link from the typical BS to the typical UE has a LoS
link or a NLoS link with probability PrL (R) and 1− PrL (R),
respectively, where such probability can be computed by the
following linear function [9, 10]

PrL (R) =

{
1− R

d1
, 0 < R ≤ d1

0, R > d1
, (2)

where d1 is the cut-off distance of the LoS link.
The distance dependent path loss is expressed as R−α,

where the path loss exponent of each link is

α =

{
αL, LoS with probability PrL (R)

αNL, NLoS with probability
(
1− PrL (R)

) . (3)

The typical UE transmits with a baseline power P0 mW,
and uses a distance-based fractional power compensation of
Rαε [12], where ε is the UL power compensation factor.

Therefore, the received signal power at the typical BS can
be written as

P sig = P0gR
α(ε−1), (4)

where g denotes the channel gain of the multi-path fading and
is a random variable i.i.d. Rayleigh distributed [5]. Hence, g
follows an exponential distribution with unitary mean.

As a result, the SINR at the typical BS of the typical UE
can be expressed as

SINR =
P0gR

α(ε−1)

σ2 + IZ
, (5)

where σ2 is the noise power, Z is the set of interfering UEs,
and IZ is the interference given by

IZ =
∑
Z

P0 (Rαz )
ε
gzD

−α
z , (6)

where the distance of interferer z ∈ Z to the typical BS is
denoted by Dz , and the distance of interferer z ∈ Z to its
serving BS is denoted by Rz . According to [5], Rz is also
i.i.d. Rayleigh distributed and its PDF can be calculated as
(1).

III. ANALYSIS OF COVERAGE PROBABILITY AND ASE

According to [5], the coverage probability can be formulated
as

P cov (λ, T ) = Pr [SINR > T ] , (7)

where T is the SINR threshold.
Based on the system model presented in Section II, we

calculate P cov (λ, T ) and present it in the following lemma.

Lemma 1. P cov (λ, T ) can be derived as

P cov (λ, T ) , TL
1 + TNL

1 + TNL
2 , (8)

where
TL
1 =

´ d1
0

Pr
[
P0gr

αL(ε−1)

σ2+IZ
> T

]
×
(

1− r
d1

)
× fR (r)dr,

TNL
1 =

´ d1
0

Pr
[
P0gr

αNL(ε−1)

σ2+IZ
> T

]
×
(
r
d1

)
× fR (r) dr,

TNL
2 =

´∞
d1

Pr
[
P0gr

αNL(ε−1)

σ2+IZ
> T

]
fR (r) dr.

Proof: Given the distance distribution and the piecewise
path loss model presente in Section II, P cov (λ, T ) can be
derived as
P cov (λ, T )

=
´∞
0

Pr [SINR > T |R = r] fR (r) dr

=
´∞
0

Pr
[
P0gr

α(ε−1)

σ2+IZ
> T

]
fR (r) dr

=
´ d1
0

Pr
[
P0gr

α(ε−1)

σ2+IZ
> T |LoS

]
×PrL (r)×fR (r)dr

+
´ d1
0

Pr
[
P0gr

α(ε−1)

σ2+IZ
> T |NLoS

]
×
(
1− PrL (r)

)
×fR (r) dr

+
´∞
d1

Pr
[
P0gr

α(ε−1)

σ2+IZ
> T |NLoS

]
×
(
1− PrL (r)

)
×fR (r) dr.

(9)

Our proof is completed by plugging (3) and (2) into (9),
and applying the definition of TL

1 , TNL
1 and TNL

2 in (8).
Note that TL

1 , TNL
1 and TNL

2 represent the coverage probabil-
ity when the typical UE is associated with the typical BS using
a LoS link of distance less than d1, the coverage probability
when the typical UE is associated with the typical BS using a
a NLoS of distance less than d1, and the coverage probability
when the typical UE is associated with the typical BS using
a NLoS of distance greater than d1, respectively.

According to [9], the area spectral efficiency (ASE) in
bps/Hz/km2 for a given λ can be formulated as

AASE (λ, T0) = λ

ˆ ∞
T0

log2 (1 + x) fX (λ, x) dx, (10)



where T0 is the minimum working SINR for the considered
SCN, and fX (λ, x) is the PDF of the SINR observed at the
typical BS for a particular value of λ.

Based on the definition of P cov (λ, T ), which is the com-
plementary cumulative distribution function (CCDF) of SINR,
fX (λ, x) can be computed as

fX (λ, x) =
∂ (1− P cov (λ, x))

∂x
. (11)

In the following subsections, we will investigate the results
of TL

1 , TNL
1 and TNL

2 , respectively.

A. The Result of TL
1

Regarding the result of TL
1 , which is the coverage probabil-

ity when the typical UE is associated with the typical BS with
a LoS link of distance less than d1, we propose Lemma 2 in
the following.

Lemma 2. When the typical UE is associated with a LoS BS
of a distance less than d1, the coverage probability TL

1 can
be computed by

TL
1 =

ˆ d1

0

e
− Tσ2

P0r
αL(ε−1)×LIZ

(
T

P0rα
L(ε−1)

)
×
(
1− r

d1

)
×fR(r) dr,

(12)
where the Laplace transform LIZ (s) is expressed as
LIZ (s) =

exp

{
−2πλ

´ d1
r

(
1− x

d1

)(
ERz,αRz

[
1

1+(P0sRα
Rz ε
z x−αL)

−1

])
xdx

}
×exp

{
−2πλ

´ d1
r

(
x
d1

)(
ERz,αRz

[
1

1+(P0sRα
Rz ε
z x−αNL)

−1

])
xdx

}
×exp

{
−2πλ

´∞
d1

(
ERz,αRz

[
1

1+(P0sRα
Rz ε
z x−αNL)

−1

])
xdx

}
,

(13)

and the expectation function over Rz and αRz is given by

ERz,αRz
[

1

1+(P0sRα
Rz ε
z x−α)

−1

]

=

ˆ d1

0

(
1− u

d1

)
1

1 +
(
P0suα

Lεx−α
)−1 2πλue−πλu

2

du

+

ˆ d1

0

u

d1

1

1 +
(
P0suα

NLεx−α
)−1 2πλue−πλu

2

du

+

ˆ ∞
d1

1

1 +
(
P0suα

NLεx−α
)−1 2πλue−πλu

2

du, (14)

where α is defined in (3).

Proof: See Appendix A.

B. The Result of TNL
1

Regarding the result of TNL
1 , which is the coverage probabil-

ity when the typical UE is associated with the typical BS with
a NLoS link of distance less than d1, we propose Lemma 3
in the following.

Lemma 3. When the typical UE is associated with a NLoS
BS of a distance less than d1, the coverage probability TNL

1

can be computed by

TNL
1 =

ˆ d1

0

e
− Tσ2

P0r
αNL(ε−1)×LIZ

(
T

P0rα
NL(ε−1)

)
×
(
r

d1

)
×fR(r) dr,

(15)
where LIZ

(
T

P0rα
NL(ε−1)

)
is the Laplace transform of IZ

shown in (13), which is evaluated at the point T
P0rα

NL(ε−1)
.

Proof: The proof is similar to that of Lemma 2 and is
omitted for brevity.

C. The Result of TNL
2

Regarding the result of TNL
2 , which is the coverage proba-

bility when the typical UE is associated with the typical BS
with a NLoS link of distance greater than d1, we propose
Lemma 4 in the following.

Lemma 4. When the typical UE is associated with a NLoS BS
of a distance greater than d1, the coverage probability TNL

2

can be computed by

TNL
2 =

ˆ ∞
d1

e
− Tσ2

P0r
αNL(ε−1)×LIZ

(
T

P0rα
NL(ε−1)

)
×fR(r) dr, (16)

where LIZ

(
T

P0rα
NL(ε−1)

)
is the Laplace transform of IZ evalu-

ated at the point T
P0rα

NL(ε−1)
, which is expressed as

LIZ

(
T

P0rα
NL(ε−1)

)
=

exp

{
−2πλ

ˆ ∞
r

(
ERz,αRz

[
1

1 +
(
P0sRα

Rz ε
z x−αNL

)−1
])
xdx

}
,

(17)

where ERz,αRz
[

1

1+(P0sRα
Rz ε
z x−αNL)

−1

]
is computed by (14).

Proof: The proof is similar to that of Lemma 2 and is
omitted for brevity.

D. Evaluation Using the Gauss-Laguerre Quadrature

To improve the tractability of the derived results of (16),
we propose to approximate the outer-most infinite integral in
(16) by the Gauss-Laguerre quadrature [11] expressed as

ˆ ∞
0

f (u) e−udu ≈
n∑
i=1

ωif (ui) , (18)

where n is the degree of Laguerre polynomial, and ui and
ωi are the i-th abscissas and weight of the quadrature. For
practical use, n should be set to a value above 10 to ensure
good numerical accuracy [11].

To utilize the Gauss-Laguerre quadrature, the outer-most
infinite integral in (16) is rewritten by using the change of
variable r̃ = πλr2. To evaluate (16) by means of the Gauss-
Laguerre quadrature, we propose Lemma 5 in the following.

Lemma 5. By using the Gauss-Laguerre quadrature as shown
in (18), (16) can be approximated and simplified as
TNL
2

=
n∑
i=1

ωi exp

− Tσ2

P0

(√
[ui+πλ(d1)2](πλ)−1

)αNL(ε−1)
− πλ (d1)

2





Fig. 1. The coverage probability P cov (λ, T ) vs. the SINR threshold with
λ = 10UEs/km2.

×LIZ

 T

P0

√[
ui + πλ (d1)

2
]

(πλ)
−1

αNL(ε−1)

 . (19)

Proof: See Appendix B.
Thanks to Lemma 5, the 3-fold integral computation in (16)

can now be simplified as a 2-fold integral computation, which
improves the tractability of our results.

IV. SIMULATION AND DISCUSSION

In this section, we present numerical results to establish the
accuracy of our analysis and further study the performance of
the UL of dense SCNs. We adopt the following parameters
according to the 3GPP recommendations [13]: d1 = 0.3 km,
αL = 2.09, αNL = 3.75, P0 = -76 dBm, σ2 = -99 dBm (with
a noise figure of 5 dB at each BS). We first consider a sparse
network in subsections IV-A and IV-B, and then we analyze
a dense network in the subsections IV-C and IV-D.

A. Validation of the Analytical Results of P cov (λ, T )

The results of P cov (λ, T ) in a sparse deployment with
λ = 10 UEs/km2 are plotted in Fig. 1. For comparison,
we have also included analytical results using a single-slope
path loss model that does not differentiate LoS and NLoS
transmissions [5]. Note that in [5], only one path loss ex-
ponent is defined and denoted by α, the value of which is
α = αNL = 3.75. As can be observed from Fig. 1, our
analytical results perfectly match the simulation results, and
thus we will only use analytical results of P cov (λ, T ) in our
discussion hereafter.

B. The Results of P cov (λ, T ) with Various ε

The results of P cov (λ, T ) in a sparse deployment with
λ = 10 UEs/km2 for various ε are plotted in Fig. 2. From
Fig. 2, we can observe that the coverage probability perfor-
mance improves as ε increases. This is because sparse cellular
networks generally work in the noise-limited region, and thus

Fig. 2. The coverage probability P cov (λ, T ) vs. the SINR threshold with
various power compensation factor ε (λ = 10 UEs/km2).

a larger ε allows more transmission power to combat the link
noise and achieve better performance. However, it is of great
interest to see whether such observation still holds for other
network scenarios, especially the dense SCNs.

C. The Results of P cov (λ, T ) vs. λ

The results of P cov (λ, T ) with the UE density for T = 0 dB
are plotted in Fig. 3. From Fig. 3, we can observe that when
there is no LoS/NLoS modeling [5], the coverage probability
first increases with the UE density at a fast pace because a
smaller UE-to-BS distance results in better coverage in noise-
limited networks. Thereafter, the increase of the coverage
probability slows down when λ is large enough, since the
network is pushed into the interference-limited region. In
contrast, when considering both LoS and NLoS transmissions,
the coverage probability presents a significantly different be-
haviour. When the SCN is sparse and thus noise-limited, the
coverage probability given by the proposed analysis grows as
λ increases, similarly as in [5]. However, when the network
is dense enough, the coverage probability decreases as λ in-
creases, due to the transition of a large number of interference
paths from NLoS to LoS, which is not captured in [5]. In more
detail, the coverage probability given by the proposed analysis
peaks at λ0, and when λ increases above λ0, interfering UEs
are so close to the typical BS that their interfering signals
start reaching it via strong LoS paths too. When λ is further
increased far above λ0, the coverage probability decreases at a
slower pace because both the signal power and the interference
power are LoS dominated and thus statistically stable.

It should also be noted that the coverage probability with
different ε has different trends. Specifically, when the SCN
is sparse, adopting a higher ε (e.g., ε = 0.8) leads to higher
coverage probability. This is because the SCN is noise-limited
and hence increasing the transmission power provides better
coverage. However, as λ increases, adopting a lower ε (e.g.,
ε = 0.6) leads to higher coverage probability. Therefore,
our results suggest that in dense SCNs, increasing the UL
transmission power may degrade the coverage probability.



Fig. 3. The coverage probability P cov (λ, T ) vs. the UE density with different
ε and SINR threshold T = 0 dB.

Fig. 4. Area spectral efficiency AASE (λ, T0) vs. the UE density with
different ε and SINR threshold T0 = 0 dB.

Such observation is further investigated in terms of ASE in
the following subsection.

D. The Results of AASE (λ, T0) vs. λ

In this subsection, we investigate the analytical results
of AASE (λ, T0) with T0 = 0 dB based on the analytical
results of P cov (λ, T ). The results of AASE (λ, T0) obtained
by comparing the proposed analysis with the analysis from [5]
are plotted in Fig. 4.

As can be seen from Fig. 4, the analysis from [5] indicates
that when the SCN is dense enough, the ASE increases
linearly with λ. In contrast, our proposed analysis reveals a
more complicated ASE trend. Specifically, when the SCN is
relatively sparse, i.e., 100 ∼ 101 UEs/km2, the ASE quickly
increases with λ since the network is generally noise-limited,
and thus having UEs closer to their serving BSs improves
performance. When the SCN is extremely dense, i.e., around
103 UEs/km2, the ASE increases linearly with λ because both
the signal power and the interference power are LoS dominated
and thus statistically stable as explained before. As for the
practical range of λ for the existing and the future cellular
networks, i.e., 101 ∼ 103 UEs/km2 [1], the ASE trend is
interesting. First, when λ ∈ [λ0, λ1], where λ0 is around 20

and λ1 (λ1 > λ0) is around 100 in Fig. 4, the ASE exhibits
a slowing-down in the rate of growth (ε = 0.6) or even a
decrease (ε = 0.7, 0.8) due to the fast decrease of coverage
probability shown in Fig. 3. Thereafter, when λ ≥ λ1, the
ASE exhibits an acceleration in the growth rate due to the
slow-down in the decrease of coverage probability also shown
in Fig. 3. Our finding, the ASE may decrease as the UE
density increases, is similar to our results reported for the DL
of SCNs [9], which indicates the significant impact of the path
loss model incorporating both NLoS and LoS transmissions.
Such impact makes a difference for dense SCNs in terms of the
ASE both quantitatively and qualitatively, comparing to that
with a simplistic path loss model that does not differentiate
LoS and NLoS transmissions.

Our proposed analysis also shows another important finding.
A smaller UL power compensation factor ε (e.g., ε = 0.6) can
greatly boost the ASE performance in 5G dense SCNs [1],
i.e., 102 ∼ 103 UEs/km2, while a larger ε (e.g., ε = 0.8) is
more suitable for sparse SCNs, i.e., 100 ∼ 102 UEs/km2. This
contradicts the results in [5] where a larger UL power compen-
sation factor was predicted to always result in a better ASE in
the practical range of UE density, i.e., 100 ∼ 103 UEs/km2, as
shown in Fig. 4. Therefore, our theoretical analysis indicates
that the performance impact of LoS and NLoS transmissions
on UL SCNs with UL power compensation is also signifi-
cant both quantitatively and qualitatively, compared with the
previous work in [5] that does not differentiate among those.
Interestingly, our new finding implies that its is possible to
save UE battery and meanwhile achieve high ASE in the UL
of 5G dense SCNs, if ε is optimized. The intuition is that in
dense SCNs, the network experiences a surplus of strong LoS
interference instead of shortage of UL transmission power, and
thus decreasing the transmission powers of a large number of
interferers turns out to be a good strategy that enhances the
ASE. Note that our conclusion is made from the investigated
set of parameters, and it is of significant interest to further
study the generality of this conclusion in other network models
and with other parameter sets.

V. CONCLUSION

In this paper, we have investigated the impact of a piecewise
linear path loss model incorporating both LoS and NLoS
transmissions in the performance of the UL of dense SCNs.
Analytical results were obtained for the coverage probability
and the ASE performance. The results show that LoS and
NLoS transmissions have a significant impact in the ASE of
the UL of dense SCNs, both quantitatively and qualitatively,
compared with previous works that does not differentiate LoS
and NLoS transmissions. Specifically, we found that

• The ASE may suffer from a slow growth or even a
decrease as the UE density increases.

• The ASE with a smaller UL power compensation factor
considerably outperforms that with a larger UL power
compensation factor in dense SCNs. The other way
around is true for sparse SCNs.



As our future work, we will consider more practical assump-
tions, such as an alternative UE association strategy (UAS),
where each UE is connected to the BS that gives the smallest
pathloss. Note that such UAS will blur the boundaries of UEs’
Voronoi cells, because a UE is no longer always connected to
its closest BS.
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APPENDIX A: PROOF OF LEMMA 2

According to system model addressed in Section II, TL
1 can

be derived as
TL
1

=
´ d1
0

Pr
(
Pgrα

L(ε−1)

σ2+IZ
> T | LoS

)
×
(

1− r
d1

)
× fR (r) dr

=
´ d1
0

Pr
(
g >

T(σ2+IZ)
PrαL(ε−1)

)
×
(

1− r
d1

)
× fR (r) dr

=
´ d1
0

EIZ
[

exp
(
−T(σ2+IZ)
PrαL(ε−1)

)]
×
(

1− r
d1

)
× fR (r) dr

=
´ d1
0
e
− Tσ2

Prα
L(ε−1)×EIZ

[
exp

(
− TIZ
PrαL(ε−1)

)]
×
(

1− r
d1

)
×fR (r) dr

=
´ d1
0
e
− Tσ2

Prα
L(ε−1)×LIZ

(
T

PrαL(ε−1)

)
×
(

1− r
d1

)
×fR (r) dr.

(20)
The Laplace transform LIZ (s) can be derived as

LIZ (s)
= EIZ [exp (−sIZ)]

= EDz,Rz,gz,αRz ,αDz
[
exp

(
−s
∑
z∈Z

P0

(
Rα

Rz

z

)ε
gzD

−αDz
z

)]
= EDz,Rz,gz,αRz ,αDz

[ ∏
z∈Z

exp
(
−sP0

(
Rα

Rz

z

)ε
gzD

−αDz
z

)]
= EDz,αDz

[ ∏
z∈Z

ERz,αRz
[

1

1+P0sRα
Rz ε
z D−αDz

z

]]
= EαDz

[
exp
{
−2πλ́

∞
r

(
1−ERz,αRz

[
1

1+P0sRα
Rz ε
z x−αDz

])
xdx
}]

= EαDz
[
exp

{
−2πλ́

∞
r

(
ERz,αRz

[
1

1+(P0sRα
Rz ε
z x−αDz )

−1

])
xdx

}]
.

(21)
The locations of interferers can be divided according to the

distance into LoS and NLoS path sets. So the LIZ (s) can be
further derived as shown in (13).

The average function in the Laplace transform can be
derived as

ERz,αRz
[

1

1+(P0sRα
Rz ε
z x−α)

−1

]
= EαRz

[´∞
0

1
1+(P0suα

uεx−α)−1 2πλue−πλu
2

du
]

=
´ d1
0

(
1− u

d1

)
1

1+(P0suα
Lεx−α)

−1 2πλue−πλu
2

du

+
´ d1
0

u
d1

1

1+(P0suα
NLεx−α)

−1 2πλue−πλu
2

du

=
´ d1
0

(
1− u

d1

)
1

1+(P0suα
Lεx−α)

−1 2πλue−πλu
2

du

+
´ d1
0

u
d1

1

1+(P0suα
NLεx−α)

−1 2πλue−πλu
2

du

+
´∞
d1

1

1+(P0suα
NLεx−α)

−1 2πλue−πλu
2

du.
(22)
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By using the change of variable πλr2 → r̃, (16) can be
rewritten as

TNL
2 =

´∞
πλd21

exp

(
− Tσ2

P0

(√
r̃(πλ)−1

)αNL(ε−1)

)

×LIZ

(
T

P0

(√
r̃(πλ)−1

)αNL(ε−1)

)
× e−r̃dr̃.

(23)

By using the change of variable r̃−πλ (d1)
2 → v, (23) can

be rewritten as

TNL
2 =

´∞
0

exp

− Tσ2

P0

(√
[v+πλ(d1)2](πλ)−1

)αNL(ε−1)


×LIZ

 T

P0

(√
[v+πλ(d1)2](πλ)−1

)αNL(ε−1)

×e−πλ(d1)2×e−vdv.
(24)

By using the method of Gauss-Laguerre quadrature as
shown in (18), our proof is finished.
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