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Abstract—In this paper, we propose a tractable semi-analytical
approach for network performance analysis of uplink (UL)
cellular networks, which is based on a deterministic network
analysis using a Gaussian approximation (DNA-GA). The key
contribution of this work is to investigate the UL signal-to-
interference ratio (SIR) performance using the DNA-GA analysis.
In particular, the SIR is modeled as a ratio of two random
variables (RVs), representing the signal power and the aggregate
interference power, respectively. The signal power is further
characterized by a product of two RVs, i.e., a lognormal RV
and a RV with an arbitrary distribution. The former RV comes
from a common assumption of lognormal shadow fading, and
the latter one takes the rest of random factors into account, such
as random user positions, arbitrary types of multi-path fading,
etc. The aggregate interference power is approximated by a RV
with a power lognormal distribution. The proposed DNA-GA
analysis has a few desirable features: (i) it naturally considers
lognormal shadow fading; (ii) it can treat arbitrary shape and/or
size of cell coverage areas; (iii) it can handle non-uniform user
distributions; (iv) it can cope with any type of multi-path fading;
(v) it can be applied to multi-antenna base stations (BSs). These
features make the DNA-GA analysis very useful for network
performance analysis of the 5th generation (5G) systems with
general cell deployment and user distribution.

Index Terms—uplink, signal-to-interference ratio (SIR) anal-
ysis, small cell networks (SCNs), Gaussian, approximation, log-
normal, power lognormal.

I. INTRODUCTION

From 1950 to 2000, the wireless network capacity has
increased around 1 million fold, in which an astounding 2700×
gain was achieved through network densification using smaller
cells [1]. In the first decade of 2000, network densification con-
tinued to fuel the 3rd Generation Partnership Project (3GPP)
4th-generation (4G) Long Term Evolution (LTE) networks,
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and is expected to remain as one of the main forces to drive
the 5th-generation (5G) networks onward [2]. In general, four
network scenarios (NSs) with difference base station (BS)
deployments can be found in the literature as shown in Fig. 1:
• NS 1: Full-coverage NS with BSs deployed on a hexag-

onal lattice, as illustrated in Fig. 1a.
• NS 2: Full-coverage NS with BSs deployed randomly, as

illustrated in Fig. 1b.
• NS 3: Hotspot NS with BSs deployed on a hexagonal

lattice, as illustrated in Fig. 1c, where hotspot areas are
depicted by non-overlapping disk areas.

• NS 4: Hotspot NS with BSs deployed randomly, as
illustrated in Fig. 1d, where hotspot areas are depicted
by possibly overlapping disk areas.

In Fig. 1, BSs are represented by markers “x” and cell cover-
age areas for user equipment (UE) distribution are outlined
by solid lines. Note that NS 1 has been widely used to
model macrocell networks and the rest of the NSs have been
considered for small cell networks (SCNs) [2], [3]. For a
practical 4G and 5G SCN, the 3GPP prefers NS 4 over NS 2
in the modeling of SCNs, since operators mainly use SCNs
for capacity boosting or black spot removal in certain areas,
not for overall coverage provision. It is important to note that
the UE distribution is particularly difficult to characterize for
NS 4. This is because, although the basic shape of each small
cell coverage area is a disk in Fig. 1d, the coverage areas
of most small cells are of irregular shape due to possible
overlapping of disks caused by the random positions and the
closeness of small cell BSs.

Regarding the relationship between macrocells and small
cells, in practical 4G and 5G networks, there are two types of
heterogeneous network (HetNet) deployments as follows:
• Co-channel deployment: macrocells and small cells

operate on the same frequency spectrum (3GPP Small
Cell Scenario #1 [3])

• Orthogonal deployment: macrocells and small cells
operate on different frequency spectrum (3GPP Small
Cell Scenario #2a [3])

For the co-channel deployment, a practical assumption is that
macrocells and small cells are deployed according to NS 1
and NS 4, respectively. The combination of NS 1 and NS 2
might not be very practical because operators do not want
to waste money providing double blanket coverage on the
same frequency spectrum. For the orthogonal deployment,
macrocells and small cells can be studied separately, and the
3GPP prefers NS 4 over NS 2 in the modeling of SCNs,
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(a) Full-coverage NS (hexagonal). (b) Full-coverage NS (random).

(c) Hotspot NS (hexagonal). (d) Hotspot NS (random).

Fig. 1: Illustration of four network scenarios (NSs). Here, BSs are represented by markers “x” and cell coverage areas for user
equipment (UE) distribution are outlined by solid lines.

as discussed before. Although the co-channel deployment
provides a larger spatial reuse of spectrum than the orthogonal
deployment, the future of dense SCNs lies with the orthogonal
deployment1, mainly because of the easy management, thanks
to its low interaction with the macrocell tier, e.g., no inter-
tier interference [2]. Hence, in this paper, we aim for the
future and focus on the orthogonal deployment of SCNs
within macrocells, which agrees with the view of many major
operators around the world. As a result, the study of SCNs can
be decoupled from that of macrocells, thus we do not consider
the macrocell tier hereafter.

In this context, new and more powerful network perfor-
mance analysis tools are needed to better understand the
performance implications that these new dense orthogonal

1In more detail, the co-channel deployment requires cell range expansion
(CRE) and time-domain enhanced inter-cell interference coordination (eICIC)
to ensure successful macrocell off-loading and coping with the inter-tier
interference issues [4]. The main drawback of the co-channel deployment
with dense SCNs is that the macrocell tier will be practically muted due to
the time-domain eICIC mechanism [2], which protects a very large number
of small cells. The orthogonal deployment, on the other hand, calls for no
eICIC operation and is easy to implement in practice.

SCNs bring about [5]–[14]. Network performance analysis
tools can be broadly classified into two categories, i.e., macro-
scopic analysis [5], [6] and microscopic analysis [7]–[14]. In a
nutshell, the macroscopic analysis presents a general picture of
the network performance, while the microscopic analysis gives
more detailed results for specific networks. A more detailed
explanation of these two analyses is provided in the following:
• The macroscopic analysis usually assumes that UEs

and/or BSs are randomly deployed, often following a
homogeneous Poisson distribution to invoke the use of
the stochastic geometry theory [5], [6]. Such SCN is
usually characterized by NS 2, as illustrated in Fig. 1b.
In essence, the macroscopic analysis investigates network
performance metrics at a high level, such as the coverage
probability and area spectral efficiency, by averaging the
performance results over all possible UE and BS deploy-
ments [5], [6]. The macroscopic analysis is particularly
useful when an operator wants to know the average
performance across its whole network.

• In contrast, the microscopic analysis allows for a more
detailed analysis and is often conducted assuming that
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UEs are randomly placed in the entire network or in
hotspots, but that BS locations are known [7]–[14]. Such
SCN is usually depicted by NS 3 or NS 4 in Fig. 1.
In essence, the microscopic analysis is useful for a
network-specific study and optimization, e.g., optimizing
the interference cancellation parameters for a specific
SCN [14]. In other words, the microscopic analysis
can reveal the performance results for each individual
network scenario before they are averaged to form a
single performance result in the macroscopic analysis.
The microscopic analysis is particularly useful when an
operator wants to know the performance of a specific BS
deployment in its network or the performance impact of
adding several specific BSs to its network.

Within the microscopic analysis and paying special attention
to the uplink (UL) SCNs, the authors in [7], [8] considered
multiple UL interfering cells with disk-shaped coverage areas
and presented closed-form expressions for the UL interference.
In [9], [10], the authors conjectured that the UL interference
in a hexagonal grid based cellular network should follow
a lognormal distribution, which was verified via simulation.
In [11], [12], the authors went a step further and derived
an upper bound of the error in approximating the single-cell
UL interference (in dB unit) by a Gaussian distribution [12],
[15]. On the basis of this single-cell interference analysis, the
distribution of the aggregate UL interference in a multi-cell
scenario was approximated by a power lognormal distribution
in [12]. For more practical and complex networks, in [13],
[14], the authors investigated the network performance of
SCNs in current 4G networks using system-level simulations.

Due to its generality and analytical tractability, the interfer-
ence analysis based on the power lognormal distribution [12]
promises a new way to analyze the UL signal to interference
ratio (SIR), which has not been explored before and is the
focus of this work. Since our work is based on a deterministic
network analysis (DNA) using a Gaussian approximation
(GA), the proposed analysis will be referred to as the DNA-
GA analysis hereafter, and it comprises the following three
steps:

1) The aggregate interference power is approximated by a
random variable (RV) with a power lognormal distribu-
tion as in [11].

2) The signal power is characterized by a product of
two RVs, i.e., a lognormal RV and a RV with an
arbitrary distribution. The former RV comes from a
common assumption of lognormal shadow fading. The
distribution of such signal power RV is derived in
tractable expressions using the Gauss-Hermite numerical
integration [16].

3) The UL SIR is then modeled as a RV, which takes the
form of a lognormal RV×an arbitrary RV

a power lognormal RV and its distribution is
derived in this paper with tractable expressions.

Based on the above derivation, we present a single contri-
bution in this paper2:

2Note that preliminary results of our work were presented in a conference
paper [17].

• We make the DNA-GA analysis a tractable semi-
analytical approach in the microscopic analysis family
with the following features:

– it naturally considers lognormal shadow fading;
– it can treat arbitrary shape and/or size of cell cover-

age areas;
– it can handle non-uniform user distributions;
– it can cope with any type of multi-path fading;
– it can be applied to multi-antenna BSs.

Note that previously the DNA-GA analysis did not qualify
as a functional microscopic analysis because it was able to
analyze the aggregate interference only [12], not SIR. As
explained earlier, it is non-trivial to derive the distribution of a
SIR RV, which takes the form of a lognormal RV×an arbitrary RV

a power lognormal RV with
each component having a complicated distribution function.
Hence, our contribution in this work is distinctively different
than that in our previous work [12], which focused on studying
the approximation of the aggregate interference only.

The remainder of the paper is structured as follows. In
Section II, we provide a brief review of the related work.
In Section III, the network scenario and the wireless system
model are described. In Section IV, the DNA-GA analysis is
presented, followed by discussion on some special use cases
of the DNA-GA analysis in Section IV-D. Our results are
validated via simulations in Section V. Finally, the conclusions
are drawn in Section VI.

II. RELATED WORK

For the UL microscopic analysis, the existing work relies
on the following approaches:
• Approach 1: The analytical approach for small-scale

networks, which provides closed-form but complicated
analytical results for a network with multiple interfering
cells, where each cell has a regularly-shaped coverage
area, e.g., a disk or a hexagon [7], [8]. Specifically
in [8], the authors studied one UL interfering cell with
a disk-shaped coverage area and presented closed-form
expressions for the UL interference considering path loss,
shadow fading, multi-path fading and BS scheduling.

• Approach 2: The approximately analytical approach
for lattice networks, which first analyzes the UL inter-
ference and then makes an empirical assumption on the
UL interference distribution, and on that basis derives
analytical results for a network with multiple interfering
cells, whose BSs are placed on a regularly-shaped lattice,
e.g., a hexagonal lattice [9], [10]. Specifically in [10],
the authors assumed that the uplink interference in an
OFDMA-based hexagonal grid cellular network should
follow a lognormal distribution. Such assumption was
verified via simulation. In [9], the authors showed that
the lognormal distribution better matches the distribution
of the uplink interference in code division multiple access
(CDMA) SCNs than the conventionally assumed Gaus-
sian distribution in a hexagonal cellular layout.

• Approach 3: The simulation approach for complex
networks, which conducts system-level simulations to
directly obtain empirical results for a complex network
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with practical deployment of multiple cells, whose BSs
are placed at irregular locations [2], [13], [14]. Specifi-
cally in [2], [13], [14], the authors conducted system-level
simulations to investigate the network performance of
SCNs in existing 4G networks and in future 5G networks.

In general, Approach 1 does not scale very well with
dense SCNs and Approach 3 lacks analytical rigor. Regarding
Approach 2, it has been a number of years since an empirical
conjecture was extensively used in performance analysis,
which stated that the UL inter-cell interference with disk-
shaped coverage areas and uniform UE distributions could
be well approximated by a lognormal distribution in CDMA
SCNs [9] and in FDMA SCNs [10]. This conjecture is
important since the lognormal approximation of interference
distribution allows for tractable interference analysis with
simple expressions, which forms an essential step of network
performance analysis. In our previous works [11], [12], we
verified such conjectures and answered the fundamental ques-
tion of how accurate this lognormal approximation is, which
paves the way to the SIR analysis, which will be the focus of
this work.

III. NETWORK SCENARIO AND WIRELESS SYSTEM
MODEL

In this paper, we consider UL transmissions, and assume
that each small cell BS only schedules one UE in each
frequency/time resource, i.e., resource block (RB). This is a
reasonable assumption in line with the 4G networks, i.e., Long
Term Evolution (LTE) [3]. Note that small cells serving no
UE are ignored in our analysis because no UL interference is
generated from those small cells.

A. Network Scenario

Regarding the network scenario, we consider a SCN with
multiple small cells operating on the same carrier frequency,
as shown in Fig. 2. In more detail, the SCN consists of B
small cells, each of which is managed by a BS. The network
includes the small cell of interest denoted by C1 and B − 1
interfering small cells denoted by Cb, b ∈ {2, . . . , B}. Note
that as discussed in Section I, macrocells are not considered
in our analysis since they are assumed to operate on different
frequency spectrum from the SCN, i.e., orthogonal deploy-
ment.

We focus on a particular RB, and denote by Kb the active
UE associated with small cell Cb transmitting on such RB.
Moreover, we denote by Rb the coverage area of small cell Cb,
in which its associated UEs are randomly distributed. Note that
the coverage areas of adjacent small cells may share boundary
due to the arbitrary shapes and sizes of {Rb} , b ∈ {2, . . . , B}.

The distance (in km) from the BS of Cb to the BS of
C1, b ∈ {1, . . . , B}, and the distance from UE Kb to the
BS of Cm, b,m ∈ {1, . . . , B}, are denoted by Db and
dbm, respectively. Since the DNA-GA analysis belongs to
the microscopic analysis family, we consider a deterministic
deployment of BSs, i.e., the set {Db} is known, while UE
Kb is randomly distributed in Rb with a probability density
function (PDF) fZb

(z), where 0 < fZb
(z) < +∞, z ∈ Rb

Fig. 2: A schematic diagram of the considered SCN.

and its integral over Rb equals to one, i.e.,
∫
Rb
fZb

(z) dz = 1.
Hence, dbm is a random variable (RV), whose distribution
cannot be readily expressed in an analytical form due to the
arbitrary shape and size of Rb, and the arbitrary form of
fZb

(z).

B. Wireless System Model

Next, we present the modeling of path loss, shadow fading,
UL transmission power, multi-path fading and multi-antenna
reception filter, respectively.

Based on the definition of dbm, the path loss in dB from
UE Kb to the BS of Cm can be modeled as

Lbm = A+ α× 10log10dbm, (1)

where A is the path loss in dB at the reference distance of
dbm = 1 and α is the path loss exponent. In practice, A and α
are constants obtainable from field tests [18]. Note that Lbm
is a RV due to the randomness of dbm.

The shadow fading in dB from UE Kb to the BS of Cm
is denoted by Sbm, b,m ∈ {1, . . . , B}, where Sbm is usually
assumed to follow a Gaussian distribution [18]. Based on this
assumption, Sbm is modeled as an independently and identi-
cally distributed (i.i.d.) zero-mean Gaussian RV with a vari-
ance of σ2

Shad, i.e., Sbm ∼ N
(
0, σ2

Shad

)
. Note that a more real-

istic assumption would be the correlated shadow fading [19],
which constructs Sbm and Sjm (b, j,m ∈ {1, . . . , B} , b 6= j)
as correlated RVs, where the correlation coefficient decreases
with the increase of the distance from UE Kb to UE Kj .
Such assumption of the correlated shadow fading complicates
the analysis since it is difficult to characterize the distribution
of the inter-UE distance. For the sake of tractability, in this
paper, we assume i.i.d. shadow fading for the UE-to-BS links.

The UL transmission power in dBm of UE Kb is denoted
by Pb, and is subject to a semi-static power control (PC)
mechanism, i.e., the fractional path loss compensation (FPC)
scheme [18]. Based on this FPC scheme, Pb is modeled as

Pb = P0 + η (Lbb + Sbb) , (2)

where P0 is the target received power in dBm on the con-
sidered RB at the BS, η ∈ (0, 1] is the FPC factor, and
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Lbb and Sbb ∼ N
(
0, σ2

Shad

)
have been discussed above. Note

that in practice Pb is also constrained by the maximum value
of the UL power, denoted by Pmax at the UE. However, the
power constraint is a minor issue for UEs in 5G dense SCNs
since they are generally not power-limited due to the close
proximity of a UE and its associated SCN BS. For example,
it is recommended in [18] that Pmax is smaller than the SCN
BS downlink (DL) power by only 1 dB, which grants a similar
outreach range of signal transmission for the BS and the UE.
Therefore, the UL power limitation is a minor issue as long
as the UE is able to connect with the serving BS in the DL.
If the UE cannot establish a DL connection with the serving
BS, then it is not very meaningful to consider the UL power
constraint issue since the UL connection cannot exist without
the assistance of the DL control signaling. For the sake of
tractability, in this paper, we model Pb as (2), which has been
widely adopted in the literature [5]–[8].

The multi-path fading channel vector from UE Kb to the
BS of Cm is denoted by hbm ∈ CNBS×1, b,m ∈ {1, . . . , B},
where we assume that each UE is equipped with one omni-
directional transmission antenna and each BS is equipped with
NBS reception antennas. As for the multi-antenna reception
filter at the BS of Cm, we adopt the widely-used normalized
maximal ratio combining (MRC) reception filter given by
fm =

hH
mm

‖hmm‖ [20], where hH
mm is the Hermitian transpose

of hmm and ‖hmm‖ is the Euclidean norm of hmm. It is
important to note that we consider a general type of multi-
path fading by assuming that the effective channel gain in dB
associated with hbm is defined as

Hbm = 10 log10Wbm, (b,m ∈ {1, . . . , B}) , (3)

where Wbm is the effective channel gain of the link from UE
Kb to the BS of Cm and it is expressed as [20]

Wbm = ‖fmhbm‖2 . (4)

The PDF and the CDF of Hbm are respectively denoted by
fHbm

(h) and FHbm
(h), and they can be derived analytically

according to the distribution of Wbm. For example, when
NBS = 1, Wbm can be characterized by an identically and
independently distributed (i.i.d.) exponential distribution or
a Gamma distribution in the case of Rayleigh fading or
Nakagami fading, respectively [20]. As another example, when
NBS ≥ 1 and with the consideration of Rayleigh fading,
Wmm follows a chi-squared distribution with 2NBS degrees of
freedom [20] and Wbm, (b 6= m) follows an i.i.d. exponential
distribution with a mean of one [14].

Finally, we ignore the additive noise because the 4G/5G
SCNs generally work in the interference-limited region [2].
Moreover, we assume that Lbm, Sbm and Hbm are indepen-
dently distributed RVs as recommended by the 3GPP [18].

For clarity, the defined RVs in our system model are
summarized in Table I.

IV. THE PROPOSED DNA-GA ANALYSIS

The proposed DNA-GA analysis consists of three steps, i.e.,
the interference power analysis, the signal power analysis,
and the SIR analysis, which are presented in the following

subsections. For clarity, we would like to summarized the key
points of these analyses:
• The interference power analysis was presented in our

previous work [12], where the aggregate interference
power is approximated by a RV with a power lognormal
distribution.

• The signal power analysis is completely different
from [12]. More specifically, the signal power is charac-
terized by a product of two RVs, i.e., a lognormal RV and
a RV with an arbitrary distribution. The distribution of
such signal power RV is derived in tractable expressions
using the Gauss-Hermite numerical integration [16].

• The SIR analysis involves the treatment of the UL SIR,
which is modeled as a complicated RV taking the form
of a lognormal RV×an arbitrary RV

a power lognormal RV . Its distribution is derived in
this paper with tractable expressions.

A. The Interference Power Analysis
Based on the definition of RVs presented in Section III, the

UL received interference power in dBm from UE Kb to the
BS of C1 can be written as

Ib
(a)
= Pb − Lb1 − Sb1 +Hb1

= P0 + (ηLbb − Lb1)︸ ︷︷ ︸
Lb

+ (ηSbb − Sb1)︸ ︷︷ ︸
Sb

+Hb1

= (P0 + Lb + Sb)︸ ︷︷ ︸
I
(1)
b

+Hb1

= I
(1)
b +Hb1, (5)

where (2) is plugged into the step (a) of (5), and Lb and Sb
are defined as Lb = (ηLbb − Lb1) and Sb = (ηSbb − Sb1),
respectively. As discussed in Subsection III-B, Lb and Sb
are independent RVs. Besides, the first part of Ib is fur-
ther defined as I(1)

b = (P0 + Lb + Sb). Since Sbb and Sb1
(b ∈ {2, . . . , B}) are i.i.d. zero-mean Gaussian RVs, it is easy
to show that Sb is also a Gaussian RV, whose mean and
variance are {

µSb
= 0

σ2
Sb

=
(
1 + η2

)
σ2

Shad
. (6)

From the definition of Ib in (5), the aggregate interference
power in mW from all interfering UEs to the BS of C1 can
be formulated as

ImW =
B∑
b=2

10
1
10 Ib . (7)

In our previous work [12], we show that the distribution
of ImW can be well approximated by a power lognormal
distribution. The results are summarized in the following.

1) The Distribution of I(1)
b in (5): First, we analyze the

distribution of I(1)
b shown in (5). With a bounded approxima-

tion error in terms of the maximum KS distance [12], [15],
we can approximate I(1)

b by a Gaussian RV Gb, whose mean
and variance are{

µGb
= P0 + µLb

+ µSb

σ2
Gb

= σ2
Lb

+ σ2
Sb

(i.e., P0 + Lb + Sb ≈ Gb) , (8)
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Table I: Definition of RVs.

RV notation Description PDF
Rb The coverage area of single-tier small cell Cb Arbitrary shape and size
Zb The position of UE Kb in Rb fZb

(z) , z ∈ Rb
dbm The distance (in km) from UE Kb to the BS of small cell Cm Function of fZb

(z), Rb and Db

Lbm The path loss (in dB) from UE Kb to the BS of small cell Cm Function of fZb
(z), Rb and Db

Sbm The shadow fading (in dB) from UE Kb to the BS of small cell Cm i.i.d. N
(
0, σ2

Shad

)
Hbm The channel gain (in dB) from UE Kb to the BS of small cell Cm fHbm

(h)
Pb The UL transmission power (in dBm) of UE Kb Function of fZb

(z), Rb and Sbb

where µLb
and σ2

Lb
are respectively the mean and the variance

of Lb, which can be obtained using numerical integration
involving fZb

(z) and Rb as [11], [12]

µLb
=

∫ +∞

−∞
lfLb

(l) dl

=

∫
Rb

Lb (z) fZb
(z) dz

=

∫
Rb

(ηLbb (z)− Lb1 (z)) fZb
(z) dz, (9)

σ2
Lb

=

∫ +∞

−∞
(l − µLb

)
2
fLb

(l) dl

=

∫
Rb

(Lb (z)− µLb
)
2
fZb

(z) dz

=

∫
Rb

(ηLbb (z)− Lb1 (z)− µLb
)
2
fZb

(z) dz. (10)

where (1) should be further plugged into (9) and (10) to
obtain the numerical results, which take the random UE-to-
BS distances into account.

2) The Distribution of Ib in (5): Second, we analyze
the distribution of Ib = I

(1)
b + Hb1 shown in (5). With a

bounded approximation error in terms of the maximum KS
distance [12], [15], we approximate Ib by another Gaussian
RV Qb, whose mean and variance are{

µQb
= µGb

+ µHb1

σ2
Qb

= σ2
Gb

+ σ2
Hb1

(i.e., Gb +Hb1 ≈ Qb) . (11)

where µHb1
and σ2

Hb1
are respectively the mean and the

variance of Hb1. According to the RV definition presented
in Section III, µHb1

and σ2
Hb1

can be computed by

µHb1
=

∫ +∞

−∞
hfHb1

(h) dh, (12)

σ2
Hb1

=

∫ +∞

−∞
(h− µHb1

)
2
fHb1

(h) dh, (13)

where fHb1
(h) can be derived according to the distribution of

Hb1 defined in (3).
3) The Distribution of ImW in (7): Third, we invoke the

main results in [21], [22], which indicate that the sum of
multiple independent lognormal RVs can be well approximated
by a power lognormal RV. Thus, in our case, since each
Ib, b ∈ {2, . . . , B}, is approximated by a Gaussian RV Qb,

their sum 10
1
10Qb in (7) should be well approximated by a

power lognormal RV expressed as ÎmW = 10
1
10Q, where the

PDF and CDF of Q can be written as [21]

PDF of Q :

fQ (q) = λ
[
Φ
(
q−µQ

σQ

)]λ−1
1√

2πσ2
Q

exp
{
− (q−µQ)2

2σ2
Q

}
CDF of Q :

FQ (q) =
[
Φ
(
q−µQ

σQ

)]λ ,

(14)
where Φ (x) is the CDF of the standard normal distribution,
and the parameters λ, µQ and σQ are obtained from {µQb

}
and

{
σ2
Qb

}
shown in (11). The numerical procedure to obtain

λ, µQ and σQ can be found in [21], [22]. A short summary of
such numerical procedure is available in Appendix B of [12].
From (14), the PDF and CDF of ÎmW can be written as [21]

PDF of ÎmW :

fÎmW (v)=λ
[
Φ
(
ζ ln v−µQ

σQ

)]λ−1
ζ

v
√

2πσ2
Q

exp
{
− (ζ ln v−µQ)2

2σ2
Q

}
CDF of ÎmW :

FÎmW (v) =
[
Φ
(
ζ ln v−µQ

σQ

)]λ ,

(15)
where ζ = 10

ln 10 is a scalar factor originated from a variable
change from 10 log10 v to ln v.

Finally, we approximate the distribution of ImW by that of
ÎmW shown in (15).

4) The Approximation Errors: The upper bound of the total
error of approximating I

(1)
b by Gb in Subsection IV-A1 and

approximating Ib by Qb in Subsection IV-A2, is obtained
from the summation of the individual approximation errors
of the two steps in closed-form expressions [12]. Intuitively
speaking, the results in [12] showed that the larger the variance
of the Gaussian RV, i.e., Sb in (8) or Gb in (11), the better
the approximation in (8) or in (11), due to the increasing
dominance of the Gaussian RV. In Appendix A, we provide a
toy example to show our previous finding that the sum of a
Gaussian RV and an arbitrary RV can be well approximated
by another Gaussian RV, when the variance of the summand
Gaussian RV is larger than that of the summand arbitrary
RV [12].

Moreover, the bounds of the error of approximating the
distribution of ImW by that of ÎmW in Subsection IV-A3
are still unknown. But it has been shown to be reasonably
small in practical cases [21], [22]. In Section V, we will also
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confirm that the approximation error of the power lognormal
distribution is indeed small for the 4G networks defined by
the 3GPP.

B. The Signal Power Analysis

Based on the definition of RVs discussed in Section III, the
UL received signal power in dBm from UE K1 to its serving
BS of C1 can be written as

X1
(a)
= P1 − L11 − S11 +H11

= P0 + (ηL11 − L11)︸ ︷︷ ︸
L̄11

+ (ηS11 − S11)︸ ︷︷ ︸
S̄11

+H11

=
(
P0 + L̄11 + S̄11

)︸ ︷︷ ︸
X

(1)
1

+H11

= X
(1)
1 +H11, (16)

where (2) is plugged into the step (a) of (16). Besides, L̄11 and
S̄11 are defined as L̄11 = (η − 1)L11 and S̄11 = (η − 1)S11,
respectively. Apparently, L̄11 and S̄11 are independent RVs.
The first part of X1 is further defined as X(1)

1 = P0 + L̄11 +
S̄11, and it is easy to show that S̄11 is a Gaussian RV, whose
mean and variance are{

µS̄11
= 0

σ2
S̄11

= (1− η)
2
σ2

Shad
. (17)

Similar to the discussion in Subsection IV-A1, with a
bounded approximation error in terms of the maximum KS
distance [12], [15], we can approximate X(1)

1 by a Gaussian
RV G1, whose mean and variance are{

µG1
= P0 + µL̄11

+ µS̄11

σ2
G1

= σ2
L̄11

+ σ2
S̄11

(
i.e., P0 + L̄11 + S̄11 ≈ G1

)
,

(18)
where µL̄11

and σ2
L̄11

are respectively the mean and the
variance of L̄11. As a result, (16) can be re-formulated as

X1 ≈ G1 +H11
4
= X̂1. (19)

Unlike the discussion in Subsection IV-A2, it is questionable
to further approximate X̂1 by a Gaussian RV, because the
randomness of the Gaussian distributed RV S11 is largely
removed by the UL transmission power control mechanism,
rendering a less dominant role of the Gaussian distribution
of G1 compared with the distribution of H11. Note that the
variance of S̄11 is as small as (1− η)

2
σ2

Shad shown in (17),
while that of Sb is as large as

(
1 + η2

)
σ2

Shad presented in
(6). In other words, σ2

G1
= σ2

L̄11
+ σ2

S̄11
could be comparable

with or even smaller than the variance of H11, making the
Gaussian approximation error large according to the results
in [12]. Hence, our conclusion on X̂1 is presented in Remark 1
as follows.

Remark 1: It is generally not accurate to approximate X̂1

in (19) by a Gaussian RV because the Gaussian distribution
of G1 is less dominant than the distribution of H11 in terms
of the distribution variance.

Note that Remark 1 has been validated by the toy example
in Appendix A. In more detail, suppose that H11 follows

a uniform distribution, we have shown in Fig. 8 that the
Gaussian approximation on (G1 +H11) is not accurate when
the Gaussian distribution of G1 is less dominant than the
distribution of H11 in terms of the distribution variance. Since
H11 might be characterized by any form of distribution and
there exists at least one example of uniform distribution that
prevents the application of the Gaussian approximation on
(G1 +H11), we have thus established Remark 1. Note that
we will further verify the correctness of Remark 1 using more
numerical results under practical network conditions in later
sections.

In light of Remark 1, X̂1 takes the form of a Gaussian RV
G1 plus a RV H11 with an arbitrary distribution. Equivalently,
the signal power in the linear scale is characterized by a
product of two RVs, i.e., a lognormal RV and a RV with
an arbitrary distribution. Therefore, we need to derive the
distribution of X̂1 and thus the approximate distribution of
X1 using a different method. Our main results are presented
in Theorem 1 as follows.

Theorem 1. The approximate CDF of X1 can be derived as

FX1
(x)≈FX̂1

(x)≈ 1√
π

M0∑
m=1

wmFH11

(
x−
(√

2σG1
am+µG1

))
,

(20)
where FH11

(h) is the CDF of H11 defined in (3), σG1
and µG1

are obtained from (18), M0 is the number of terms employed in
the Gauss-Hermite numerical integration [16], and the weights
{wm} and the abscissas {am} are tabulated in Table 25.10
of [16].

Proof: See Appendix B.
According to the theory of the Gauss-Hermite numerical

integration [16], the numerical integration works with any
integrand function and the approximation error associated with
the numerical integration is in the order of M0!

2M0 (2M0)!
, which

decays very fast as M0 increases. In practice, M0 should
be chosen as a large enough value to ensure a negligible
approximation error. In our numerical results to be shown in
later sections, the value of M0 is set to 30, which makes the
approximation error less than 10−9.

Regarding the calculation of FH11
(h), since H11 represents

a logarithm variable change from W11, FH11
(h) can be

expressed in a general form, which is summarized in Lemma 2.

Lemma 2. FH11 (h) can be written as

FH11
(h) = FW11

(
exp

(
h

ζ

))
, (21)

where FW11
(w) is the CDF of W11 and ζ = 10

ln 10 .

Proof: See Appendix C.
Regarding Lemma 2, several special cases can be discussed

in the following.
In the case of Rayleigh fading with single-antenna BSs [20],

W11 follows an exponential distribution with a mean of one,
and the CDF of W11 can be written as

FW11
(w) = Pr [W11 ≤ w] = 1− exp (−w) . (22)

In the case of Rayleigh fading with multi-antenna BSs,
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W11 follows a chi-squared distribution with 2NBS degrees of
freedom [20], and the CDF of W11 can be written as

FW11 (w) = Pr [W11 ≤ w] =
1

(2NBS − 1)!
γ
(
2NBS, w

)
, (23)

where γ (·, ·) denotes the incomplete gamma function [16].
In the case of Nakagami fading with single-antenna BSs,

W11 follows a Gamma distribution with parameters k and
θ [20], and the CDF of W11 can be written as

FW11
(w) = Pr [W11 ≤ w] = P

(
k,
w

θ

)
, (24)

where P (·, ·) denotes the regularized Gamma function [16],
k and θ are the shape and the scale parameters of the Gamma
distribution, respectively.

Note that an alternative characterization of the product of
lognormal shadow fading and Rayleigh multi-path fading is
known as the Suzuki distribution [23]. Compared with [23], the
advantage of Theorem 1 roots in its generality, i.e., any form
of FW11

(w) can be plugged into Lemma 2 and Theorem 1 to
obtain an approximate distribution of the signal power.

C. The SIR Analysis

From (16), we can approximate the UL SIR in dB unit by

U dB ≈ X1 −Q
4
= Û dB. (25)

Equivalently, the UL SIR in the linear scale takes the form
of a lognormal RV×an arbitrary RV

a power lognormal RV . In the following, we derive the
approximate distribution of U dB in Theorem 3.

Theorem 3. The approximate CDF of U dB can be derived as
FU dB (u) ≈ FÛ dB (u)

≈ λ√
π

M0∑
m=1

wmΦλ−1
(√

2am

)
FX1

(
u+
√

2σQam + µQ

)
, (26)

where FX1
(x) is the CDF of X1 computed from Theorem 1,

{λ, σQ, µQ} are defined in (14), M0 is the number of terms
employed in the Gauss-Hermite numerical integration [16],
and the weights {wm} and the abscissas {am} are tabulated
in Table 25.10 in [16].

Proof: See Appendix D.
Corresponding to the special cases discussed for The-

orem 1 and Lemma 2, the SIR results can be obtained
from Theorem 3 for Rayleigh/Nakagami fading with single-
antenna/multi-antenna BSs, respectively.

The complexity of computing FU dB (u) in Theorem 3 is
analyzed as follows:
• wm and Φ

(√
2am

)
can be readily obtained from the

weights and the abscissas of the Gauss-Hermite numer-
ical integration [16], and hence their complexity can be
ignored.

• λ, µQ and σQ need to be calculated for only once and can
be used for all values of m and z. The key step to compute
λ, µQ and σQ is to obtain {µQb

} and
{
σ2
Qb

}
shown

in (11), and most computations associated with this step
are caused by the numerical integration in (9) and (10).
More specifically, suppose that fZb

(z) is sampled by

N intg points, then the complexity of calculating λ, µQ
and σQ is in the order of 2BN intg.

• FX1

(
u+
√

2σQam + µQ
)

needs to be evaluated for each
m and its complexity is in the order of M0 according to
Theorem 1. Hence, for a given u, the complexity associ-
ated with the computation of FX1

(
u+
√

2σQam + µQ
)

is in the order of M2
0 .

• To sum up, the complexity of computing FU dB (u) is in
the order of 2BN intg +M2

0 , which is feasible in practice
considering that the typical values of B, N intg and M0

are in the order of several tens to hundreds.
Furthermore, regarding Theorem 3, we have two remarks in

the following.
Remark 2: Since Theorem 3 is built upon (9) and (10),

which poses no constraints on Rb and fZb
(z), the DNA-GA

analysis can handle arbitrary UE distributions.
Remark 3: Even if fZb

(z) is constant over z, we can only
say that the UE distribution is uniform within the small cell
coverage area Rb, as illustrated in Fig. 1d. However, from
Fig. 1d, it is clear that the UE distribution is not uniform within
the entire network area, because no UE is deployed outside
the hotspot areas {Rb}, and consequently the UE distribution
within the entire network area is not uniform. Note that in the
macroscopic analysis based on stochastic geometry [5], [6],
UEs are usually assumed to be Poisson-distributed within the
entire network area as illustrated in Fig. 1b. In the sequel, the
description of the UE distribution is meant within Rb since
we are focusing on the microscopic analysis. For example,
a uniform UE distribution means that UEs are uniformly
deployed in {Rb}, not in the entire network area.

D. Special Use Cases of the DNA-GA Analysis

With Theorem 3, we have crafted a new microscopic
analysis based on the proposed DNA-GA analysis, which
can deal with a wide range of network assumptions, UE and
BS distributions, and system parameters. In this section, we
discussed two special network scenarios of the proposed DNA-
GA analysis.

1) The Grid Network Scenario: A typical network scenario
widely used in the microscopic analysis is the grid network
scenario [5]. Such network scenario is referred to as NS 3
in Section I and illustrated by Fig. 1c. More specifically, we
construct an idealistic BS deployment on a perfect hexagonal
lattice, and then we can perform a single DNA-GA analysis
on such BS deployment to extract an upper-bound of the SIR
performance. Note that the BS deployment on a hexagonal
lattice leads to an upper-bound performance, because BSs
are evenly distributed in the network scenario, and thus very
strong interference due to close proximity is precluded in the
analysis [5], [6].

2) The Random Deployment Network Scenario: Instead of
using the grid network case, we can choose a specific network
scenario with random BS deployment and apply the DNA-GA
analysis on it. Such network scenario is referred to as NS 4
in Section I and illustrated by Fig. 1d. However, such practice
might lead to a biased judgment on the quality of the DNA-GA
analysis, since unlike the deterministic grid network scenario
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in Subsection IV-D1, the choice of a specific network scenario
is a highly subjective one. Hence, it might be better to apply
the DNA-GA analysis, i.e., Theorem 3, over N dep random BS
deployments and obtain the average performance result, e.g.,
averaging over N dep CDFs to obtain an average CDF.

V. SIMULATION AND DISCUSSION

In this section, we conduct simulations to validate the
proposed DNA-GA analysis, using both NS 3 and NS 4:
• For NS 3, only one BS deployment on a hexagonal lattice

is examined.
• For NS 4, we average the results given by Theorem 3

over 1000 random BS deployments.
For each BS deployment, 10,000 random experiments are

conducted to go through the randomness of UE positions,
and for each BS deployment and each UE placement, another
10,000 random experiments are conducted to go through the
randomness of shadow fading and multi-path fading. M0 is
set to 30 for the computation in the DNA-GA analysis to
ensure a good accuracy of the results [16]. Note that the the
scale of simulations seems to be very large in our work. More
specifically, in our simulations involving 228 small cells, the
following sets of random variables (RVs) should be considered
for each random BS deployment:
• Set 1: 228 two-dimensional RVs associated with random

UE distribution
• Set 2: 228 RVs associated with shadow fading for the

active UEs
• Set 3: 228×NBS RVs associated with multi-path fading

for the active UEs, where NBS denotes the antenna
number at BSs

In our simulations, we conducted 10,000 experiments to in-
vestigate the randomness of the RVs in Set 1, which contains
456 effective RVs. In addition, we conducted another 10,000
experiments to study the randomness of the RVs in Set 2
and Set 3, which also contains at least 456 effective RVs.
Our target was to have 10000/456 ≈ 20 tries per RV,
which seemed to be reasonable in simulation experiments.
However, even with such moderate target, the simulation had
already become exceptionally computation-intensive and time-
consuming because its complexity is in the order of hundreds
of millions. On the other hand, the complexity of evaluating
Theorem 3 is in the order of tens of thousands, as discussed
before.

With regard to the network parameters, the 3GPP recom-
mendations have been used [18]. For NS 4, 19 dummy macro-
cell sites are deployed with a 0.5 km inter-site distance to guide
the small cell deployment. Each macrocell site has the shape
of a hexagon, and is equally divided into 3 pentagon-shaped
macrocells. Each macrocell contains 4 randomly deployed
small cells, resulting in 19 × 3 × 4 = 228 small cells with a
density around 55.43 cells/km2. For NS 3, the 228 small cells
are located on a hexagonal lattice with the same cell density.
In both cases, each small cell has a coverage radius of 0.04
km as recommended by the 3GPP to simulate a hotspot with
a small cell BS at the center of it, and the minimum inter-BS
distance and the minimum BS-to-UE distance are 0.04 km, and
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Fig. 3: The UL aggregate interference power in dBm (Case 1).
Note that in this figure, LA and PLA represent Lognormal Ap-
proximation [24] and Power Lognormal Approximation [12],
respectively.

0.01 km, respectively. Moreover, according to [18], we use the
following parameters A = 145.4, α = 3.75, P0 = −76 dBm,
η = 0.8, and σS = 10 dB.

In the following subsections, we will validate the accuracy
of the DNA-GA analysis in terms of the interference power,
the signal power and the SIR performance.

A. Validation of the DNA-GA Analysis

In this subsection, we validate the accuracy of the DNA-GA
analysis using NS 4 together with the following case,
• Case 1: uniform UE distribution + Rayleigh fading +

single-antenna BSs
Note that NS 4 is chosen because it represents numerous
network realizations, instead of just one network scenario as
in NS 3.

1) Validation of the Interference Power: In Fig. 3, we
show the UL aggregate interference power averaged over
1000 random BS deployments. As concluded in our previous
work [12], the UL aggregate interference power can be well
approximated by a power lognormal distribution. Specifically,
in Fig. 3, the maximum deviation in terms of the maximum KS
distance between the simulated CDF and the power lognormal
CDF obtained by our analysis is less than 1.9 percentile, which
validates the accuracy of the first part of the DNA-GA analysis
presented in Subsection IV-A. The previous state-of-the-art
conclusion was that the UL aggregate interference should be
approximated by a lognormal RV [24]. For completeness, we
also show such lognormal approximation in Fig. 3 and we can
see that it is much less accurate than the approximation using
the proposed power lognormal distribution [12].

2) Validation of the Signal Power: For Case 1, we obtain
the signal power from the DNA-GA analysis using Theorem 1.
In Fig. 4, we plot such UL signal power averaged over 1000
random BS deployments. As discussed in Remark 1 and shown
in Fig. 4, it is indeed not accurate to approximate the dB-scale
UL signal power by a Gaussian RV, because the randomness
of the Gaussian distributed shadow fading is largely mitigated
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Fig. 4: The UL signal power in dBm (Case 1). Note that in
this figure, the directly Gaussian approximation [12] is not
accurate for the signal power.
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Fig. 5: The UL SIR in dB (Case 1).

by the considered UL transmission power control mechanism.
From Fig. 4, we can see that the proposed Theorem 1 gives a
good approximation of the UL signal power, which validates
the accuracy of the second part of the DNA-GA analysis
presented in Subsection IV-B. More specifically, in Fig. 4, the
maximum deviation in terms of the maximum KS distance
between the simulated CDF and the analytical CDF using
Theorem 1 is less than 0.2 percentile.

3) Validation of the SIR: After confirming the accuracy
of the distributions for the aggregate interference power and
the signal power, we can obtain the average SIR results for
Case 1 over 1000 random BS deployments using the DNA-
GA analysis addressed in Theorem 3. In Fig. 5, we plot such
UL SIR in dB unit. From this figure, we can see that the
results given by the DNA-GA analysis match well with the
simulation results, which validates the accuracy of the third
part of the DNA-GA analysis presented in Subsection IV-C.
In more detail, in Fig. 5, the maximum deviation in terms of
the maximum KS distance between the simulated CDF and the
analytical CDF using Theorem 1 is less than 0.7 percentile.

It is very important to note that in Fig. 5 the curve-matching
of the average results over 1000 random BS deployments does
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Fig. 6: The frequency of occurrence of the maximum KS
distance between the simulated CDF and the analytical CDF
(Case 1).

not necessarily mean that the approximated CDF matches the
simulated CDF for each BS deployment. To investigate the
accuracy of the DNA-GA analysis for each BS deployment,
we plot the frequency of occurrence of the maximum KS
distance between the simulated CDF and the analytical CDF
in Fig. 6. From this figure, we can observe that for around
90% BS deployments, the approximation errors are less than
1.1 percentile, which is a bit larger than the error shown in
Fig. 5 since a negative error and a positive error may cancel
each other out in the average operation over 1000 random BS
deployments. Overall, such per-BS-deployment approximation
error shows that the DNA-GA analysis is good enough for
practical usage since it merely incurs a small error around
1 percentile.

B. Investigation of Alternative Scenarios

With the DNA-GA analysis validated in Subsection V-A,
in this subsection, we investigate the results of the DNA-GA
analysis for alternative cases compared against Case 1 to show
the generality of our analysis. The additional cases are defined
as follows,

• Case 2: non-uniform UE distribution + Nakagami fading
+ single-antenna BSs

• Case 3: uniform UE distribution + Rayleigh fading +
multi-antenna BSs (NBS = 4)

When considering a non-uniform UE distribution in Case 2,
we assume that fZb

(z) = W
ρ , z ∈ Rb, where ρ is the radial

coordinate of z in the polar coordinate system, the origin of
which is placed at the position of the BS of Cb and W is
a normalization constant to make

∫
Rb
fZb

(z) dz = 1. In the
resulting non-uniform UE distribution, UEs are more likely
to locate in the close vicinity of the BS of Cb than at the
cell-edge. Note that the considered fZb

(z) is just an example
of the non-uniformly distributed UEs in Rb, which reflects a
reasonable network planning, where small cell BSs have been
deployed at the center of UE clusters. Other forms of fZb

(z)
can be considered in our DNA-GA analysis as well.

When considering Nakagami fading in Case 2, we assume
that k = 10 and θ = 0.1, which corresponds to a multi-path
fading with a strong line-of-sight (LoS) component [20]. Note
that Case 2 is just an example for performance evaluation.
Other values of k and θ can be considered in our DNA-GA
analysis as well.
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Fig. 7: UL SIR in dB with the DNA-GA analysis vs. the
simulation (various cases). Note that the analytical upper-
bound performance is obtained using NS 3 as illustrated in
Fig. 1c.

For all of the interested cases, the average UL SIR perfor-
mance is evaluated for NS 4 as discussed in Subsection IV-D2.
Moreover, the upper bound of the UL SIR is investigated for
NS 3 as discussed in Subsection IV-D1.

The SIR results are shown in Fig. 7. As can be seen from
this figure, the SIR results of the proposed DNA-GA analysis
match well with those obtained by simulation. For NS 4, the
maximum deviation in terms of the maximum KS distance
between the CDFs obtained by the DNA-GA analysis and the
simulation for all of the investigated cases are around 0.9∼
1.7 percentile. For NS 3, the fitness becomes even better, i.e.,
the maximum deviation in terms of the maximum KS distance
for all of the investigated scenarios is within 0.6 percentile.

More importantly, for all of the investigated cases, the
upper-bound SIR performance given by NS 3 is shown to be
within 2.0∼ 2.5 dB from the average performance obtained
from NS 4, indicating its usefulness in characterizing the net-
work performance with low-complexity computation. In more
detail, the numerical results to be plugged into Theorem 3 to
obtain the upper-bound SIR performance for the grid network
scenario shown in Fig. 1c are as follows,

• Case 1: µG1
= −93.07, σ2

G1
= 5.97, λ = 202.66, µQ =

−137.71 and σ2
Q = 212.04.

• Case 2: µG1
= −92.30, σ2

G1
= 7.15, λ = 193.48, µQ =

−137.01 and σ2
Q = 193.66.

• Case 3: The same as Case 1, because Case 1 and Case 3
share the same G1 and Q. However, FH11 (h) is different
for Case 1 and Case 3, which leads to different FZdB (z).

Finally, note that the SIR of Case 2 outperforms that of
Case 1, mainly because UEs tend to stay closer to their
serving BSs in the considered non-uniform UE distribution
of Case 2, leading to a larger signal power and a lower
interference power. Also note that Case 3 achieves the best
SIR performance among the interested cases due to the MRC
antenna array gain provided by the multi-antenna BSs.

C. The Application and Future Work of the DNA-GA Analysis

The proposed DNA-GA analysis based on the Gaussian
approximation is particularly useful for network performance
analysis of the 5G systems with general cell deployment
and user distribution. Detailed discussion is provided in the
following.
• The Gaussian approximation has been shown to be more

accurate for denser and smaller cells [11], [12], because
the Gaussian distribution originated from the shadow fad-
ing becomes more dominant compared with the random
UE distribution in each cell of a denser SCN.

• The Gaussian approximation can be applied to cell cov-
erage areas with arbitrary shapes. This is very useful to
analyze 5G hotspots with irregular shapes, as illustrated
in Fig. 1b.

• The Gaussian approximation becomes strongly motivated
in response to the emerging issue of fast shadow fading in
5G. This issue is brought forth by a recent significant dis-
covery that the 5G network capacity will decrease to zero
if the antenna height difference between BSs and UEs
is non-zero [25]–[27]. A simple solution to avoid such
network crash is to lower the BS antenna height to the
UE height around 1.5 m. However, such BS deployment
gives rise to a new issue of fast shadow fading caused
by moving vehicles on streets with a similar height of
1.5 m. In more detail, considering a typical car length
of 4 m and a moderate vehicle speed of 36 km/h, the
time interval that such vehicle blocks a communication
link becomes 400 ms, which leads to a new phenomenon
of fast shadow fading. Note that a larger vehicle speed
would result in an even faster shadow fading. Such fast
shadow fading issue was highlighted by the International
Telecommunication Union (ITU) document considering
trees and moving vehicles in [28]. It was not a real
concern until recently when we are marching toward
5G and continuously lowering the BS antennas below
tree lines. With the existence of the fast shadow fading,
the Gaussian distribution will become more dominant for
each UE-to-BS link, making the Gaussian approximation
more useful in analyzing network performance in the
future.

• The Gaussian approximation is capable of generating
results for operators who want to know the performance
of a specific BS deployment in its network or the per-
formance impact of adding several specific BSs to its
network. This is because the Gaussian approximation is
naturally applied on each specific BS, and thus providing
a microscopic treatment of 5G SCNs to identify network
deployment problems or verify incremental network up-
grade plans for operators.

As future work, the proposed DNA-GA analysis can be
enhanced in several aspects. Detailed discussion is provided
in the following.
• The proposed DNA-GA analysis based on the Gaussian

approximation is complimentary to the stochastic geom-
etry analysis [5], [6]. They are both useful for network
performance analysis in 5G. In particular, the stochastic
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geometry analysis investigates average results, while the
DNA-GA analysis reveals more detailed results for spe-
cific network deployments. Note that the BS density in
the stochastic geometry analysis is usually assumed to
be a Poisson distributed RV. Hence, using the DNA-GA
analysis to obtain comparable results as in the stochastic
geometry analysis would be highly inefficient, and hence
a direct comparison between these two analyses is not
very meaningful for now. However, it would be very
interesting to investigate whether there exists a way to
upgrade the DNA-GA analysis to a macroscopic analysis
tool, and then make a fair comparison between the DNA-
GA analysis and the stochastic geometry analysis.

• The proposed DNA-GA analysis handles homogeneous
SCNs very well. However, it needs further study on the
feasibility of applying the DNA-GA analysis to the co-
channel HetNet scenario discussed in Section I. Note
that the Gaussian approximation was shown to be less
accurate for sparse macrocells [11], [12], because the
Gaussian distribution originated from the shadow fading
becomes less dominant compared with the random UE
distribution. Hence, for the treatment of the co-channel
HetNet scenario, it would be interesting to enhance the
DNA-GA analysis considering the techniques in [29],
[30].

• It needs further study on the impact of correlated shadow
fading [19] on the proposed DNA-GA analysis. Note that
in this case, the UL interference distributions become cor-
related. Besides, it needs further study on the feasibility of
applying the proposed DNA-GA analysis to the downlink
(DL) SCNs. Note that for the DL case, the signal power
and the interference power become correlated, e.g., a
cell edge UE in the DL tends to have a lower signal
power and a higher interference power, while in the UL
the interference power is independently distributed with
respect to the signal power.

• The proposed DNA-GA analysis ignores the maximum
power constraint, which is shown by (2). However, this
should not limit the generality of the DNA-GA frame-
work. It needs further study on how the interference dis-
tribution should be modified if we consider the maximum
power constraint. Note that the DNA-GA analysis might
be benefited from several new techniques, in which uplink
power control with maximum power constraint can be
tackled [31], [32].

VI. CONCLUSION

We propose a tractable semi-analytical approach of network
performance analysis, i.e., the DNA-GA analysis, which is
capable of handling lognormal shadow fading, any shape
and/or size of cell coverage areas, any UE distribution, any
type of multi-path fading, and multi-antenna BSs. Thus, the
DNA-GA analysis can evaluate many realistic networks and is
useful for the network performance analysis of the 5G systems
with general cell deployment and UE distribution.

APPENDIX A: ON THE GAUSSIAN APPROXIMATION

Suppose that a zero-mean RV G̃ is a sum of two independent
RVs, i.e., a zero-mean arbitrary RV L̃ and a zero-mean
Gaussian RV S̃. More specifically, we have G̃ = L̃+ S̃. The
Gaussian approximation approach is to approximate G̃ by a
another Gaussian RV Ỹ with a variance of

(
σ2
L + σ2

S

)
, where

σ2
L and σ2

S are the variances of L̃ and S̃, respectively. In order
to quantify the approximation error between the distribution of
G̃ and its approximate Gaussian distribution of Ỹ , in [12] we
invoke the definition of the Kolmogorov–Smirnov (KS) dis-
tance between two CDFs [15], which is a widely used metric
to measure the difference between two CDFs by showing the
maximum absolute error over all the possible RV values. In
essence, the theorem in [12] stated that the sum of a Gaussian
RV and an arbitrary RV can be well approximated by another
Gaussian RV, when the variance of the summand Gaussian RV
is larger than or comparable to that of the summand arbitrary
RV.

Toy Example: Suppose that σS = 5, and the summand arbi-
trary RV L̃ follows a uniform distribution with σL = {2, 5, 8}.
Both RVs are of zero-mean and the CDF of the sum of the
two RVs is plotted in Fig. 8.
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Fig. 8: The CDF of the sum of a Gaussian RV and a RV with
a uniform distribution.

From this figure, we can see that the approximation error
associated with the Gaussian approximation is indeed very
small when σL ≤ σS . However, such error is non-negligible
when σL > σS . More specifically, we can quantify the actual
CDF error as 6.16 × 10−4, 1.04 × 10−2 and 2.57 × 10−2

when σL = 2, σL = 5 and σL = 8, respectively. The above
results confirm the tightness of the approximation and the
intuition in [12] that the Gaussian approximation error reduces,
as the variance of the summand arbitrary RV L̃ decreases, or
equivalently the variance of the Gaussian RV S̃ increases.

APPENDIX B: PROOF OF THEOREM 1
Since G1 is a Gaussian RV with the mean and the variance

shown in (18), the PDF of G1 can be written as

fG1
(v) =

1√
2πσ2

G1

exp

{
− (v − µG1

)
2

2σ2
G1

}
. (27)
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Besides, according to the definition of RVs in Section III,
we assume the CDF of H11 to be FH11 (h). Hence, the CDF
of X1 can be approximated by
FX1 (x)

≈ FX̂1
(x)

= Pr [G1 +H11 ≤ x]

=

+∞∫
−∞

FH11
(x− v) fG1

(v) dv

(a)
=

+∞∫
−∞

FH11 (x− v)
1√

2πσ2
G1

exp

{
− (v − µG1)

2

2σ2
G1

}
dv

(b)
=

1√
π

+∞∫
−∞

FH11

(
x−

(√
2σG1

y + µG1

))
exp

(
−y2

)
dy

(c)
=

1√
π

M0∑
m=1

wmFH11

(
x−

(√
2σG1am + µG1

))
+RM0

(d)
≈ 1√

π

M0∑
m=1

wmFH11

(
x−

(√
2σG1am + µG1

))
, (28)

where

• (a) of (28) is obtained from (27),
• (b) of (28) is computed using an exchange of variable:
v =
√

2σG1
y + µG1

,
• (c) of (28) is derived using the Gauss-Hermite numerical

integration [16], i.e.,
+∞∫
−∞

f (y) exp
(
−y2

)
dy =

M0∑
m=1

wmf (am) +RM0 , (29)

where M0 is the number of terms in the approximation,
the weights {wm} and the abscissas {am} are tabulated
in Table 25.10 of [16] and RM0 is a residual error in the
order of M0!

2M0 (2M0)!
[16], which decays very fast as M0

increases,
• (d) of (28) is obtained by the residual error dropping
RM0

.

Our proof is thus completed by comparing (28) and (20) in
Theorem 1.

APPENDIX C: PROOF OF LEMMA 2

As discussed in Section III, the connection between W11

and H11 is the variable change H11 = 10 log10W11 defined
in (3). Thus, we have

FH11
(h) = Pr [H11 ≤ h]

= Pr [10 log10W11 ≤ h]

= Pr

[
lnW11 ≤

h

ζ

]
= Pr

[
W11 ≤ exp

(
h

ζ

)]
, (30)

where ζ = 10
ln 10 . Our proof is completed.

APPENDIX D: PROOF OF THEOREM 3

From (25), the approximate CDF of ZdB can be derived as
FZdB (z)

≈ FẐdB (z)

= Pr [X1 −Q ≤ z]

=

+∞∫
−∞

FX1(z + q) fQ (q) dq

(a)
≈

+∞∫
−∞

FX̂1
(z + q)λΦλ−1

(
q−µQ
σQ

)
1√

2πσ2
Q

exp

{
− (q−µQ)

2

2σ2
Q

}
dq

(b)
=

1√
π

+∞∫
−∞

FX̂1

(
z +
√

2σQy + µQ

)
λΦλ−1

(√
2y
)

exp
(
−y2

)
dy

(c)
=

1√
π

M0∑
m=1

wmFX̂1

(
z +
√

2σQam + µQ

)
λΦλ−1

(√
2am

)
+RM0

(d)
≈ λ√

π

M0∑
m=1

wmΦλ−1
(√

2am

)
FX̂1

(
z +
√

2σQam + µQ

)
, (31)

where
• (a) of (31) is calculated using Theorem 1 and (14),
• (b) of (31) is computed using a variable change q =√

2σQy + µQ,
• (c) of (31) is derived using the Gauss-Hermite numerical

integration [16] shown in (29),
• (d) of (31) is obtained by dropping the residual error RM0

in the Gauss-Hermite numerical integration [16].

Our proof is thus completed by comparing (31) and (26) in
Theorem 3.
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