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Abstract—We discover a new capacity scaling law in ultra-
dense networks under practical system assumptions, such as
a general multi-piece path loss model, a non-zero base station
to user equipment antenna height difference, and a finite user
equipment density. The intuition and implication of this new
capacity scaling law are completely different from that found
in year 2011. That law indicated that the increase of the
interference power caused by a denser network would be exactly
compensated by the increase of the signal power due to the
reduced distance between transmitters and receivers, and thus
network capacity should grow linearly with network densification.
However, we find that both the signal and interference powers
become bounded in practical ultra-dense networks, which leads
to a constant capacity scaling law. Moreover, our new discovery
on the constant capacity scaling law indicates three network
optimization problems respectively for base station deployment,
user equipment scheduling and base station coordination. These
three optimization problems are justified and solved in this paper,
shedding new light on the deployment and optimization of ultra-
dense networks.

Index Terms—capacity scaling law, coverage probability, area
spectral efficiency, stochastic geometry, network densification

I. INTRODUCTION

Orthogonal deployments of dense small cell networks (SC-
Ns), in which small cells and macrocells operate in different
frequency bands (i.e., the 3rd Generation Partnership Project
(3GPP) SCN Scenario #2a in [1]), have been identified as one
of the most promising approaches to rapidly increase network
capacity in the 4th-generation (4G) and the 5th-generation
(5G) systems [2]. This deployment case is particularly useful
because it provides a large spatial spectrum reuse and facili-
tates an easy network management due to the low interaction
with the macrocell network, e.g., no inter-tier interference. In
this paper, we focus on the analysis of these dense SCNs as
they go ultra-dense (UD) in 5G systems, a.k.a. ultra-dense
networks (UDNs), and shed new light on their capacity scaling
law.

In Fig. 1, we plot the different capacity laws derived for
an ultra-dense network (UDN) by the most advanced research
works in the literature, from year 2011 to year 2017. In more
detail,
• The green curve shows the signal to interference plus

noise ratio (SINR) invariance law found in 2011 [3]. This
law stated that the base station (BS) density would not

affect the per-BS coverage probability performance in an
interference-limited1 and fully-loaded2 wireless network.
As a result, the area spectral efficiency (ASE) would grow
linearly with the BS density. The intuition behind this re-
sult was that the increase of the interference power caused
by a denser network would be exactly compensated by
the increase of the signal power originated by the reduced
user to serving BS distance.

• The red curve shows the ASE crawl law found in
2016 [5]. This law stated, in contrast with the previous
one, that the SINR — and thus the coverage probability,
and subsequently the ASE — significantly degrades in
the UDN regime. This is due to the increased interference
caused by the transition of a large number of interference
paths from non-line of sight (NLoS) to line of sight (LoS).

• The blue curve shows the ASE crash law found in
2017 [6]. This law stated that the SINR — and thus
the coverage probability, and subsequently the ASE —
suffers from an even severer degradation in the UDN
regime than in the previous case due to the receive signal
power cap imposed by the antenna height difference
between the user and its serving BS antennas.

• The black curve shows the ASE take-off law found in
2017 [7]. This law, in contrast to the previous ones,
indicates that the SINR — and thus the coverage proba-
bility, and subsequently the ASE — can be significantly
enhanced when considering a finite active user density
because of the interference mitigation provided by the
idle mode capability deployed at the small cell BSs. It
is important to note that this work did NOT consider the
antenna height difference between the user and its serving
BS antennas, and thus it did NOT touch the ASE crash
effect.

Considering the above theoretical laws, a fundamental ques-
tion arises: “Which capacity law best characterises an UDN?”.
“Will the ASE crash have a larger weight in ASE performance
than the ASE take-off, or the other way around?”. This paper

1In an interference-limited network, the power of each BS is set to a value
much larger than the noise power.

2In a fully-loaded network, all BSs are active. Such assumption implies
that the user density is infinity or much larger than the BS density. According
to the results in [4], the user density should be at least 10 times higher than
the BS density to make sure that almost all BSs are active.
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Fig. 1. Theoretical performance comparison of the coverage probability for
an SINR threshold γ = 0 dB. Note that all the results are obtained using a
practical 3GPP channel model [5], which will be introduced in detail later
in this paper. Also note that the BS density regions for a typical 4G and 5G
network have been illustrated in the figure, considering that the maximum BS
density of a 4G SCN is in the order of 100BSs/km2 [1].

answers this question, and proposes a new capacity law —
based on a new SNIR invariance law in the UDN regime
— different from those above. In more detail, this paper
simultaneously considers for the first time the effects of i) the
transition of a large number of interference paths from NLoS
to LoS, ii) the antenna height difference between the user and
its serving BS antennas, iii) a finite active user density, and
iv) an idle mode capability deployed at the small cell BSs.

Moreover, insight for this new SINR capacity law, three
basic network deployment problem are investigated. Firstly,
should the network densification ever continue or stop in a
certain point? Secondly, our new capacity scaling law points
out that instead of letting the network capacity crash serving an
infinite UE density, proactively choosing and serving a subset
of UEs, leading to a finite UE density on each time/frequency
resource block is an effective way to optimise network perfor-
mance. And hence, the UE scheduling problem is investigated
in this paper to find out the optimal user load in a network with
density λ. Thirdly, there may be cases where the UE density
may be tremendously large and it is needed to simultaneously
serve a large number of UEs, e.g. Internet of Things (IoT)
applications. In such cases we may not be able to simply
decrease the active UE density to avoid the network capacity
crash. How to optimize the network deployment with a density
λ to serve more UEs at a time? In this paper, a BS coordination
problem is investigated.

In particular, the main contributions of this paper are three-
fold:
• We present and prove the existence of a new SINR

invariance in UDNs under practical assumptions.
• Then, we present and prove a new capacity scaling law

in UDNs, which is a constant capacity scaling law.
• Such capacity scaling law leads to three network opti-

mization problems in UDNs, which are formally present-
ed and solved in this paper.

Note that preliminary results of this work have been p-
resented as a conference paper [8]. Compared with [8], the

additional contributions of this journal extension are: 1) The
three network optimization problems respectively for BS de-
ployment, UE scheduling and BS coordination are solved in
this paper, which were not treated in [8]; 2) The mathematical
proofs of the discovered capacity scaling law are provided in
this paper, which were omitted in [8]; 3) The ASE map with
respect to both the BS density and the UE density is presented,
which shows a complete picture of the network behavior
of dense SCNs; 4) Additional numerical results considering
Rician fading are also provided to validate the discovered
constant capacity scaling law.

The rest of this paper is structured as follows. Section II
provides a brief review of the related work. Section III de-
scribes the network scenario and the system model considered
in this paper. Section IV presents our theoretical results on the
coverage probability and the ASE, followed by our discoveries
of a new SINR invariance law and a new capacity scaling
law in UDNs. The three network optimization problems are
investigated in Section V. The numerical results are discussed
in Section VI, with remarks shedding new light on the sig-
nificance of our discoveries. The conclusions are drawn in
Section VII.

II. RELATED WORK

In stochastic geometry, BS positions are typically modeled
as a Homogeneous Poisson Point Process (HPPP) on the plane,
and closed-form expressions of coverage probability can be
found for some scenarios in single-tier cellular networks [3]
and multi-tier cellular networks [9]. The major conclusion
in [3, 9] is that neither the number of cells nor the number
of cell tiers changes the coverage probability in interference-
limited fully-loaded wireless networks. Recently, a few note-
worthy studies have been carried out to further investigate the
network performance analysis for dense and ultra-dense SCNs
under more practical propagation models. The authors of [5,
10, 11] found that the coverage probability performance will
start to decrease when the BS density is sufficiently large,
but such decrease of coverage probability does not change the
monotonic increase of the ASE as the BS density increases.
The intuition behind this result is that as the BS density be-
comes larger than a threshold, the interference power increases
faster than the signal power due to the transition of a large
number of interference paths from NLoS to LoS [5]. Moreover,
channel models with different LoS probability functions and
different multi-path models have been analysed in [5] and [12],
respectively, from which it can be concluded that the channel
model changes quantitatively the results, but not qualitatively.

However, none of the above works [5, 10, 11] considered the
antenna heights of BSs and UEs in the theoretical analysis. The
first work setting the spotlight on the antenna height issue and
showing the subsequent ASE crash can be found in [6, 13]. The
results therein have been confirmed by another two very recent
studies [14, 15], which investigated multiple non-zero BS-to-
UE antenna height differences L [14], and L = 4.5 m [15],
respectively.

Note that another type of ASE crash was recently reported
in [16], which is caused by a bounded path loss in the near-
field (NF) region. However, the non-zero BS-to-UE antenna
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height difference renders the existence of the NF effect diffi-
cult, since in practice, the former one occurs when L is in the
order of meters [6], while the latter one only emerges when
the distance between a transmitter and a receiver is in the
sub-meter region [16]. It is important to note that the authors
of [17, 18] recently proposed a new approach of network
performance analysis based on HPPP intensity matching. Such
new approach may also be used to investigate the BS antenna
height issue and the NF effect.

Furthermore, all of the above works ignored another impor-
tant factor in practical networks. As the BS density increases,
a large number of BSs can be put into idle mode without
signal transmission, if there is no active UE within their
coverage areas. This is a new network behavior arising from
the surplus of BSs with respect to the finite number of UEs,
i.e., it may occur that a significant number of BSs may not
have any active UE in their coverage areas during certain time
periods. Therefore, such BSs could mute their transmission to
mitigate unnecessary inter-cell interference and reduce energy
consumption [4, 18, 19].

Up to now, the existing work that did consider the IMC
is limited. The only work that studied the IMC considering
a general multi-piece path loss model with probabilistic LoS
and NLoS transmissions can be found in [7]. Two important
conclusions were drawn in it: (i) the active BS density with the
mentioned probabilistic LoS/NLoS path loss model is lower-
bounded by that with the simplistic single-slope path loss
model derived in [4], and (ii) such lower bound, shown in [4],
is tight, especially for UDNs. This shows a simple way of
studying the IMC in UDNs.

In this paper, motivated by the above survey of the related
work, we take a further step and investigate the combined per-
formance impact of the following two phenomena on UDNs:
(i) a non-zero BS-to-UE antenna height difference, L, and (ii) a
non-fully-loaded network with a finite UE density, ρ, exploited
by the IMC. Note that our study will consider the mentioned
probabilistic LoS/NLoS path loss model recommended by the
3GPP, and reveal a new capacity scaling law for practical
UDNs in 5G systems.

III. NETWORK SCENARIO AND SYSTEM MODEL

In this paper, we assume every user is connected to a
small cell, for capacity boosting, and to a macrocell, for
mobility purposes. Moreover, small cells and macrocells work
in different frequency bands to avoid cross-tier interference.
To study the impact of network densification, we focus on the
small cell tier performance. That is, the BSs mentioned in this
paper referred to the small cell BSs for brevity. In more detail,
the urban scenario is considered according to [20]. We focus
the impact of network densification using traditional sub-6GHz
small cell technology, such as LTE small cell BS or 802.11
access points.

A. Network Scenario

We consider a downlink (DL) cellular network with BSs
deployed on a plane according to a homogeneous Poisson
point process (HPPP) Φ with a density of λ BSs/km2. Active

DL UEs are also Poisson distributed in the considered network
with a density of ρ UEs/km2. Here, we only consider active
UEs in the network because non-active UEs do not trigger any
data transmission, and thus they can be safely ignored in the
analysis. Note that the total UE number in cellular networks
should be much higher than the number of the active UEs,
but at a certain time slot and on a certain frequency band, the
active UEs with data traffic demands are not too many. As
indicated earlier, a typical UE density in populated scenarios
is around ρ = 300 UEs/km2 [2].

In practice, a BS will enter into idle mode, if there is no
UE connected to it, which reduces the interference to UEs
in neighboring BSs as well as the energy consumption of the
network. Since UEs are randomly and uniformly distributed in
the network, a widely accepted assumption is that the active
BSs should follow another HPPP distribution Φ̃ [4], the density
of which is λ̃ BSs/km2. Note that λ̃ ≤ λ and λ̃ ≤ ρ, since
one UE is served by at most one BS. Also note that a larger
ρ requires more active BSs to serve the more active UEs, thus
leading to a larger λ̃. From [4, 7], it was shown that the formula
proposed in [4] to calculate λ̃ is accurate for UDNs, which is
given by

λ̃ = λ

1− 1(
1 + ρ

qλ

)q
 , (1)

where an empirical value of 3.5 was suggested for q in [4].

B. Wireless System Model

The two-dimensional (2D) distance between a BS and a
UE is denoted by r. Moreover, the absolute antenna height
difference between a BS and a UE is denoted by L. Thus, the
3D distance between a BS and a UE can be expressed as

w =
√
r2 + L2. (2)

Note that the value of L is in the order of several meters [21].
Following [5], we adopt a general path loss model, where

the path loss ζ (w) is a multi-piece function of w written as

ζ (w) =



ζ1 (w) , when L ≤ w ≤ d1

ζ2 (w) , when d1 < w ≤ d2

...
...

ζN (w) , when w > dN−1

, (3)

where each piece ζn (w) , n ∈ {1, 2, . . . , N} is modeled as

ζn (w)=

{
ζL
n (w) = AL

nw
−αL

n ,

ζNL
n (w) = ANL

n w−α
NL
n ,

LoS: PrLn (w)

NLoS: 1− PrLn (w)
, (4)

where
• ζL

n (w) and ζNL
n (w) , n ∈ {1, 2, . . . , N} are the n-th piece

path loss functions for the LoS and the NLoS cases,
respectively,

• AL
n and ANL

n are the path losses at a reference 3D distance
w = 1 for the LoS and the NLoS cases, respectively,

• αL
n and αNL

n are the path loss exponents for the LoS and
the NLoS cases, respectively.
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Moreover, PrLn (w) is the n-th piece LoS probability function
that a transmitter and a receiver separated by a 3D distance
w has a LoS path, which is assumed to be a monotonically
decreasing function with respect to w. Existing measurement
studies have confirmed this assumption [21].

For convenience,
{
ζL
n (r)

}
and

{
ζNL
n (r)

}
can be further

stacked into piece-wise functions written as

ζPath (r) =



ζPath1 (r) , when L ≤ r ≤ d1

ζPath2 (r) , when d1 < r ≤ d2

...
...

ζPathN (r) , when r > dN−1

, (5)

where the string variable Path takes the value of “L” and
“NL” for the LoS and the NLoS cases, respectively. Besides,{

PrL
n (r)

}
can also be stacked into a piece-wise function as

PrL (r) =



PrL
1 (r) , when L ≤ r ≤ d1

PrL
2 (r) , when d1 < r ≤ d2

...
...

PrL
N (r) , when r > dN−1

. (6)

Note that the generality and the practicality of the adopted
path loss model (3) have been well established in [5]. As a
special case to show our analytical results in the following
sections, we consider a practical two-piece path loss func-
tion and a two-piece exponential LoS probability function,
defined by the 3GPP [21]. Specifically, we have N = 2,
ζL
1 (w) = ζL

2 (w) = ALw−α
L

, ζNL
1 (w) = ζNL

2 (w) =

ANLw−α
NL

, PrL1 (w) = 1 − 5 exp (−R1/w), and PrL2 (w) =
5 exp (−w/R2), where R1 = 156 m, R2 = 30 m, and
d1 = R1

ln 10 = 67.75 m [21]. For clarity, this case is referred
to as the 3GPP Case hereafter. Note that this 3GPP Case has
been used to generate the results in Fig. 1 of Section I.

Moreover, we assume a practical user association strategy
(UAS), in which each UE is connected to the BS giving
the maximum average received signal strength (i.e., with the
largest ζ (w)) [5, 11]). It is very important to note that in our
previous work [22] and some other existing work, e.g., [3, 10],
it was assumed that each UE is associated with its closest BS.
Such assumption is not appropriate for the considered path
loss model in (3), because in practice a UE should connect to
the BS offering the largest received signal strength. Such BS
does not necessarily have to be the nearest one to the UE, and
it could be a farther one with a strong LoS path.

As discussed in Section II, with the consideration of the
IMC and the general path loss model in (3), it was concluded
in [7] that it is accurate to characterize λ̃ using (1) with q =
3.5, especially for UDNs. For simplicity, in this paper, we use
(1) to compute λ̃.

Finally, we assume that each BS’s transmission power is a
constant value P , each BS/UE is equipped with an isotropic
antenna, and the multi-path fading between a BS and a UE is
modeled as independently identical distributed (i.i.d.) Rayleigh
fading [5, 10, 11].

It is important to note that it has been shown in [23]
that the analysis of a more accurate multi-path modeling
with Rician fading is not urgent, as it does not change the
qualitative conclusions of this type of performance analysis for
single-antenna UDNs. Thus, we will first focus on presenting
our most fundamental discoveries based on Rayleigh fading
in the next section, and then study Rician fading later. In
particular, a more practical Rician fading will be investigated
in Section VI to show its minor impact on our conclusions.
More specifically, for LoS transmissions, we adopt a practical
Rician fading defined in the 3GPP [24], where the K factor
in dB scale (the ratio between the power in the direct path
and the power in the other scattered paths) is modeled as a
function of distance, i.e., K[dB] = 13 − 0.03w, where w is
defined in (2).

IV. MAIN RESULT

In this section, we study the coverage probability perfor-
mance and the network capacity in terms of the ASE for a
typical UE located at the origin o.

A. The Coverage Probability

First, we investigate the coverage probability that the SINR
of a typical UE at the origin o is above a threshold γ:

pcov (λ, ρ, γ) = Pr [SINR > γ] , (7)

where the SINR is computed by

SINR =
Pζ (w)h

Iagg + PN
, (8)

where h is the channel gain, which is modeled as an exponen-
tially distributed random variable (RV) with a mean of one due
to our consideration of Rayleigh fading (see Subsection III-B),
P and PN are the BS transmission power and the additive
white Gaussian noise (AWGN) power at each UE, respectively,
and Iagg is the cumulative interference given by

Iagg =
∑

i: bi∈Φ̃\bo

Pβigi, (9)

where bo is the BS serving the typical UE, and bi, βi and gi are
the i-th interfering BS, the path loss from bi to the typical UE
and the multi-path fading channel gain associated with such
link (also exponentially distributed RVs), respectively. Note
that, when all BSs are assumed to be active, the set of all BSs
Φ should be used in the expression of Iagg [5, 10, 11]. Here,
in (9), only the BSs in Φ̃ \ bo inject effective interference into
the network and only them are thus considered in the analysis,
where Φ̃ denotes the set of the active BSs. In other words, the
BSs in idle mode are not taken into account in the computation
of Iagg.

Note that the analytical results of pcov (λ, ρ, γ) can be
directly obtained from [6], which is omitted here for brevity.
In this paper, we focus on the performance scaling law, and
we present our main result on the asymptotic performance
of pcov (λ, ρ, γ) for UDNs, i.e., lim

λ→+∞
pcov (λ, ρ, γ), in Theo-

rem 1.
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Theorem 1. Considering the general path loss model in (3)
and the adopted UAS, we can derive lim

λ→+∞
pcov (λ, ρ, γ) as

lim
λ→+∞

pcov (λ, ρ, γ) = lim
λ→+∞

Pr

[
PζL

1 (L)h

Iagg + PN
> γ

]
= exp

(
− PNγ

PζL
1 (L)

)
lim

λ→+∞
L L
Iagg

(
γ

PζL
1 (L)

)
, (10)

where

lim
λ→+∞

L L
Iagg (s) =

exp

(
−2πρ

∫ +∞

0

PrL
(√
u2 + L2

)
u

1 +
(
sPζL

(√
u2 + L2

))−1 du

)
×

exp

(
−2πρ

∫ +∞

0

[
1− PrL

(√
u2 + L2

)]
u

1 +
(
sPζNL

(√
u2 + L2

))−1 du

)
. (11)

Proof: Please refer to Appendix A. �

From Theorem 1, we propose a new SINR invariance law
in Theorem 2.

Theorem 2. A new SINR invariance law: If L > 0 and
ρ < +∞, then lim

λ→+∞
pcov (λ, ρ, γ) becomes a constant that

is independent of λ in UDNs.
Proof: Please refer to Appendix B. �

Theorem 2 dictates that (i) the SINR decrease effect due to
the non-zero BS-to-UE antenna height difference L and (ii)
the SINR increase due to the finite UE density ρ exploited
by the IMC, cancel each other out in practical UDNs with
L > 0 and ρ < +∞. Note that the study on {L, ρ} is finally
complete with the availability of Theorem 2 because:
• The case of L = 0 and ρ = +∞ has been studied in [5,

10, 11], showing that lim
λ→+∞

pcov (λ, ρ, γ) is a function of

αL
n.

• The case of L > 0 and ρ = +∞ has been studied in [6],
showing that lim

λ→+∞
pcov (λ, ρ, γ) = 0, as illustrated in

Fig. 1.
• The case of L = 0 and ρ < +∞ has been studied in [7],

showing that lim
λ→+∞

pcov (λ, ρ, γ) = 1, as illustrated in

Fig. 1.
• The case of L > 0 and ρ < +∞ is characterized

by Theorem 2, which reflects the most practical SCN
deployment scenario among the above cases.

From Theorem 2, it is trivial to show that for a given {L, ρ},
lim

λ→+∞
pcov (λ, ρ, γ) decreases as γ increases since a higher

SINR requirement implies a lower coverage probability. Thus,
in Lemmas 1 and 2, we only address how lim

λ→+∞
pcov (λ, ρ, γ)

varies with L and ρ, respectively.

Lemma 1. For a given {ρ, γ}, lim
λ→+∞

pcov (λ, ρ, γ) decreases

as L increases.
Proof: Please refer to Appendix C. �

Lemma 2. For a given {L, γ}, lim
λ→+∞

pcov (λ, ρ, γ) decreases

as ρ increases, according to a power law with respect to ρ.

More specifically, we have

lim
λ→+∞

pcov (λ, ρ, γ) = c (γ) gρ (γ) , (12)

where c (γ) and g (γ) are expressed as

c (γ) = exp

(
− PNγ

PζL
1 (L)

)
, (13)

and

g (γ)=exp

(
−2π

∫ +∞

0

PrL
(√
u2 + L2

)
u

1 +
(
sPζL

(√
u2 + L2

))−1 du

)

× exp

(
−2π

∫ +∞

0

[
1− PrL

(√
u2 + L2

)]
u

1 +
(
sPζNL

(√
u2 + L2

))−1 du

)
,

(14)

where s = γ
PζL1 (L)

.
Proof: Please refer to Appendix D. �

The intuitions of Lemmas 1 and 2 are explained as follows:
• The signal power becomes bounded in UDNs due to the

lower-bound on the BS-to-UE distance, as a UE cannot
be closer than L to a BS. Moreover, a larger L implies a
tighter bound on the signal power, leading to the decrease
of lim

λ→+∞
pcov (λ, ρ, γ) in Lemma 1.

• The interference power becomes bounded in UDNs due to
the activation of a finite density of BSs (i.e., λ̃BSs/km2)
to serve a finite density of UEs (i.e., ρUEs/km2). More-
over, a larger ρ results in a larger λ̃, relaxing the bound
on the interference power, which leads to the decrease
of lim

λ→+∞
pcov (λ, ρ, γ) in Lemma 2. Such decrease fol-

lows a power law with respect to ρ, because an HPPP
distribution of UEs with ρUEs/km2 can be decomposed
into ρ independent HPPP ones with 1 UEs/km2, and the
coverage criterion (7) should be satisfied for every one of
these HPPP distributions, which yields a power law with
respect to ρ.

B. The Area Spectral Efficiency

Next, we investigate the network capacity performance in
terms of the ASE in bps/Hz/km2, which is defined as [5]

AASE (λ, ρ, γ0) = λ̃

∫ +∞

γ0

log2 (1 + γ) fΓ (λ, ρ, γ) dγ, (15)

where λ̃ is calculated from (1), γ0 is the minimum working
SINR of a practical SCN, and fΓ (λ, ρ, γ) is the probability
density function (PDF) of the SINR γ observed at the typical
UE for a particular pair of values {λ, ρ}. Based on the
definition of pcov (λ, ρ, γ) in (7) and the partial integration
theorem shown in [18], (15) can be reformulated as

AASE (λ, ρ, γ0) =
λ̃

ln 2

∫ +∞

γ0

pcov (λ, ρ, γ)

1 + γ
dγ

+ λ̃ log2 (1 + γ0) pcov (λ, ρ, γ0) . (16)

From (1), we have that λ̃ is a finite value since ρ < +∞
and λ̃ represents the spatial spectrum reuse in UDNs. Thus,
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λ̃ is used in the expression of AASE (λ, ρ, γ0) because only
the active BSs make an effective contribution to the ASE.
The ASE definition in (15) captures the dependence of the
transmission rate on SINR, but it is less tractable to analyze,
as it requires one more fold of numerical integral compared
with the ASE definition in [10].

C. A New Capacity Scaling Law

From Theorem 3 and the expression of the ASE in (16), we
propose a new capacity scaling law in Theorem 3.

Theorem 3. A constant capacity scaling law: If L > 0
and ρ < +∞, then lim

λ→+∞
AASE (λ, ρ, γ0) becomes a con-

stant that is independent of λ in UDNs. In more detail,
lim

λ→+∞
AASE (λ, ρ, γ0) is given by

lim
λ→+∞

AASE (λ, ρ, γ0) =
ρ

ln 2

∫ +∞

γ0

lim
λ→+∞

pcov (λ, ρ, γ)

1 + γ
dγ

+ ρ log2 (1 + γ0) lim
λ→+∞

pcov (λ, ρ, γ0) , (17)

where lim
λ→+∞

pcov (λ, ρ, γ) is obtained from Theorem 1, and it

is independent of λ.
Proof: Please refer to Appendix E. �

V. INSIGHTS OF OUR CONSTANT CAPACITY LAW

The implications of our new capacity scaling law — a
constant scaling law — derived in Theorem 3 are profound,
and they are discussed in more detail in the following.

A. The Limits of Network Densification: The BS Deploymen-
t/Activation Problem

From this new capacity scaling law, it can be concluded that,
for a given active UE density ρ, network densification should
not be abused indefinitely, and instead should be stopped
at a certain BS density. This is because both the coverage
probability and the ASE will asymptotically reach a maximum
constant value, and any network densification beyond such
level is a waste of both money and energy.

As a result, and to find the optimum active BS density λ∗,
we propose the following BS deployment/activation problem,
which is formulated as follows. For a given UE density ρ,
there exists an optimal active BS density λ∗ that can achieve
an ASE AASE (λ, ρ, γ0) that is within a gap, ε-percent, from
the asymptotic maximum ASE value lim

λ→+∞
AASE (λ, ρ, γ0),

i.e.,

maximize
λ

1

s.t.

∣∣∣∣ lim
λ→+∞

AASE(λ, ρ, γ0)−AASE(λ, ρ, γ0)

∣∣∣∣
lim

λ→+∞
AASE(λ, ρ, γ0)

= ε. (18)

Note that the solution λ∗ to this BS deployment/activation
problem (18) answers the fundamental question of “for a given
UE density ρ, how dense an UDN should be?”. As one would

expect, the answer to such question depends on the active UE
density ρ.

Overall, and as illustrated in Fig. 1, an operator should
should stop its network densification at BS density λ∗, since
network capacity saturates at such BS density λ∗, and thus any
further densificaton will not provide more than an ε-percent
gain with respect to lim

λ→+∞
AASE (λ, ρ, γ0).

As shown by (18), the BS deployment/activation problem is
not complex, and its solution can be easily found by numerical
search over the ASE, AASE(λ, ρ, γ0), the details of which are
omitted for brevity.

B. The Network-wide UE Scheduling Problem

As mentioned in Section I and II, concerns about a network
capacity crash in UDNs emerged in the literature, but were
unfounded, as all those studies assumed an unrealistic infinite
UE density in UDNs. As shown by Theorem 3, the ASE crash
should not occur in practical networks with i) a reasonable
finite UE density and ii) small cell BSs equipped with an idle
mode capability.

Having said that, it is important to notice that even in the
presence of a very large or infinite active UE density, the
ASE crash can still be avoided by using intelligent scheduling
decisions. Time division multiple access (TDMA) or frequency
division multiple access (FDMA) can be used to divide the
very large set of active UEs into smaller groups of UEs,
each with a finite and moderate UE density. Through properly
dimensioning such scheduling groups, an optimum network
capacity can be achieved, as indicated by Theorem 3. Such
strategy involves a network-wide-aware scheduling, and its
implementation is feasible in practice. In other words, instead
of letting the network capacity crash serving an infinite active
UE density, our new capacity scaling law points out another
way of proactively choosing and serving a subset of UEs,
leading to a finite active UE density on each time/frequency
resource block. This avoids the ASE crash and leads to an
optimised network performance.

To find such solution, we further investigated (17),
and observe that the asymptotic maximum ASE value

lim
λ→+∞

AASE (λ, ρ, γ0) is a concave function with respect to

the active UE density ρ. This implies, in line with our previous
discussion, an optimal active UE density ρ∗ that can maximise

lim
λ→+∞

AASE (λ, ρ, γ0). This is because

• Lemma 2 states that lim
λ→+∞

pcov (λ, ρ, γ) decreases as ρ

increases,
• while such increase of ρ linearly scales the terms in (17)

too.
To find the optimum active UE density λ∗, we propose the

following UE scheduling problem, which is formulated as fol-
lows. For a given BS density λ, there exists an optimal active
UE density ρ∗ that can maximise the ASE AASE (λ, ρ, γ0),
i.e.,

maximize
ρ

AASE (λ, ρ, γ0)

s.t. 0 < ρ ≤ λ. (19)
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Note that the solution ρ∗ to this UE scheduling problem (19)
answers the fundamental question of “for a given BS density
λ, what is the optimal UE load that can maximise the ASE?”.

1) The Optimal Solution: First, we consider the case where
the BS density tends to infinity, i.e. λ → +∞, and recall
Lemma 2 to rewrite (17) as

lim
λ→+∞

AASE (λ, ρ, γ0) =
ρ

ln 2

∫ +∞

γ0

c (γ) gρ (γ)

1 + γ
dγ

+ log2 (1 + γ0) ρc (γ0) gρ (γ0) . (20)

Taking the derivative of lim
λ→+∞

AASE (λ, ρ, γ0) with respect to

the active UE density ρ, and denoting such derivative function
by DASE (ρ, γ0), we have that

DASE (ρ, γ0)
∆
=

∂

[
lim

λ→+∞
AASE (λ, ρ, γ0)

]
∂ρ

=
∂
[
ρ

ln 2

∫ +∞
γ0

c(γ)gρ(γ)
1+γ dγ + log2 (1 + γ0) ρc (γ0) gρ (γ0)

]
∂ρ

=
1

ln 2

∫ +∞

γ0

c (γ) gρ (γ) (1 + ρ ln g (γ))

1 + γ
dγ

+ log2 (1 + γ0) c (γ0) gρ (γ0) (1 + ρ ln g (γ0)) .
(21)

According to the convex optimisation theory [25],
the maximum of lim

λ→+∞
AASE (λ, ρ, γ0) is obtained when

DASE (ρ, γ0) = 0. Since DASE (ρ, γ0) has a closed-form
expression, shown in (21), we can obtain the optimal ρ∗ using
a bisection search [26]. In paper, we propose Algorithm 1 to
calculate ρ∗, which is illustrated in the following.

Algorithm 1 The proposed algorithm to find ρ∗

Step 1: Initialization
• Set ρleft = 0, ρright = λ, ρmid = ρleft+ρright

2 .
Step 2: Iteration
• Compute DASE

(
ρleft, γ0

)
, DASE

(
ρright, γ0

)
, and

DASE
(
ρmid, γ0

)
using (21).

• If DASE
(
ρmid, γ0

)
> 0, update ρleft = ρmid;

Else, update ρright = ρmid.
Step 3: Termination
• If

∣∣DASE
(
ρmid, γ0

)∣∣ < δ0, where δ0 is a small value,
which sets a precision condition to terminate the numer-
ical search, go to Step 4;
Else, return to Step 2.

Step 4: Output
• ρ∗ = ρmid.

Unfortunately, the above calculation only holds when λ→
+∞. For a general case, in which λ adopts a finite value,
DASE (ρ, γ0) cannot be expressed by a simple closed-form
expression, as in (21). This is because pcov (λ, ρ, γ) has a
much more complicated expression, requiring two folds of
integrations. The ASE definition in (16) makes things even
more complex, adding another fold of integration. However, it

is important to note that, for a given λ, we can still numerically

evaluate
∂[AASE(λ,ρ,γ0)]

∂ρ , as AASE (λ, ρ, γ0) has been obtained
in semi-closed-form expressions in (16). Therefore, for a
general case, in which λ adopts a finite value, we can reuse
Algorithm 1 to find ρ∗, with DASE (ρ, γ0) replaced with
∂[AASE(λ,ρ,γ0)]

∂ρ .

C. The BS coordination problem
There may be cases/applications where there is a tremen-

dously large UE density and the need to simultaneously
schedule many of them, e.g. Internet of Things (IoT). In such
scenarios, it many not be enough to simply decrease the active
UE density to avoid the ASE crash, as previously described.
Instead, in this section, we propose a BS coordination method
able to serve more UEs at a time at expense of a reduce ASE.
The method builds in the following fundamental observation.
This method builds on time-domain (TD) or frequency do-
main (FD) inter-cell interference coordination (ICIC). In more
detail, this method partitions the set of BSs into NBSG BS
groups (BSGs), and allows each BSG to use a disjoint subset
of time/frequency resources. This reduces the spatial reuse, but
mitigates inter-cell interference, as the number of interferers
seen by any given BS decreases. Note that number NBSG is
also widely known as the resource reuse factor, which usually
takes an integer value.

To formally introduce this approach, suppose that the re-
quired UE density to be served is ρ0 ≤ λ, then we propose
the following BS coordination problem: For a given BS density
λ, serving a UE density of at least ρ0, there exists an optimal
NBSG* that can maximise the ASE. The larger ρ0, the larger
the spatial reuse, but the smaller the maximum ASE, due to
the excessive inter-cell interference. The solution NBSG* to this
problem should strike the right balance between spatial reuse
and inter-cell interference mitigation for such given scenario.

This BS coordination problem can be formulated as

maximize
NBSG∈N

NBSG × 1

NBSG ×A
ASE

(
λ

NBSG , ρ, γ0

)
= AASE

(
λ

NBSG , ρ, γ0

)
s.t. ρ ≥ ρ0

NBSG ,

1 ≤ NBSG ≤ λ, (22)

where
• the first term in the objective function, i.e. NBSG, indi-

cates that the ASE is contributed by NBSG BSGs,
• the second term in the objective function, i.e. 1

NBSG , indi-
cates that each BSG only uses 1

NBSG of the time/frequency
resource,

• the third term in the objective function, i.e.
AASE

(
λ

NBSG , ρ, γ0

)
, calculates the achievable ASE

when the BS density is λ
NBSG and the UE density is ρ,

• the first constraint fulfils the requirement of that the total
UE density to be served (i.e., NBSGρ) should be no less
than ρ0, and

• the second constraint is to make sure that at least one BS
is present in each BSG.
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Note that for a given NBSG, the optimal UE density ρ∗

can be found by solving the UE scheduling problem (19).
If such ρ∗ does not satisfy the first constraint in (22), we
should then increase the UE density to ρ0

NBSG and recalculate
the achievable ASE in (22). Using this logic, an exhaustive
search over all possible values of NBSG, while solving (19),
on condition of the BS density being λ

NBSG , can be used to find
the optimal solution NBSG*. Such optimal solution NBSG* of
the BS coordination problem (22) answers the fundamental
question of “for a given BS density λ, serving a UE density
of at least ρ0, what is the optimal resource reuse factor that
can maximise the ASE?”.

To solve (22), we propose Algorithm 2 to calculate NBSG*.
This algorithm performs an exhaustive search over all possible
values of NBSG. In essence, each iteration executes Algorith-
m 1, checks the feasibility of the solution ρ0

NBSG and performs
the comparison to find the optimal solution.

Algorithm 2 The proposed algorithm to find NBSG*

Step 1: Initialization
• Set AASE

max = 0, NBSG* = 0.
Step 2: Iteration
• For NBSG = {1, 2, . . . , λ}, do the following

– Use algorithm 1 to find ρ∗ on condition of the BS
density being λ

NBSG .
– If ρ∗ ≥ ρ0

NBSG , continue;
Else, set ρ∗ = ρ0

NBSG .
– If AASE

(
λ

NBSG , ρ
∗, γ0

)
> AASE

max , update AASE
max =

AASE
(

λ
NBSG , ρ

∗, γ0

)
and NBSG* = NBSG;

Else, continue.
Step 3: Output
• The optimal solution is NBSG* and the maximum ASE is
AASE

max .

VI. SIMULATION AND DISCUSSION

In this section, we present numerical results to validate
the accuracy of our analysis. According to Tables A.1-3˜A.1-
7 of [21] and [24], we adopt the following parameters for
the 3GPP Case: αL = 2.09, αNL = 3.75, AL = 10−10.38,
ANL = 10−14.54, P = 24 dBm, PN = −95 dBm (with a
noise figure of 9 dB). Finally, a very wide BS density ranging
from 10−1 BSs/km2 all the way up to 106 BSs/km2 is studied.

Aiming at analysing the potential capacity gains that can be
obtained by using different levels of network densification, we
investigate network performance with respect to various net-
work densities, from quite sparse networks to very dense ones.
Inspired by the network density of 103 BSs/km2 implemented
in the field test in 2014 [27], and the even higher one suggested
by the 3GPP for potential urban scenario use cases in [20], we
set the upper bound network density to 106 BSs/km2 in our
simulations. Although such a high density of BSs is currently
not realistic due to techono-economic reasons, our analysis
is targeted at providing a fundamental understanding of the
different tradeoffs that may arise when considering all network
densification levels, from a theoretical perspective.

A. Validation of the Coverage Probability Performance

In Fig. 2, we display the coverage probability for the
3GPP Case with γ = 0 dB and various values of ρ and L.
Here, solid lines, markers, and dash lines represent analytical
results, simulation results, and lim

λ→+∞
pcov (λ, ρ, γ) derived in

Theorem 1, respectively. Note that the analytical results of
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Fig. 2. The coverage probability pcov (λ, ρ, γ) vs. λ for the 3GPP Case with
γ = 0 dB and various values of ρ and L.

pcov (λ, ρ, γ) in Fig. 2 are obtained from [6] with λ replaced
with λ̃. From this figure, we can observe that:
• As already shown in Fig. 1, when the BS density is

around λ ∈
[
10−1, 102

]
BSs/km2, the network is noise-

limited, and thus pcov (λ, ρ, γ) increases with λ as the
network is lightened up with more BSs and the signal
power benefits form LoS transmissions.

• As already shown in Fig. 1, when the BS density is at
around λ ∈

[
102, 103

]
BSs/km2, pcov (λ, ρ, γ) decreases

as λ increases. This is due to the transition of a large
number of interfere paths from NLoS to LoS, which
accelerates the growth of the aggregate inter-cell inter-
ference [5, 10].

• When λ ∈
[
103, 105

]
BSs/km2, pcov (λ, ρ, γ) continuous-

ly increases thanks to the IMC [7], i.e., the signal power
continues increasing with the network densification, while
the interference power becomes bounded, as only BSs
with active UEs are turned on, and thus the number of
interfering BSs is limited by the number of active UEs.

• When λ > 105 BSs/km2, pcov (λ, ρ, γ) gradually reaches
its limit characterized by Theorem 1, which verifies the
SINR invariance law in Theorem 2. Numerically speak-
ing, the gap between the analytical results of pcov (λ, ρ, γ)
and those of lim

λ→+∞
pcov (λ, ρ, γ) are less than 0.5 % for all

of the investigated cases when λ = 106 BSs/km2, which
validates the accuracy of Theorem 1.

• As predicted by Lemma 1, when ρ = 300 UEs/km2, the
limit of pcov (λ, ρ, γ) with L = 3.5 m is larger than that
with L = 8.5 m.

• As predicted by Lemma 2, lim
λ→+∞

pcov (λ, ρ, γ) decreases

as ρ grows due to more interference generated by more
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Fig. 3. The ASE AASE (λ, ρ, γ0) vs. λ for the 3GPP Case with γ0 = 0 dB,
L = 8.5m and various values of ρ.

active BSs. When L = 8.5 m, c (γ) = 1 in Lemma 1
and lim

λ→+∞
pcov (λ, ρ, γ) with ρ = 300 UEs/km2 is 0.806,

while that with ρ = 600 UEs/km2 is 0.65, which equals
to the square of 0.806, thus verifying the power law of

lim
λ→+∞

pcov (λ, ρ, γ) with respect to ρ.

Since a constraint on the minimum horizontal UE-to-BS
distance also imposes a cap on the signal power, to show
the performance impact of such minimun UE-to-BS distance
on UDNs, we plot the coverage probability with R0 =
min(5m, 0.1× ISD) (ISD: inter-site distance) in Fig. 2, where
R0 regulates that a UE is not allowed to be within a minimum
distance to the BS. Note that, we define R0 as a decreasing
function of the BS density to reflect the fact that users are
allowed to approach small BSs more closely in a denser
network. If R0 is set to a constant that does not change with
the BS density, then in a UDN each BS will create a black hole
around it, forbidding UE deployment inside such black hole.
At a certain level of high BS densities, the aforementioned
black holes will eat up the entire network scenario due to the
high density of them. From the presented results, the coverage
probability increases towards 1 with the BS density, which is
basically the same as the conclusion in [7]. That is, when the
BS tends to infinity, λ→ +∞, the user to serving BS distance
tends to zero, r → 0, and the signal power continuously
increases.

B. Validation of the New Capacity Scaling Law

In Fig. 3, we plot the ASE results for the 3GPP Case
with γ0 = 0 dB, L = 8.5 m and various values of ρ. Since
AASE (λ, ρ, γ0) is calculated from the results of pcov (λ, ρ, γ)
using (16), and because the analysis on pcov (λ, ρ, γ) has been
validated in Subsection VI-A, we only show the analytical
results of AASE (λ, ρ, γ0) in Fig. 3. From this figure, we can
observe that:
• Due to its simplistic assumptions on channel modeling

and UE density, the linear capacity scaling law in [3]
shows an optimistic but unrealistic future for 5G UDNs.

Fig. 4. The ASE AASE (λ, ρ, γ0) vs. ρ for the 3GPP Case with γ0 = 0 dB,
L = 8.5m and various values of λ.

• The constant capacity scaling law in Theorem 3 is
validated for UDNs with a non-zero L and a finite ρ,
showing a practical future for 5G UDNs,

• The ASE crawls (not increasing quickly) when λ ∈[
102, 103

]
BSs/km2, which is due to the degradation

of the coverage probability (see Fig. 2) caused by the
transition of a large number of interfere paths from NLoS
to LoS [5].

• For a given ρ, e.g., ρ = 300 UEs/km2, the value of
AASE (λ, ρ, γ0) saturates as λ → +∞, which justifies
the BS deployment problem (18) addressed in Subsec-
tion V-A.

• For a given λ, e.g., λ = 105 BSs/km2, it is interesting
to see that AASE (λ, ρ, γ0) is indeed a concave function
of ρ, and it achieves its maximum value when ρ ∈
[600, 2000] UEs/km2, which justify the UE scheduling
problem (19) addressed in Subsection V-B. To illustrate
such concave function more clearly, in Fig. 4 we plot the
ASE results versus ρ for the 3GPP Case with γ0 = 0 dB,
L = 8.5 m and various values of λ.

• Based on Fig. 3 and Fig. 4, it is of great interest to
visualize the ASE performance with respect to both the
BS density and the UE density. To this end, in Fig. 5 we
display the heat map of AASE (λ, ρ, γ0) versus ρ and λ
for the 3GPP Case with γ0 = 0 dB and L = 8.5 m. In
this figure, the ASE performance is represented by colors,
the redder, the higher ASE. As can be seen from Fig. 5,
for a given UE density, the ASE performance saturates in
UDNs (Subsection V-A); while for a given BS density,
the UE density should be carefully chosen to maximize
the ASE (Subsection V-B).

• For a given λ, e.g., λ = 105 BSs/km2, it is interesting to
see that those BSs can be partitioned into, say NBSG = 10
groups, each group with 104 BSs/km2 having access to
only one tenth of the resource blocks. For instance,
when ρ = 800 UEs/km2, the total ASE of the case with
BS partition (i.e., 10 groups of 104 BSs/km2) is around
10× 1

10 × 746.6 = 746.6 bps/Hz/km2, which is less than
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Fig. 5. The ASE AASE (λ, ρ, γ0) vs. ρ and λ for the 3GPP Case with γ0 = 0 dB and L = 8.5m.

that of the case without BS partition (i.e., 1 group of
105 BSs/km2), i.e., 905.5 bps/Hz/km2. However, the total
density of served UEs can be increased by 10 times
from 800 UEs/km2 to 8000 UEs/km2, which justify the
BS coordination problem (22).
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Fig. 6. The performance impact of NBSG in dense networks and UDNs.

C. Numerical Results for the Proposed Optimization Problems

In this section, we present numerical results for the proposed
optimization problems:
• As discussed in Subsection V-A, the BS deployment

problem is trivial and its solution can be easily obtained
by numerical search over AASE (λ, ρ, γ0) in Fig. 3.
For example, for the following set of parameter val-
ues: ρ = 300 UEs/km2, L = 8.5 m and γ0 = 0 dB,
we can calculate lim

λ→+∞
AASE(λ, ρ, γ0) using Theorem 3

and obtain its value as 784.4 bps/Hz/km2. Considering
a performance gap of ε = 5 percent (i.e., a target ASE

of 745.2 bps/Hz/km2), it is easy to find the solution for
problem (18) as λ∗ = 33420 BSs/km2. Such BS density
means that any network densification beyond this level
will generate no more than 5 % of the maximum ASE.

• As discussed in Subsection V-B, the UE scheduling
problem is non-trivial, but its solution can be numerically
found by means of the proposed Algorithm 1 on Fig. 4.
For example, for the following set of parameter values:
λ = 106 BSs/km2, L = 8.5 m and γ0 = 0 dB, we can
find the solution for problem (19) as ρ∗ = 804 UEs/km2

with a maximum ASE of 928.2 bps/Hz/km2.
• From Fig. 6, we can see that the optimal number of BS

groups NBSG* is i) NBSG = 2 for the case with 600
UEs/km2 and 1000 BSs/km2, ii) NBSG = 3 for the
case with 2000 UEs/km2 and 5000 BSs/km2 and iii)
NBSG = 1 for the case with 300 UEs/km2 and 500
BSs/km2. These results clearly show that the tradeoff
between the increased SINR and the decreased available
bandwidth in each BS group determines the ASE per-
formance. When the network deployment results in low
SINRs, the multi-group coordination strategy can greatly
boost the ASE due to the enhanced SINR. This is in
line with the Shannon theorem, where capacity gains due
to SINR are logarithmic in nature, and thus are more
noticeable in the low SINR regime.

D. Performance Impact of Rician Fading on the Constant
Capacity Scaling Law

In Fig. 7, we investigate the performance of AASE (λ, ρ, γ0)
under the assumptions of Rician fading [24] for LoS trans-
missions and Rayleigh fading for NLoS ones. As discussed
at the end of Section III, here we adopt a practical model
of Rician fading in [24], where the K factor increases as the
transmitter to receiver distance decreases. As discussed in [23],
the analysis for Rician fading is challenging and not urgent.
Therefore, we only display simulation results for Rician fading
in Fig. 7. As can be seen from this figure, the ASE results
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Fig. 7. The ASE AASE (λ, ρ, γ0) vs. λ for the 3GPP Case with γ0 = 0 dB,
ρ = 300UEs/km2, L = 8.5m, Rician fading for LoS transmissions and
Rayleigh fading for NLoS transmissions.

with the assumption of Rician fading verify the correctness
of our fundamental discovery on the constant capacity scaling
law. The fading model only has some quantitative, but not
qualitative impact on network performance. More specifically,
due to its less channel fading, Rician fading leads to a better
performance compared with Rayleigh fading in UDNs.

VII. CONCLUSION

A new constant capacity scaling law has been presented for
UDNs considering a general multi-piece path loss model, a
non-zero BS to UE antenna height difference, and a finite UE
density exploited by the IMC. Such law has three profound
implications:
• First, network densification should be stopped at a certain

BS density for a given UE density, because the network
capacity reaches a limit due to (i) the bounded signal
and interference powers, and (ii) a finite spatial spectrum
reuse because of a finite UE density. Such BS density
can be optimized by solving the proposed BS deployment
problem, which also answers the fundamental question of
“for a given UE density, how dense an UDN should be?”.

• Second, the recent concerns about the network capacity
crash in UDNs can be resolved by our discovered capacity
scaling law with proactively choosing and serving a
subset of UEs in a TDMA/FDMA manner. Such UE
density can be optimized by solving the proposed UE
scheduling problem, which also answers the fundamental
question of “for a given BS density, what is the optimal
user load that can maximize the ASE?”.

• Third, even if the UE density is tremendously large or
infinite, and there is also a strong need to serve a huge
number of UEs simultaneously, the network capacity
crash can still be avoided by employing TD or FD ICIC
among groups of BSs. Such BS partition can be optimized
by solving the proposed BS coordination problem, which
also answers the fundamental question of “for a given BS
density serving a required UE density, what is the optimal
resource reuse factor that can maximize the ASE?”.

The obtained complex theoretical results may be simplified
using approximation methods, which may lead to a simpler
formulation and more intuitive insights. Such research will be
part of our future work.
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