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Abstract— Based on the observation that the correlation
between observed traffic at two measurement points or traffic
stations may be time-varying, attributable to the time-varying
speed which subsequently causes variations in the time required
to travel between the two points, in this paper, we develop a
modified Space-Time Autoregressive Integrated Moving Aver-
age (STARIMA) model with time-varying lags for short-term
traffic flow prediction. Particularly, the temporal lags in the
modified STARIMA change with the time-varying speed at
different time of the day or equivalently change with the (time-
varying) time required to travel between two measurement
points. Firstly, a technique is developed to evaluate the tem-
poral lag in the STARIMA model, where the temporal lag is
formulated as a function of the spatial lag (spatial distance)
and the average speed. Secondly, an unsupervised classification
algorithm based on ISODATA algorithm is designed to classify
different time periods of the day according to the variation of
the speed. The classification helps to determine the appropriate
time lag to use in the STARIMA model. Finally, a STARIMA-
based model with time-varying lags is developed for short-
term traffic prediction. Experimental results using real traffic
data show that the developed STARIMA-based model with
time-varying lags has superior accuracy compared with its
counterpart developed using the traditional cross-correlation
function and without employing time-varying lags.

I. INTRODUCTION

Road traffic prediction plays an important role in intelli-
gent transport systems by providing the required real-time
information for traffic management and congestion control,
as well as the long-term traffic trend for transport infras-
tructure planning [1]–[4]. Road traffic predictions can be
broadly classified into short-term traffic predictions and long-
term traffic forecasts [3], [5], [6]. Short-term prediction is
essential for the development of efficient traffic management
and control systems, while long-term prediction is mainly
useful for road design and transport infrastructure planning.

There are two major categories of techniques for road
traffic prediction: those based on non-parametric models and
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those based on parametric models. Non-parametric model
based techniques, such as k-nearest neighbors (KNN) model
[1] and Artificial Neural Networks (ANN) [7], are inherently
robust and valid under very weak assumptions [8], while
parametric model based techniques, such as auto-regressive
integrated moving average (ARIMA) model [2], [4], [9]
and its variants [10] [11], allows to integrate knowledge of
the underlying traffic process in the form of traffic models
that can then be used for traffic prediction. Both categories
of techniques have been widely used and in this paper,
we consider parametric model based techniques, particularly
STARIMA (Space-Time Autoregressive Integrated Moving
Average)-based techniques.

As for the estimation of parameters and coefficients in
STARIMA model, overfitting easily occurs which makes
the predictive performance poor as it overreacts to minor
fluctuations in the training data [12]. Furthermore, the same
model and hence the same correlation structure is used
for traffic prediction at different time of the day, which
is counter-intuitive and may not be accurate. To elaborate,
consider an artificial example of two traffic stations A and B
on a highway, where traffic station B is at the down stream
direction of A. Intuitively, the correlation between the traffic
observed at A and the traffic observed at B will peak at a
time lag corresponding to the time required to travel from
A to B because at that time lag, the (approximately) same
set of vehicles that have passed A now have reached B.
Obviously, the time required to travel from A to B depends
on the traffic speed, which varies with the time of the day,
e.g. peak hours and off-peak hours. Accordingly, the time
lag corresponding to the peak correlation between the traffic
at A and the traffic at B should also vary with time of the
day and, to be more specific, should approximately equal to
the distance between A and B divided by the mean speed
of vehicles between A and B. Therefore, in designing the
STARIMA model for traffic prediction, the aforementioned
time-varying lags should be taken into account for accurate
traffic prediction.

To validate the aforementioned intuition, we analyze the
cross-correlation function (CCF) of traffic flow data at two
traffic stations (stations 6 and 3), denoted as Corr63, from
I-80 highway (more details of data are discussed in Section
III-A) with the formulation (1):

Corr63 =
E [(ut − ū)(yt+k − ȳ)]

σuuσyy
(1)

where u and y are the traffic flow data collected in N
time slots from the two traffic stations, k is the temporal
order in the range of [0, 1, 2, ..., N ] ⊂ N, σuu and σyy are
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Fig. 1. Traffic flow of station 6 in one day
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Fig. 2. The CCF between traffic stations 6 and 3 in two different time
periods

respectively the standard deviation of u and y. A higher value
of CCF indicates a stronger correlation of the traffic at both
stations. As shown in Fig.1, the correlation between traffic
at stations 6 and 3 peaks at different time lags depending on
the time of the day. During on-peak period (approximately
from 6:30am - 8:30am), the correlation peaks at a time lag
of 3 (one time lag corresponds to 30s) while during off-peak
period (approximately from 19pm - 24pm), the correlation
peaks at a time lag of 2, where one time lag corresponds
to a time of 30s. We observe that at peak hours, the time
lag corresponding to the maximum correlation is larger than
that for off-peak hours. In the latter section, we will further
show that this time lag approximately equals to the distance
between the two traffic stations divided by the average speed.
Therefore, our intuition explained in the previous paragraph
is valid.

The above observation motivates us to design a
STARIMA-based traffic prediction with time-varying lags
which better matches the time-varying correlation structure
between traffic of different stations and hence can potentially
deliver more accurate traffic prediction. More specifically, the
contributions of the paper are:

• We analyze the CCF between the speed and traffic flow
data between different detector stations and establish
the relationship between the changes in the temporal
lag (corresponding to the aforementioned maximum
correlation) and the speed variations.

• An unsupervised classification algorithm based on ISO-
DATA algorithm is designed to classify different time
periods of the day according to the variation of the
speed. The classification helps to determine the appro-

priate time lag to use in the STARIMA model.
• A STARIMA-based model with time-varying lags is de-

veloped for short-term traffic prediction. Experimental
results using real traffic data show that the developed
STARIMA-based model with time-varying lags has
superior accuracy compared with its counterpart devel-
oped using the traditional cross-correlation function and
without employing time-varying lags.

The the rest of the paper is organized as follows. In Section
II, we briefly discuss related work. Section III introduces the
STARIMA model and the ISODATA algorithm In Section
IV, we present the details the proposed algorithm. The
experimental results are presented in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORK

There is previous work, which predicts traffic flow using a
modified ARIMA models [4], [10], [11], [13], [14]. In [13]
and [14], a multivariate ARIMA based model, ARIMAX,
was applied for better traffic flow prediction. The difference
is that the former paper considered the varibility of the speed
from upstream to downstream, the other one considered
different model specifications during different time periods
of the day. Similarly, the authors in [4] also different configu-
rations of temporal lags in ARIMA model. More concretely,
they firstly applied a hidden Markov model (HMM) model
along with an expectation-maximization (EM) algorithm to
evaluate the traffic state (one of {Major Accident, Minor
Incident, Instability, Normal Driving}) in next time slot.
After that, the ARIMA models with different configurations
of temporal lags were used to predict the state of the traffic
flow. All these models have improved the accuracy of the
forecasting results compared with ARIMA model. However,
the spatial information was less considered in these models.
In this way, the STARIMA based models [10], [11] have
aroused more and more concern.
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Fig. 3. The normalized freeway speed and traffic flow data in one day.

In [10], the authors proposed a dynamic STARIMA model
by combining the dynamic turn ratio prediction (DTRP)
model and the STARIMA model. In this paper, a dynamic
space weigh matrix is used to capture different impact
of traffic at upstream locations on traffic at downstream
locations. Similarly, the research in [11] also applied the
STARIMA model with the consideration of the dynamic
space weight matrix. Our work distinguish from theirs in that
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in our work, the space weight matrices vary with on-peak and
off-peak periods to capture the time-varying correlations of
road traffic at different locations.

From the above related work, we can find that the
“dynamic” of a ARIMA or STARIMA model in existing
research is often used to indicate the dynamic of the space
weight matrix, the traffic state during different time periods.
However, sometimes it is not enough to only consider these
aspects. For example, Fig.3 presents the normalized average
speed and normalized flow data collected at traffic station
6 every 30 minutes in one day. Theoretically, the weight
matrix in time slot 3 (or 4, the left hollow rectangle) and
slot 15 (the right hollow rectangle) should be different since
they are respectively in the off-peak period and peak period.
However, their average speed are the same. This is caused by
an inaccurate evaluation of the time range of peak or off-peak
period. Furthermore, few research considered the relationship
between speed and the parameters (temporal or spatial lag) in
STARIMA model. Specially, a great majority of research use
PACF to evaluate temporal lag which easily causes overfitting
problem. Motivated by the above observations, in this paper
we investigate a more efficient method to evaluate these
parameters in STARIMA model with the consideration of
spatial information and the variation of average speed during
different time periods.

III. DATA COLLECTION AND BASIC METHODOLOGIES

In this section, we briefly introduce the data we will use
in the paper and the STARIMA model.

A. Data Collection
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Fig. 4. The real scenario and topological structure of the I-80 freeway

In urban environment, the road structure is often complex.
Also, the sensors (such as loop detectors or cameras) are not
deployed at every road. Therefore, it is difficult to obtain
comprehensive data. For simplicity, we only consider high-
way in this paper where there are only on-ramp/off-ramps

so the traffic condition is comparatively simpler than that
in the urban area. We use data collected from a segment of
Interstate 80 (I-80) freeway located in Emeryville, California
[15]. Available data are collected every 30 seconds from six
traffic stations numbered by 1, 3, 4, 5, 6 and 7 within 10 days.
There are two traffic stations for upstream and downstream
traffic respectively. The road topology is shown in Fig.4.
Note that there is no data at station 2 and there are too many
interference caused by on or off-ramps at station 1 and 7.
For simplicity, we only use the data collected at stations 3,
4, 5, and 6. The travel direction is from station 3 to 6.

B. STARIMA Model

Pfeifer and Deutsch defined STARIMA(pλ, d, qm)
model [16] as follows:

(I −
p∑
k=1

λk∑
l=0

φklWlL
k)(1− L)dY (t) =

(I −
q∑

k=1

mk∑
l=0

θklWlL
k)εt

(2)

where p and q are temporal lag for AR and MA, d is
the degree of differencing. L is the lag operator by which
y(t − 1) = Ly(t). λ and m are the spatial lags for AR
and MA. Different from yt in ARIMA model,Y (t) is an
N ×1 vector including the traffic flow data from N detector
stations at time t. In(2), ∀l, Wl is an N×N matrix in which
each non-zero element W ij

l reflects the correlation between
location i and its “lth order neighbors”, location j.

There are three steps to set up a suitable STARIMA model.
The first step is Model Identification in which the time and
spatial lags are decided after an examination via PACF at
spatial lag l and temporal lag k. Furthermore, the coefficients
are estimated through Yule-Walker equations. After that, Pa-
rameter Estimation is performed by non-linear optimization
techniques. At last, Diagnostic Checking is implemented
in order to check the residuals from the fitted model an
the statistical significance of the estimated parameters using
approximate confidence intervals.

IV. STARIMA MODEL WITH DYNAMIC TEMPORAL LAG

In this section, we first present a simple way to evaluate
the temporal lag in relation to speed variation. Then we
propose a classification algorithm based on ISODATA by
which we can respectively obtain a set of speed clusters and
a set of time period clusters. Finally, we describe a modified
STARIMA model with the varying temporal lag.

A. Temporal Lag with Variation of Speed

From Fig.2, the temporal lags with maximal CCF be-
tween stations 6 and 3 are different during peak and off-
peak periods. This is attributable to the variation of speed.
Assuming the distance between two detector stations A and
B is L, and the vehicles keep a stable average speed v̄, then
approximately t = L/v̄ is needed for vehicles to travel from
B to A. In other words, the traffic flow collected at station
A is strongly correlated with that at B t time ago. Thus
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the temporal lag with the maximum correlation should be
p = [t/τ ] where τ is the length of one temporal lag. Note that
L depend on the spatial order l in the STARIMA model and
v̄ can often be measured by loop detectors [17]. Furthermore,
the advance in telecommunication and electronic technology
also brings a number of new techniques that allows us to
estimate the travel time, e.g. via smartphones. Indeed, the
observation discussed in the Introduction section suggests
another novel way to estimate travel time: we can infer travel
time from the correlation of the observed traffic.

In order to validate the above discussion, we further
analyze the results in Fig.2 by using the f average speed
information at stations 3 and 6, which is collected in the
same day as the traffic flow data used in Fig.2. Specifically,
the average speed from station 3 to station 6 between 6:30
am and 8:30 am is 44.45 feet/second. The average speed is
67.05 feet/second between 19 pm and 24 pm. The maximal
temporal lag during these two time periods is respectively 3
and 2 with 30 seconds in each temporal lag. As L = v×p×τ ,
given v̄1and v̄2 during two time periods along with the
corresponding best temporal lag p1 and p2, we are able to
obtain the following equation according to the theoretical
analysis above:

v1 × p1 = v2 × p2 (3)

Substituting the data into formulation (3), it is easy to find
44.45×3 ≈ 67.05×2. This result agrees with our theoretical
analysis and verifies our speculation that temporal p is a
function of the variation of average speed v̄ in Section I.

B. The Classification of Speed Data

An easy way to classify speed data is by dividing into peak
time and off-peak periods. After that, the temporal lag can
be calculated using p = L/v̄(π), where v̄(π) is the average
speed in time period π, π ∈{peak, Off-peak}. However an
empirical classification is often prone to error and inaccuracy.
Recall the analysis in Section II, the evaluation of the average
speed is sensitive to the time range selected for peak or
off-peak period. It is obvious that the speed is not always
fast even during off-peak period from Fig. 3. Therefore,
in this paper an ISODATA1 based speed data classification
algorithm is developed to deliver an accurate classification.
Using this algorithm, we firstly classify the speed data
collected in each time slot into different clusters. After that,
the time period clusters are confirmed based on the time slots
contained in different speed clusters.

Assuming there is a set of speed data v =
{vt1 , vt2 , ..., vtn} in which vti is the speed in time slot ti. The
purpose here is to confirm a set of speed clusters, denoted
as Γ = {Γv1 , Γv2 , ..., ΓvN }, where ∀Γvi∈N

⊂ v with cluster
center vi and ∀i, j ∈ N,Γvi ∩ Γvj = ∅. Based on Γ , we
can obtain another set of time period clusters, denoted as
Ω = {Ω1,Ω2, ...,Ω|Γ |}, in which ∀Ωi = {T 1

i , T
2
i , ..., T

Ki
i }.

1More details about the process of ISODATA algorithm are available in
reference [18].

Algorithm 1 Speed Data Classification
1: Input: Kmax, nmin,σ2

max,dmin,I ,v,∆
2: Return: Γ ,Ω
3: Γ←ISODATA(Kmax, nmin,σ2

max,dmin,L,v)

4: for ∀Γ vi ∈ Γ do
5: ∀Ωi = {T 1

i , T
2
i , ..., T

Ki
i }, ∅ → ∀T ki ∈ Ωi

6: ∀T 1
i ← t1, vt1 ∈ Γ vi

7: for ∀vtj ∈ Γ vi do
8: for ∀T ki ∈ Ωi do
9: if ∃t ∈ T ki and t± 1 = tj then

10: T ki ← tj
11: end if
12: end for
13: end for
14: for ∀T ki ∈ Ωi do
15: m = |T ki |
16: if m < ∆ then
17: for ∀tj ∈ T ki do
18: tj → min{D(tj , T

k̄
i )|∀k̄ ∈ Ki, k̄ 6= k}

19: end for
20: Ωi − {T ki }
21: end if
22: end for
23: Ω ∪Ωi

24: end for

In addition, let T ki , k ∈ Ki be a set of continuous time slots,
termed as a time range and defined as follows:

T ki = {tj , tj + 1, ..., tj +m}︸ ︷︷ ︸ ⊂ Γvi
m>∆

(4)

where m is the number of time slots contained in T ji ,
∆ is a threshold defined as the minimal number of time
slots included in a time period. The speed data classification
algorithm is given in Algorithm 1. In line 3, the ISODATA
algorithm is implemented to get speed clusters. The time
period clusters are obtained from line 4 to 23. It is worth
mentioning that a decision is made to decide whether T ki
belongs to Ωi by comparing its capacity and threshold m
(from line 16 to 23). If T ki does not belong to Ωi, line
17 and 18 are implemented to allocate each tj ∈ T ki to
other T k̂i , k̂ 6= k by the operation min{D(tj , T

k̄
i )|∀k̄ ∈

Ki, k̄ 6= k}. D(tj , T
k̄
i ) is defined as the absolute difference

between speed recorded in time slot tj and the average speed
calculated during time period T k̄i , which is presented in (5).

D(tj , T
k̄
i ) = |vtj −

∑
tj̄∈T k̄

i
vtj̄

|T k̄i |
| (5)

C. STARIMA(λ, pλ(v), d, qm) Model

According to the speed and time period clusters obtained
from Section IV-B, we propose a modified STARIMA model,
denoted as STARIMA(λ, pλ(v), d, qm). The definitions of

1613



parameters λ, d and qm in this model are the same as the
original STARIMA model, except that the temporal lag p will
vary with the spatial order l and the average speed in different
time periods. More precisely, given a time period T ki ∈ Ωi,
STARIMA(λ, pλ(v), d, qm) is defined as follows:

(I −
λ∑
l=0

φlWl(Pl(v̄
k
i )L))(1− L)dY (t) =

(I −
q∑

k=1

mk∑
l=0

θklWlL
k)εt

(6)

In 6, Pl(v̄ki ) is a N × N vector in which each element
pmnl (v̄ki ) represents the temporal lag between two station
sm and sn with the spatial order l. ps1s2l (v̄ki )ij is calculated
by L(l)/v̄ki where L(l) is the distance between these two
stations and v̄ki is the average speed in time period T ki which

is equal to
∑

tj∈Tk
i
vtj

|Tk
i |

. Note that when l = 0, the “0th order
neighbor” of a station is itself such that the temporal lag is
evaluated with the PACF used in ARIMA.

V. EXPERIMENTAL VALIDATION

Based on the data collection introduced in Section III, we
utilize the speed and traffic flow data at stations 3, 4, 5 and
6. At each station, there are 2880 data recorded in one day
and the length of one time slot is 30 seconds. In order to
eliminate noise in the data, we make a “smooth” operation
by calculating the mean traffic flow every x data points and
regarding it as one data point. The experimental results are
divided into two parts. In the first part, we provide the speed
and time period clusters classified by our proposed algorithm.
For the speed data v, we choose x = 30. In the second part,
we present the forecast results of traffic flow in different
time periods and stations using STARIMA(λ, pλ(v), d, qm)
model. We choose x = 4 to calculate the mean traffic flow
using original traffic flow data within 2 minutes.

A. The Speed and Time Period Clusters

Firstly, the configuration of input parameters of algorithm
is given in Table I in which the speed data v is the results
after the smooth operation on the speed data collected from
four stations. With this setting, the smallest length of time
range T ki ∈ Ωi is 120 minutes. The speed and time period
clusters classified by Algorithm 3 is presented in table II.

TABLE I
THE INPUT PARAMETERS IN ALGORITHM 3

Parameters Value Parameters Value
Kmax 3 dmin 30
nmin 5 I 10
δ2max 15 ∆ 8

There are two speed clusters in Γ = {Γv1
, Γv2
}, in which

v1is the cluster center whose value is 82.15 feet/s and v2 is
34.33 feet/s. Based on the speed clusters, one day is divided
into 2 clusters with Ω = {Ω1,Ω2} in which Ω1includes 4
time ranges and Ω2 includes 3 time ranges. According to

TABLE II
THE SPEED AND TIME PERIOD CLUSTERS

Clusters Values
Speed Γ = {Γv1 , Γv2 |v1 = 82.15, v2 = 34.33}

Time period
Ω = {Ω1,Ω2|Ω1 = {T 1

1 , T
2
1 , T

3
1 , T

4
1 },Ω2 =

{T 1
2 , T

2
2 , T

3
2 }}

T 1
1 =[0,2am), T 2

1 =[4-6:30am),
T 3
1 =[10am-15pm), T 4

1 =[18:30-24pm]
T 1
2 =[2,4am), T 2

2 [6:30-10am),
T 3
2 =(15-18:30pm]

TABLE III
THE TEMPORAL LAG IN T 2

2 AND T 4
1 WITH DIFFERENT SPATIAL ORDER

Day l= 3 (s6, s3) l = 2 (s6, s4) l = 1 (s6, s5)
T 2
2 T 4

1 T 2
2 T 4

1 T 2
2 T 4

1
1 3/3 2/2 2/2 1/1 1/1 1/1
2 3/4 2/-9 2/2 1/1 1/-3 1/1
3 3/3 2/2 2/2 1/1 1/1 1/1
4 3/3 2/2 2/2 1/1 1/1 1/1
5 3/3 2/2 2/2 1/1 1/1 1/1

such classification, we present the temporal lag calculated by
(3) (left part of “/” in each column) and by the CCF (the right
part of “/” in each column) during the time range T 2

2 (6:30-
10am) and T 4

1 (18:30-24pm) with the spatial lag l = 1, 2, 3.
The results are shown in Table III. It reveals an encouraging
result that the temporal lags evaluated by these two methods
are the same with the exception of some parts of the results
in day 2. In addition, comparing the temporal lags evaluated
upon different spatial lags, we can find that the temporal lags
during peak and off-peak periods are the same when l = 1
(s6 and s5). This is because the temporal lag is less affected
by the speed if two stations are very close.

B. Results of Traffic Flow Prediction

We choose the traffic flow data in day 3. After the smooth
operation, we predict the traffic flow in one hour (30 time
slots), and other data during each time range T ki ∈ Ωi are
used for training STARIMA(λ, pλ(v), d, qm) model (for
simplicity, denoted as STARIMA(p(v))). The settings are
the same when using ARIMA and Chaos theory based model
(abbreviated as Chaos) [19]. The performance of the forecast
is measured by the mean square error (MSE) and the mean
absolute percentage error (MAPE).

TABLE IV
THE MAPE/MSE OF FOUR STATIONS USING

Tk
i s3 s4 s5 s6
T 1

1 4.00%/16.74 1.14%/11.33 3.00%/29.402 5.43%/28.12
T 2

1 11.82%/46.04 6.78%/63.11 1.54%/11.63 6.16%/39.41
T 3

1 17.85%/87.90 14.34%/95.31 10.99%/88.97 12.62%/70.69
T 4

1 13.69%/71.16 2.93%/28.33 3.96%/27.15 7.28%/44.47
T 1

2 12.15%/ 58.60 3.88%/36.06 2.78%/26.39 7.00%/45.98
T 2

2 14.00%/75.35 4.86%/59.51 2.35%/29.03 8.03%/51.01
T 3

2 12.20%/62.79 6.61%/61.82 4.24%/52.79 8.68%/55.56

We provide the MAPE/MSE of four stations using our pro-
posed model in Table IV. Combining with Fig. 5, we can see
that the forecast results are inspiring. Especially, the MAPE
of station 4, 5 and 6 are all below 9% except T 3

1 (10am-
15pm), which is attributable to the frequent fluctuation of
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Fig. 5. The forecasting results for one day at station 6

traffic flow during this time range as shown Fig. 1. As the
minimal time range based on the configuration of ∆ = 8 is
120 minutes, it did not capture such frequent fluctuation. In
addiction, the MAPE/MSE of station 3 are higher than other
stations because none neighbors are considered in this paper
at this station such that the λ = 0. In this way, our model is
actually similar with a ARIMA model.

TABLE V
THE MAPE/MSE OF 4 STATIONS USING STARIMA(p(v)), CHAOS,

AND ARIMA(2, 1, 2)

St. STARIMA(p(v)) Chaos ARIMA(2, 1, 2)
s3 12.25%/59.80 11.57%/47.94 34.26%/95.62
s4 5.51%/36.79 7.49%/66.54 32.56%/127.90
s5 4.02%/37.71 13.64%/71.79 25.64%/102.87
s6 7.82%/43.26 10.41%/56.02 28.66%/96.76

TABLE VI
THE MAPE/MSE BASED ON FORECASTING RESULTS IN 9-10AM AND

23-24PM AT STATION 6

St. STARIMA(p(v)) Chaos ARIMA(2, 1, 2)
9-10am 1.28%/6.52 13.01%/44.70 13.11%/42.74

23-24pm 3.38%/15.55 6.12%/28.55 34.82%/98.11

In Table V, we compare the MAPE/MSE of one day
using STARIMA(p(v)), Chaos and ARIMA(2, 1, 2) at
four stations. Except station 3, all the MAPE/MSE achieved
by our model are better than those of the other two models.
Furthermore, in Table VI, we present the MAPE/MSE of
the forecast results of station 6 using these three models,
in which the forecast time ranges are 9-10am and 23-24pm.
It can be seen that the performance of our model is almost
coincident with the true data. And Chaos comes to the second
in the prediction during 23-24pm.

VI. CONCLUSIONS

Motivated by the observation that the correlation between
traffic at different traffic stations is time-varying and the time
lag corresponding to the maximum correlation approximately
equals to the distance between two traffic stations divided by
the speed of vehicles between them, in this paper, we devel-
oped a modified STARIMA model with time-varying lags for
short-term traffic flow prediction. Experimental results using
real traffic data collected on a highway showed that the de-
veloped STARIMA-based model with time-varying lags has
superior accuracy compared with its counterpart developed

using the traditional cross-correlation function and without
employing time-varying lags. In an urban environment, the
correlation between traffic tends to be much more intricate.
It is part of our future work plan to develop prediction
technique for urban roads that incorporates the knowledge
of the underlying road topology.
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