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Abstract—User association has emerged as a distributed re-
source allocation problem in the heterogeneous networks (Het-
Nets). Although an approximate solution is obtainable using the
approaches like combinatorial optimization and game theory
based schemes, these techniques can be easily trapped in local
optima. Furthermore, the lack of exploring the relation between
the quality of the solution and the parameters in the HetNet
(e.g. the number of users and BSs), at what levels, impairs
the practicability of deploying these approaches in a real world
environment. To address these issues, this paper investigates how
to model the problem as a distributed constraint optimization
problem (DCOP) from the point of the view of the multi-agent
system. More specifically, we develop two models named Each
Connection As Variable (ECAV) and Each BS and User As
Variable (EBUAV). Hereinafter, we propose a DCOP solver which
not only sets up the model in a distributed way but also enables
us to efficiently obtain the solution by means of a complete DCOP
algorithm based on distributed message-passing. Naturally, both
theoretical analysis and simulation show that different qualitative
solutions can be obtained in terms of an introduced parameter 7
which has a close relation with the parameters in the HetNet. It
is also apparent that there is 6% improvement on the throughput
by the DCOP solver comparing with other counterparts when
n = 3. Particularly, it demonstrates up to 18% increase in the
ability to make BSs service more users when the number of users
is above 200 while the available RBs are limited. In addition, it
appears that the distribution of RBs allocated to users by BSs is
better with the variation of the volume of RBs at the macro BS.

Index Terms—HetNets, user association, DCOP, solution qual-
ity.
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heterogeneous network (HetNet) is composed of several

tiers including macrocells, picocells, and femtocells.
Different cells supply service to a variety of zones ranging
from the outdoor to indoor environment. A challenging prob-
lem in the HetNet is integrating resources (spectrum, power,
sub-channel) to optimize the system performance (through-
put, energy efficiency). Thus, a series of resource allocation
problems, such as user/cell association, inter-cell interference
management, have attracted considerable attention [1-5]. In
this paper, we focus on the user association problem in the
downlink of the HetNet which aims to assign mobile users
to different BSs in different tiers while satisfying the QoS
constraint on the rate required by each user.

The prevalent solution schemes for the user association
problem are broadly divided into three categories [6, 7]
including 1) stochastic geometry based scheme, 2) game
theory based scheme, and 3) combinatorial optimization based
scheme. The methods from the first category mainly include
Max-SINR (maximum signal-to-interference-plus-noise ratio),
Max-RSS (maximum received signal strength) methods with
the intention of setting up the connection between a user and
a BS with large SINR (signal-to-interference-plus-noise ratio).
Thus, it is difficult to guarantee the load balance between
macrocell BSs and small cell BSs [8] since the SINR or the
signal between the users and macrocell BSs is always larger.
Although a bias is added to the users’ power received from
the small cell BSs, the way to determine the bias is also a
difficult problem.

The schemes from the other two categories, by contrast, are
able to avoid such unfairness. More precisely, game theory
based scheme aims at modeling the users or BSs as players and
then investigating the interaction between these players [6].
Particularly, Nash bargaining and the matching theory are the
specific methods which have been widely used for solving user
association problem [9, 10]. The methods in combinatorial
optimization based scheme formulates the problem as a non-
convex mixed integer programming which is transformed to a
convex one by relaxing the discrete domain of variables into
the continuous one. Then the solution is obtained by means of
a numerical technique such as Lagrange dual decomposition
(LDD) [4, 11, 12]. However, In the game theory based
schemes, the players (BSs or users) can not act in a rational
manner all the time due to the fact that different players (e.g.
BSs) always have different optimization objectives [6]. On the
other hand, the relaxation in combinatorial optimization based
scheme leads to a duality gap between the primal and dual
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problems. Further, the lack of exploring the relation between
the quality of the solution and the parameters in the HetNet
(e.g. the number of users, BSs) impairs the practicability of
deploying these approaches in a real world environment.

On the other hand, interest in applying the multi-agent
system for addressing resource allocation problem in the
HetNet has been on the rise [13, 14]. This is attributable to the
following reasons. First, with the aid of intelligent agents, the
control and responsibilities within the multi-agent system are
sufficiently shared among agents. In this way, the system can
tolerate failures of one or more agents. Second, the operation
of adding agents to a multi-agent system is more efficiently
than adding new capabilities to a monolithic system. Third, the
consensus problem in the field of multi-agent system, aiming
at designing an appropriate control input to make a group
of agents converge to a consistent quantity of interest, has
been further researched [15, 16]. In recent years, DCOP has
emerged as a credible framework of multi-agent system to
tackle a series of distributed resource allocation problems such
as energy-efficient smart environment configuration [17], tar-
get location in the sensor networks [18] and the management
of water resources systems [19]. Therefore, it motivates us to
use DCOP technique to revisit the user association problem
from the point of the view of the multi-agent system.

In this paper, we develop a DCOP solver including the
building of ECAV/EBUAV-1) model and the execuation of a
complete DCOP algorithm. The solver enables us to obtain
the optimal or suboptimal solution. Naturally, both theoretical
analysis and simulation show that different qualitative solu-
tions can be guaranteed in terms of different assignments of
7). In brief, the contribution is as follows:

o To the best of our knowledge, this is the first attempt
to bridge multi-agent system and the user association
problem in the HetNet by bringing about the technique
of DCOP. Also, we introduce a parameter  which have
benefit to make a trade-off between the performance and
complexity of the DCOP solver.

« Based on the complete DCOP algorithm, the lower bound
of the solution can be guaranteed through a theoretical
analysis of the parameter 7, allowing for deploying the
DCOP solver in a real world environment.

o The simulation shows that the resource allocation strategy
provided by the DCOP solver is better than the ones
obtained by the Max-SINR and LDD based schemes.
Particularly, it has a better robustness when the number of
users increases while the available resources are limited.

The rest of this paper is organized as follows. In Section II,
we briefly introduce related works of user association problem
and DCOP applications. In Section III, we describe the system
model of k-tier HetNet. The DCOP models of user association
problem are presented in Section IV. After that, we propose a
DCOP solver along with the theoretical analysis of the solution
obtained by the solver in Section V. Then, we explore the
performance of our proposed method by comparing with the
Max-SINR and LDD based schemes in Section VI. Finally,
Section VII draws the conclusion.

II. RELATED WORKS

In this section, we firstly introduce some novel methods
for solving user association problem. Then, we present the
definition of DCOP along with DCOP applications in real life.

A. User Association Problem

User association problem can be formulated as a distributed
resource allocation problem in which a unit resource refers to
a resource block (RB) that covers a certain frequency range
and time duration [20] according to the LTE (Long Term
Evaluation) technology. In past decades, noticeable research
effort has been dedicated to the development of distributed
methods, especially game theory based and combinatorial
optimization based schemes [4, 5, 21, 22], partly due to the
fact that less feedback overhead is needed between users and
BS:s.

Game theory based scheme models the users, BSs or both
as players and explores the solution through the interaction
between the players. For instance, [5] and [22] modeled the
users as players. When the Nash equilibrium is achieved, the
solution (pure strategy) is a stable profile of actions with which
no player can obtain a personal gain by changing to another
strategy [23]. The difference between these two research
methods relied on the various objective functions formulated
in the system model. Ha and Le in [5] solved a joint user
association and power control problem. An iterative algorithm
was proposed with a minimization of effective interference
as the metric of interest. Zhen et al. in [22] solved a multi-
dimensional resource optimization problem with the objective
of suppressing the interference and improving the overall
system throughput while ensuring the QoS of femtocell users.
Liu et al. [10] formulated the user association as a bargaining
problem by modeling different BSs as competing players who
bargained with each other for the sake of attaining mutual
advantages. Pantisano et al. [9] exploited a matching game
by regarding small cell base stations and users as players. To
solve this game, they proposed a distributed algorithm which
enabled the players to self-organize into a stable matching that
guaranteed the required applications’ QoS.

As for the combinatorial optimization based scheme, the
formulation of the system model falls into the scope of non-
convex mixed integer programming [21, 24-27], which is
always NP-hard. The way to obtain the solution has been
very challenging and most attempts to address the problem
have yielded encouraging results. Fooladivanda and Rosenber
[21] transformed the non-convex problem to a convex one by
relaxing the discrete domain of the variable in the association
constraint into the continuous one. After that, the numerical
technique for solving convex problems could be applied to
obtain the suboptimal solution, which was always an upper
bound of the optimal solution. Similarly, after relaxing the
constraints of both resources and energy in the system model
of RES powered HetNets, Han et al. [27] applied an optimal
offline algorithm using discretization and dual decomposition.
In [4], Hamidreza and Bhargava put forward an LDD based
iterative algorithm with which the users and BSs made their
respective decisions using local SINR information. A global
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QoS, expressed in terms of minimum achievable long-term rate
or maximum outage probability, was achieved. Ye et al. [26]
developed a unified framework, where resource allocation was
cast as a network utility maximization problem. this particular
problem was overcome by a dual subgradient based algorithm
which converged towards the solution.

Although there is no sufficient evidence to infer that one
method is better than the others, the simulation results in [4]
and [22] show that the performance of the methods in game
theory based and combinatorial optimization based schemes
are better than some methods in the stochastic geometry based
schemes, e.g. Max- SINR. However, both of these two schemes
are confined to the following two aspects: 1) the HetNet is a
dynamic system in which there is frequent variation of the
number of users, the configuration of the resource at BSs;
2) there is little work on exploring the relation between the
quality of the solution and the parameters in the HetNet, thus
impairing the practicability of deploying these approaches in a
real world environment. Consequently, it inspires us to model
the user association problem as a multi-agent system.

B. Distributed Constraint Optimization Problem

DCOP is a set of cooperation techniques for multi-agent
system, effective for optimizing the global objective function
which is an aggregation of distributed cost functions. It is gen-
erally presented as a four tuples model < A, V,D,C > where
A={ay,a2,...,a.4} " is aset of agents, V = {vy, vz, ..., 05}
is a set of variables, D = {d;,da, ...,d,} consists of all the
domains from different variables and C = {c1,ca, ..., |} is
the set of constraints between variables. Each variable v; € V
belongs to a unique agent a; € A, and each constraint ¢ € C
is defined as a mapping from the assignments of m variables
to a positive real value

R(C) : dil X di2 X d7m —>R+, (1)

The objective of a DCOP is to find a set of assignments of
all the variables, denoted as X'*, which maximize the utility,
namely the sum of all constraint rewards:

R(c). 2
arg}(n*lax; (c) 2

To obtain the optimal solution, a large literature exists on
the solution methods which fall into two categories including
the ADOPT [28] based algorithms which rely on the message
propagation, and the DPOP [29] based algorithms which are
depended on the inference strategy.

Recently, DCOP technique has played an increasingly es-
sential role when we model practical problems as multi-agent
systems [30-32]. An agent, characterized by the autonomy
and distributivity, is capable of making decision independently
without a centralized controller. Katsuya, Kayo and Yasuki
[30] employed the DCOP technique to model a rescue system
so that a real-time evacuation guidance was provided for
the victims. Enembreck and Barthes modeled the distributed
meetings scheduling problem as a DCOP where the time slots

1| X| denotes the cardinality of X

were modeled as variables, and the set of meetings potentially
scheduled within a time slot was modeled as the domain of a
variable.

According to the survey made by [33], the aforementioned
problems, at what levels, could be regarded as a kind of dis-
tributed resource allocation problems. Thus, DCOP techniques
have the potential of enabling the design of the user association
problem in the HetNet. Besides, considering the dynamic
environment (e.g. the mobility of users or the plug-and-play
property of BSs in small cells [34]), the variant of DCOP
modeling framework, named StochDCOP [35], is an effective
tool to capture these variations in the dynamic environment by
modeling the sources of uncertainty as random, uncontrollable
variables.

In order to apply advanced DCOP techniques to the user
association problem in the HetNet, the first pahse in the
corresponding research is to model the problem as a multi-
agent system using DCOP framework. Moreover, one of the
challenges is the construction of the constraints on account of
the rate QoS affected by the distinctions of the configuration
at different BSs, e.g. transmit power or resource. Another
challenge is the large amount of the users, resource, which
may potentially reduce the performance of solution scheme.
These challenges led to the modeling methods in the existing
DCOP applications are not available for the user association
problem.

III. SYSTEM MODEL

A tier in the HetNet indicates a macrocell, picocell, or
femtocell where each tier contains a set of BSs with the
same configurations, e.g., the transmit power and resource.
According to the OFDMA (Orthogonal Frequency Division
Multiple Access) technique, the resource configured at a BS
refers to a set of resource blocks (RBs) where each RB consists
of a certain time duration and certain bandwidth [36]. A
two-tier HetNet is given in Fig.1 using a multilayer graph
where each tier consists of a BS, respectively denoted as
By and B,. Four users are deployed in the HetNet, denoted
as U = {Uy,Us,Us,Uy}. By is capable of providing ser-
vice to {U1,Us,Us}, while Bs is able to provide service to
{Uy,Us, Uy }.

Given a k-tier HetNet including /B BSs and AU users
respectively denoted by B = {B1,Bs,....Byp} and U =
{Ur,Us, ..., Uny}. Assuming the channel state information
is available at the BSs, also, the BSs from different tiers
share the total bandwidth such that there are both intra- and
inter-tier interference when the BSs allocate RBs to the users
instantaneously. Therefore, the SINR experienced by user U/;
served by B; in the kth tier is given by

Pygi;
ZBLGB/{Bi} Pkglj + BNy’

where Py is the transmit power for the BSs in the kth tier,
gi; is the channel power gain between U; and B;, B/{B;}
represents all the BSs in B except B;, B is the bandwidth and
Ny is noise power spectral density. The channel power gain
includes the effect of both path loss and fading. Path loss is

SINR;; = 3)



IEEE TRANSACTIONS ON CYBERNETICS

(")) Uz = U=
%, (10 RBs) 12

Tier 2 N %\

59%2 &9 U
S,
3?%\?% //

Tier 1
21 (8 RBs)

Uy =

Uiz = U11=
u;; =0.8 bit/i

Fig. 1: A two-tiers HetNet

assumed to be static and its effect is captured in the average
value of the channel power gain, while the fading is assumed
to follow the exponential distribution. Then the efficiency of
user U; € U powered by BS B; € B, denoted as e;; is

ei;j = loga2(1 + SINR;;). 4

Consider the bandwidth B, time duration 7" and the scheduling

interval I" configured at each RB, we attain the unit rate at I/,

upon one RB as

BT@Z‘J‘
i (®)]

On the basis of formula (5), the rate received at U; with n;;

RBs provided by B; in the kth tier is

uij =

Tij = Nijtij. (6)

The quality-of-service (QoS) constraint of each user is ex-
pressed as the minimum total rate the user should receive.
Denoting the rate requiremnt from all the users as ~, the
minimum number of RBs required to satisfy v is estimated
by:

mvn - |—7—| (7)

Usj

in which [-] is a ceiling function.

IV. PROBLEM FORMULATION WITH DCOP

The primary step for solving the user association problem
is to satisfy the basic QoS rate requirements from the users.
To this end, the following sections develop the ECAV and
EBUAV model which play an important role for designing a
DCOP solver. Finally, a parameter 7 is introduced to restrict
the scale of these two models.

A. ECAV

The key step towards modeling a user association problem
as a DCOP is mapping the entities in the HetNet, e.g. the
users, BSs and resource to the four tuples in the DCOP model.
Motivated by the modeling method of the distributed meeting
schedule problem in [31], we firstly introduce the definition of
candidate BS according to the protential connection between
the BSs and users:

Definition 1. Candidate BS: we declare B; € BB is a candidate
BS of U; € U if B, is able to satisfy the rate QoS requirement
of U; WlthOth overload of resource.

In other words, Definition 1 indicates that r;; > ~ and
Z

n,? .. < R; where R; is the aggregate RBs configured at 5.
On the basis of Definition 1, we define each BS 5; as a an
agent, denoted as a;, and each connection between a user U
and one of its corresponding candidate BS B; as a variable,
denoted as v}. As a result, A = {a1,a2,...,anp} and V =
{vllj e NU,i € |CB; \} Each variable has a binary domain
d? = {0,n%, } where v] is 0 if B; ‘does not allocate RB to
L{ Otherwise, v/ has the value of n' . Thus D = {d!|d! =
{0 n,? .. }}. An intra-constraint connecting n variables in a; is
formulated as an n-ary constraint which represents the number
of RBs consumed at B;. Note that a user may have more than
one candidate BS. Therefore, there is also an inter-constraint
between the variables in different agents. We use C = C;pter U
Cintra to denote the set of intra- and inter-constraints in the
ECAV model, then the reward R(c) of each constraint is given
as follows. For Ve € Cinter

Val(v] )
R(c) = {07 for Y viep <1 ()
—00, 0therw1se (8b)
For Ve € Cintra
R(e) = {—oo7 for vl e v-l >R, (9a)
Z r;j, otherwise (9b)

v] e(c)

In constraint (8a), (c) & V is the set of variables connected
by constraint ¢. Val(v]) represents the assignment of v}. A
small reward (we use —oo in this paper) is assigned if any con-
straint is violated (e.g. formulation (8b) and (9a)). Otherwise,
the reward of an inter-constraint is O if the unique connection
between users and BSs can be gauranteed (formulation (8a).
Also, the reward of an intra-constraint is the rate achieved
at the user if there is no overloading of resource occurred at
the BS (formulation 9b)). To sum up all the rewards of the
constraints, we get the following equation

D RO=2 >y

ceC B,eBU;eU

(10)

where } ;5 e > 14,4 7ij 18 the sum of the rates achieved at all
the users, which can be regarded as a metric of the throughput
in the HetNet. Thus, the larger > __. R(c) is, the better the
throughput should be.

ceC

Example 2. Recall the two-tier HetNet in Fig.1. We assume
the candidate BSs of U; and Us are both {81, B2}, and the
candidate BSs of U3 and Uy are respectively {B;} and {B}.
Moreover, we assume the total RBs configured at /3; and Bs
is 8 and 10. For simplicity, the unit rate is 0.8 bit/s between
a user and B;, while 1 bit/s between a user and Bs. Fig.2a
displays the ECAV model of this instance using a constraint
graph where two BSs are modeled as agents a; and as. The
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variables in a; are v}, v? and v}, and the variables in ay are
v3,v3 and v3. Given the threshold rate 3 bit/s, the number
of RBs needed by the users connecting with B; is at least
[53] = 4, hence the domain of each variable in a; is {0,4}.
Similarily, the domain of each variable in as is {0,3}. The
black lines connecting the variables in each agent consist of a
3-nry intra-constraint, and the red line connecting the variables
in two agents is an intra-constraint. Take the intra-constraint
in a; as an example, the reward is —oo when the value of
each variable is 4 since the total number of RBs consumed
by these users is 12 which is more than 8 RBs configured
at B;. Otherwise, the reward is 0.8 x 4 x 2 = 6.4 (bit/s) if
the assignments of v{,v? and v are 4, 4 and 0. Considering
the inter-constraint between v3 and v{, the reward is —oo if
the value of v3 is 3 and the value of v} is 4. In this case, it
violates the assumption of unique connection since Uy will be
served by B; and B5 at the same time.

B. EBUAV

As an n-ary constraint in the ECAV model produces (%)
edges in the corresponding constraint graph, a message prop-
agation based DCOP algorithm [28, 37, 38] consumes more
computational resource and requires more running time when
there is an increase in terms of users and BSs. To perform
the DCOP algorithm in an efficient manner, we propose the
EBUAV model motivated by the dual coding technology [39]
which has been widely used in the DCOP framework aiming
at transforming an n-ary constraint into binary one. More
precisely, we construct the set of agents and variables by
A = {al,ag, ...,CLNB+N1/1} and V = {’Ul,’UQ, ...,UNB+/\/1,{}
where the agents (variables) are divided into two categories
including “user agents (variables)” and “BS agents (vari-
ables)”. Denoting the candidate BSs of user U; € U by CB;,
then the set of domains of user variables is formulated as
Dy = {dl,dg,...,d/\[u}, in which d]‘ = {O} U{n;Jlm|Bl S
CB;},d; € Dy. Besides, the domains of BS variables are
formulated by D = {d1,ds,...,d|n5}, Where each element
d; € Dg indicates all possible combinations of RBs assigned
to m users by B; € B, denoted as

di 2 {(x1, o xm)|z; = {0,072, VG =1,...,m} (11

It is worth noting that the data structure used for storing
d; € Dp is a binary tree which has benefits to effectively
deploy a search strategy on the domain space. Futher, we
condense the storage space of the binary tree leveraging on the
binary decision diagram (BDD) which can be denoted as an
acyclic graph including a root and directed edges. It consists of
the decision and terminal nodes in which terminal nodes are
classified into O-terminal and 1-terminal nodes. Particularly,
a decision node, in this paper, is represented as a boolean
variable vy,. It has two child nodes called low child and
high child. The edge from node v;; to a low (or high) child
represents that vy, has an assignment of O (resp. the number
of RBs allocated to the user).

The definition of the reward of the constraints are depended
on the concept of Consistency:

Definition 3. Consistency: Given a user variable v; with
assignment Val(v;) € d; € Dy and a BS variable v; with
assignment Val(v;) € d; € Dp, we say the assignments of a
BS variable and a user variable are consistent if Val(v;) =
zj,x; € Val(v;).

For simplicity, we use Consis(Val(v;), Val(v;)) to repre-
sent the consistency between a BS variable and a user variable.
According to Definition 3, the user Uf; prefers (or not) to
connect with the BS B; if the constraint between them satisfies
(cannot satisfy) the consistency condition. Then, we have the
reward upon each constraint between a user and BS variable

as follows
R(c) = { Consis(Val(v;), Val(v;)) (12a)
9= (12b)

Obviously, The sum of all the rewards is also the throughput
in the HetNet.

Example 4. Fig.2b is the constraint graph of the
EBUAV model of the instance in Fig.1. The vari-
ables are {vg,,vB,,vy,,...,0y,} controlled by the agents
{ap,,a8,,au,, ..., au, }- Take vy, and vg, as examples, the
domain of vy, is {0,4, 3}, where 0 means f; does not connect
with any BS, while 4 or 3 means Uf; respectively connects with
B or By. The domain of vg, is denoted as D(vp, ). Each value
in the domain is in the format of a three-tuple (z1,z2,xs3),
where 1, x9,x3 respectively represents the number of RBs
allocated to Uy,Us and Us by By. Particularly, {0,0, 0} refers
that By does not allocate any RBs to U,Us and Us. There is
no value (4,4,4) in D(vp, ) because the total number of RBs
consumed by these three users is 12 which is more than 8
RBs configured at B;. D, is represented as a binary tree in
Fig.3a, and formulated as a BDD which has fewer nodes and
edges in Fig.3b. With the definition of consistency, the reward
of the constraint between vy, and vg, is 3.2 bit/s when the
assignment of vy, is 4, while the assignment of vg, is (4,0,0),
(4,4,0) or (4,0,4). Otherwise, the utility is —oo

The difference between EBUAV and ECAV model is as
follows:

« The number of agents (NB+NU) in the EBUAV model
is more than the number of agents (N'B) in the ECAV
model, but shows a linear growth with the increment of
users and BSs. The extra agents have a light influence on
the performance of DCOP algorithms.

o The constraint in the EBUAV model is 2-nry rather than
the n-ry (n > 2) in terms of the constraint in the ECAV
model. As a result, there is a decline in the amount of
the messages delivered between agents.

Tigs

—00, otherwise

C. ECAV/EBUAV-n

The size of the domain for a BS variable is at worst O(2™")
if there are m users potentially connecting with the same BS.
The critical factor to give rise to the exponential growth of
memory is a large amount of candidate BSs of some users.
However, some candidate BSs of users can be ignored because
they are far from the user. Although these BSs are able to
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Ayg

ayz

ay3

cl

inter Chuter ap1
D(vg) = { {0, 0,0}, {3,0,0}, {0, 3,0}, {0,0,3},
{3,3,0}, {3,0,3},{0,3,3} }
D(vg)={ {0,0,0}, {4,0,0}, {0, 4,0}, {0,0,4},
{4,4,0}, {4,0,4}, {0,4,4} }
D(vur) = {0, 4,3} D(vin) ={0,4,3}
D(vis) = {0,3} D(vus) ={0, 4}

(b) EBUAV model

(a) ECAV model
Fig. 2: The ECAV/EBUAVmodel of the instance in Fig.1

(a) Binary tree

(b) BDD

Fig. 3: Store the domain of variable v, with binary tree and
BDD

satisfy the rate QoS requirement of a user, they have to expend
a lot of RBs. Such situation is ordinarily discouraged and
seldom occurs in an optimal solution.

Assuming the candidate BSs of a user is CB =
{Bl,BQ, ...,B‘cg‘} with B; < By =< = B|CB| where
B, =% B, means the number of RBs consumed at B, is smaller
than that consumed at B,. We then come up with a parameter
n with which we make each user select top n candidate BSs
from CB, denoted as CB. For the sake of simplicity, we use the
term of candidate users, abbreviated as CU to denote the set of
users potentially served by a BS. As |CU| < m, it is sufficient
for us to believe that the complexity of the ECAV/EBUAV-y
becomes smaller when we select a feasible value for 7.

V. DCOP SOLVER AND SOLUTION

The technical challenges for desgining a DCOP solver lie
in setting up the ECAV/EBUAV-7 model in a distributed way
and ensuring the resulting DCOP’s solution is acceptable and
feasible. Thus not do we need to develop the algorithm for
modeling and addressing the user association problem, but we
need to make an analysis on the quality of obtained solution.

A. DCOP Solver for User Association

Algorithm 1 is the pseudo code for determining CB and
CU. Tt takes time of O(NB) for a user to determine C3 from
line 1 to 5. Hereinafter, CB is estimated through line 6 to
15. The time complexity mainly rests on the "< operation
by means of a sorting algorithm whose time complexity is
NB2, like bubble sort. To sum up, the time expended for the
determination of CB is O(N'B* + 2N B). A user U, informs
its candidate BS B, € CBj by sending a message named

Algorithm 1 CB; of user U; € U and CU; of user B; € B

Each User:
1: for B; € B do
if Tij > Yy then
CB; U{B:}

end if

: end for

: ”=” operation on CBB; using a sorting algorithm

. if |CB;| > n then

for p from 1 to n do

CB; U{By € CB;}
send CB_Msg to B,

candidate BS

11: end for

12: else

13: CB; <+ CB; R

14: send CB_Msg to all B, € CB;

15: end if

Each BS:

16: if message = CB_Msg from U/; then

7. CU; J{U;}

18: end if

VRIS ELD

—

> a user sends message to the

CB_Msg. After that, B, in turn sets up Cl{, as soon as B,
recieves CB_Msg (line 16).

Algorithm 2 presents the pseudo code for the construction
of the ECAV/EBUAV-n model. In the case of the ECAV-n
model, each BS models itself as an agent in line 21. The
variables along with the domains are set up by each user (line
3 and 4). After that, the rewards depended on intra- and inter-
constraints are respectively determined by the users and BSs
in line 5 and 22. As for the EBUAV-np model, a BS models
itself as an agent/variable and sets up the domain, constraint
and rewards from line 25 to 28. Note that the building of a BS
agent/variable relies on the construction of the binary tree and
BDD (line 28) and procedure BuildBinaryTree(Root, Nrp)).

lcit; |
The time complexity is, at worst, O(2 2 ).

The terminative signal of the model building is depended on
the pseudo code in line 30 where B; sends message CU_Msg
to the users not belonged to the current Cl; in order to
confirm the completeness of Cl;. If U; has already identified
the CBj, it sends back End_Msg to the BS (line 15 and
16). After that, the BS broadcasts Start_Algo_Msg to inform
the users to run the DCOP algorithm (from line 31 to 33).
Ideally, any DCOP complete algorithm can be utilized to
obtain the optimal solution based on the EBUAV-1, model.
However, the DPOP based algorithms have exponential growth
on the storage occupation with respect to both the domain
size and number of variables. Thus, in this paper, we utilize
a message propagation based algorithm, namely BnB-ADOPT
[41], which is not only asynchronously executed by agents but
has fewer exchanging messages. After that, the BSs who have
redundant resource can proceed a greedy strategy by allocating
the RBs to the users with the largest rate in order to improve
the throughput in the HetNet. With the vast availability of
incomplete DCOP algorithms [42-44] which have benefits to
supply a suboptimal solution with theoretical error bound, it is
a future job to apply the incomplete algorithms to our proposed
DCOQOFP solver.
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Algorithm 2 ECAV/EBUAV-7

Algorithm 3 DCOP solver for the user association problem

Each User: U; € U
1: procedure SETECAV
2 for B; € CB; do
3 vUE} |
4 d {0,073, DU{d!}
5 CU{E et RU{R(CLotra)} based on (9)
6: end for
7: end procedure
8: procedure SETEBUAV
9‘

Uj; is modeled as an agent a; € A and variable v; € V

10: D(vugy) = {0, nbims s o 1D U{D (v, )}

11: for BB, € CB; do _

12: ClU{c}, RU R(c?) calculated based on (12a) and (12b)

13: end for

14: end procedure R

15: if message = CU_msg from B; € B and B; ¢ C3; then

16: Send End_Msg to BS

17: else if message = Start_Algo_Msg then

18: Implementing DCOP algorithm

19: end if

Each BS: B; € B

20: procedure SETECAV

21: B; is modeled as an agent a; € A

2: CU{Clhuter}» RULR(Chy.,)} based on (8)

23: end procedure

24: procedure SETEBUAV

25: B; is modeled as an agent a; € A and v; € V

26: Root < CU}, Nrp <+ 0

27: D(vB,) < BuildBinaryTree(Root, Nrg)

28: Storing the binary tree of D(vg,) by BDD with the algo-
rithms in [40]

29: end procedure A

30: Send CU_Msg to U /CU; R

31: if get End_Msg from all ¢/ /CU; then R

32: Send Start_Algo_Msg to the users in CU;

33: end if

34: Implementing DCOP algorithm

35: if there are RBs left at 3; then > greedy method

36: Allocating RBs to the users with large SINR

37: end if

38: procedure BUILDBINARYTREE(Node, Nrp)

39: if Node.children = NULL then

> select a root

40: return

41: else

42: Nrp = Nrp + Node.RB > allocated RBs
43: if Nrp > N; then

44: Node.children + NULL

45: else

46: BuildBinaryTree(Node.left)

47: BulidBinaryTree(Node.right)

48: end if

49: end if

50: end procedure

In the ECAV and EBUAV models, the number of the agents,
variables, and constraints varies with the number of users in
the HetNet, and has a significant impact on the performance
of the DCOP algorithm. However, it is difficult to make a
quantitative analysis on the structure of the models due to
the stochastic characteristics of the distribution of the users.
Aiming at selecting a feasible model according to the practical
configurations in the HetNet, we propose a model selection
strategy using a threshold of the number of users, denoted as

: Initialize: THRE_NUM_US

: Algorithm 1

if NULTHRE_NUM_US then
set ECAV-n model

else
set EBUAV-77 model

end if

A S ol

THRE_NUM_US, which is an empirical value based on the
simulated results (we will illustrate more details in Section
VI). When the number of users is below the threshold, the
ECAV model is set up. Otherwise, the EBUAV model is
exploited (line 3 to 7 in Algorithm 3).

B. The Solution Quality

We use X7 and X* to respectively denote the solu-
tions obtained based on the ECAV/EBUAV-n model and the
ECAV/EBUAV model by the complete DCOP algorithm. we
then explore the relationship between these two solutions as
follows:

Theorem 5. If all the users are served by the BSs, X" = X'*.

Proof: Denoting X7 as the set of solutions where X7 #*
X1 VX € Xn. According to formulation (10), we have

D RO, >y

ceC B;eB UJ'ETFXW;(BZ')

13)

where wx(B;) is the set of users connecting with B; in the
solution X'. Assuming X7 # X, there is at least one user
who connects with another BS instead of current one in the
solution X". In this case, Xa = X* C X" and

Z Z rij > ZR(C).

BiEBUjETrX’n (B;) ceC
s

(14)

A conflict exists between (13) and (14). Therefore, Theorem
5 is proved.
|

Theorem 6. If not all the users are served by the BSs, Uxn >
%U x+ where Uy represents the global utility with solution X.

Proof: We define a set of users mxy«_xn(B;) =
{Z/{j|u]' € Wx*(Bl)UuJ ¢ vay(Bi),VBi € B} Similarily,
WX*QXTI(Bj,) = {UJWJ c WX*(B,;)UZ/{j S WXn(Bl‘),VBi €
B}. Then we can calculate Uy~ and Uxn by

Ux-= ) ( > Tijy + > Tijy)s
BieB Uj, €mxxqxn (B;) Ujy ETxx —xn (Bs)
(15)
Uxn = Z ( Z Tij, + Z Ti]é)'
BieB Uj, €emxxnxn (Bi) Uj, €T xen —x= (Bi)
(16)

Subtract (16) from (15), we get
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Uxs—Uxn = Y ( > Tijy

Bi€B Uy, €man_xn (Bs)

2.

MJZGTF)(U,X* (BL)
a7
As D e n Tijn < Uxn, we can get the inequation as
J1 -

1
UX* - UX”I 2 UX"I <~ UX"] 2 §UX* (18)

| |
Thus, Theorem 6 is proved. Further, we discuss the relation-
ship between Uxn» and 7 as follows:

Theorem 7. If not all the users are served by the BSs, Ux~ —
Uxn < o(n)(Y — ) where o(n) is the number of users with

ICB| > n, T = [2y, maz{ui;}|",Vi e NB,Vj € NU.

Proof: Based on the formulation (5) to (7), the pratical
rate achieved at the user U; € U served by BS B; € B is
Tij = UWUij X |—ul”—| As O < I—ul”—l — ul” < ]., we have Tij <
uij X (7= 4+ 1) < + ui;. In this case, the upper bound of
T4 18 denoted by r3; and estimated by

(19a)

i = { (19b)

If a BS can use one RB to satisfy a user’s rate QoS, then the
practial rate will be u;;. Otherwise, the rate will be v+wu;;. As
Ui <7, 80 Y+u;; < 2. We let o(n) represent the number of
users whose with |CBB| > 7. If the solution X is not a global
optimal, then there are at most o(7) users who change their
current connection to other BSs. After that, we can obtain the
gap between Uy- and Uxn» which is smaller than o (1) (r5; —7).
We make 1" = [2, maz{u;;}]*,Vi € NB,Vj € NU where
operator [X,Y]" indicates the maximum value of X and Y.
Then Theorem 7 can be proved. ]

From Theorem 7, we find that if we set n with a larger
value, o(n) will be smaller and the solution will be closer to
the global optimal solution. In fact, when we set n = 3, the
sub-optimal solution is almost the best one in our simulation.

27, if v > ugj

max{u;;}, otherwise

VI. EXPERIMENTS ON SIMULATED ENVIRONMENTS

In the simulation, a three-tiers HetNet is considered in-
cluding macrocell, picocell, and femtocell. Specifically, the
transmission powers of these BSs are set by 46, 35, and 20
dBm. We assume the scene is a 1000m x 1000m square. One
macro BS is fixed at the center of the square, and there are 5
pico BSs, 10 femto BSs, and 200 users randomly located in
it. The path loss between the macro or pico BSs and the users
is defined as L(d) = 34 + 40log10(d). Further, the pass loss
between femto BSs and users is L(d) = 37 4+ 30log10(d), in
which d represents the distance between the BSs and the users
in meters. The noise power of all the users is equal to -111.45
dBm, which is the thermal noise at room temperature with a
bandwidth of 180kHz. The scheduling interval of 1 second is
considered. If there is no special illustration, the number of
RBs held at different types of BSs is 200 for macro BS, 100
for pico BS and 50 for femto BS. ECAV/EBUAV-x represents
the parameter n = z . Without special instructions, all the
results are the average of 20 instances.

Tijy)-
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o
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Fig. 4: The running time of ECAV and EBUAV models with
n=12,3

TABLE I: The number of constraints in the ECAV/EBUAV-7
model

Num. ECAV/EBUAV-1 ECAV/EBUAV-2  ECAV/EBUAV-3
50 0/0 30/34 56/36
100 27/33 92/46 109/42
150 61/67 140/79 143/80
200 77/102 198/118 208/123

To verify the effectiveness of the proposed DCOP solver, we
firstly present the complexity of the ECAV/EBUAV-n model
with respect to the variation of the number of users and 7.
Then, we compare the performance of the DCOP solver with
Max-SINR and LDD based schemes.

A. Complexity of ECAV/EBUAV-n Model

Table I displays the number of constraints in both models
with different configurations of parameter 7 and the number of
users in the HetNet. With the increment of the users, there are
fewer constraints, but more agents in the EBUAV-7 model than
the ones in the ECAV-r) model. Particularly, such difference is
more apparent when 1 = 2,3 and the number of the users is
above 100. As the DCOP algorithm is implemented by each
agent, the distributed behavior reduces the negative impact of
the increment of users on the performance of the EBUAV-y
model. This can be explained by observing Fig.4 where we
compare the complexity of the ECAV/EBUAV-n model from
the point of the view of the running time, by means of the same
DCOP algorithm. With the same configuration of parameter 7,
we find that the running time based on the ECAV-n model is
hardly controlled when the number of the users is increasing.
On the other hand, there is a nearly linear relationship between
the running time and the number of users using the EBUAV-
1 model. To sum up, the complexity of the EBUAV-n model
is obviously less than the EVAV-np model when the number
of users is more than 100. In this way, we set the threshold
THRE_NUM_US by 100.

Fig.5a presents the throughput using the EBUAV-n model
with n = 2,3,4, and 5. The difference on the throughput
between 1 = 3,4 and 5 is not obvious. However, there is a
big gap between the throughput of n = 2 and n = 3. In Table
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TABLE II: The rate (bit/s) and errors between optimal solution and the ones achieved with n =1,2,3

. n=1 n=2 n=3
Num.  Optimal sol. — g r—— A prror (%) Sol.  o(n)/T  Error (%) Sol.  o(n)/T Error (%)
50 286.13 286.13 / 0 286.13 / 0 286.13 / 0
100 374.35 374.35 / 0 374.35 / 0 374.35 / 0
150 585.28 51485  138/4.53 12.03 527.60  79/5.11 9.86 57064 67/4.94 2.50
200 791.67 69324  187/3.84 12.43 73519 124/4.46 7.13 76340  84/6.24 357
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Fig. 5: The performance of EBUAV-7

I, we use ”Optimal Sol.” to represent the optimal solution
obtained by the complete DCOP algorithm using the EBUAV
model, and ”Sol.” to represent the practical solution based on
the EBUAV-7) model. Sol. is the same as Optimal Sol. when
NU = 50 or 100 since all the users can be served by the
BSs. Such result is consistent with Theorem 5. In contrast,
the resources at the BSs are not enough to satisfy the QoS
requirements from all the users when NU = 150 or 200.
By calculating Uy~ and Ux+ — o(n)(T — v), we estimate
two lower bounds named bound; and bounds of Sol.. From
Fig.5b and 5c, we can observe that both bound; and bound,
is below Sol.. Besides, bounds is close to Sol.. Thus, Theorem
6 and 7 are verified. From the pecentage error calculated by
% x 100%, we observe that the gap between
Optimal Sol. and Sol. is ~ 5% when = 3 and NU = 150
or 200. Therefore, it is sufficient to use n = 3 as a feasible
configuration for the EBUAV-1 model.

B. The Performance of DCOP Solver

Fig.6 shows the computational complexity of different
schemes from the perspective of running time. With the
increment of the number of users, there has been a slow growth
in the running time needed by the DCOP solver based on
EBUAV-1 model. Comparing with Max-SINR and LDD based
schemes, DCOP solver has a better efficiency for solving the
user association problem when 1 = 3.

In Fig.7, we compare the connected states between users
and BSs in different tiers. Unsurprisingly, more users prefer
to connect with the macro BS in the Max-SINR based scheme.
Also, more users are out of service using Max-SINR scheme
than using the other two methods. Further, we explore the
variation of the connected states when there is increment of the
deployed users (Fig.8). Compring with Max-SINR and LDD
based schemes, the DCOP solver demonstrates up to 18%
and 3% increase in the ability to make the BSs serve more
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Fig. 6: The computational complexity of Max-SINR, LDD and
DCOP based schemes
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Fig. 7: The connected states between users and BSs of Max-
SINR, LDD and DCOP based schemes

users with limited resource. That is, DCOP solver can provide
a novel resource allocation strategy.

In Fig.9, we compare the CDF of the long-term rate
calculated by the Max-SINR, LDD and DCOP based schemes.
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Fig. 8: Non-served users in the HetNet in the case of different
configurations of AU

We set the maximum number of iterations in the LDD based
scheme as 25. From the figure, we can observe that P(r < 3)
of DCOP solver with EBUAV-n) = 1,2 is larger than that of
LDD based scheme. In the case of = 3, no more than 5 users
are out of service using the DCOP solver, while 10 14 users
cannot be served using the LDD based method. This can be
explained by the following reasons. Firstly, the users located at
the edge of the square are hardly served by any BS; Secondly,
the user U/; will select a BS B; with the maximal QI;; in each
iteration of LDD based scheme [4]. In other words, the users
prefer to connect with the BS which can offer better QoS even
when more resources are consumed. Therefore, some BSs have
to spend more RBs so that the resource at these BSs being
more easily used up. For instance, considering the following
scenario where both BS 31 and B, have 10 available RBs and
are able to provide service to the same user /. The number
of RBs consumed at /37 is 10 so that the rate at ¢/ is 10 x
0.32 = 3.2 bit/s (based on formulation 6). Also, the number
of RBs consumed at 35 is 6 so that the rate at { is 6 x 0.5 =
3 bit/s. With LDD based scheme, U/ finally connects with B
since 3.2 bit/s > 3 bit/s. Clearly, as a return of more 0.2 bit/s,
4 more RBs will be consumed. However, the users which can
only be served by B; are out of service since none of the RBs
are left at 3.
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Fig. 9: The CDFs of the users’ long term rate

Fig.10 shows the throughput in the HetNet with AU/ varying
from 100 to 200. We can observe that both LDD and DCOP
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Fig. 10: The change of throughput over the variation of N

based schemes have a better performance than the Max-SINR
scheme. When NU > 180, it is apparent to see that there is at
most 6% improvement on the throughput by the DCOP solver
comparied with the LDD based scheme.
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Fig. 11: The throughput against the number of RBs configured
at the macro BS

We test the performance with respect to the variation of
the number of RBs configured at macro BS in Fig.11. When
the number of RBs falls into the range between 150 and 250,
we can observe that there is little change over the throughput
using LDD based scheme. In contrast, DCOP solver is capable
of adjusting the resource allocation strategy with the variation
of the resource configuration at macro BS.

We define an iteration in a message propagation based
DCOP algorithm is a cycle that all agents (variables) finish
receiving and sending messages [28]. From Fig.12, we can
observe that the convergence rate of LDD and DCOP based
schemes are nearly the same (after 14th iteration) when NU =
100. However, DCOP based scheme has a better convergence
rate than that of LDD based scheme when N = 150, 200.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we revisit the user association problem in the
downlink of the multi-tier HetNet where unequal number of
RBs are configured at the BSs in different tiers. We propose
two models respectively named ECAV and EBUAV. To im-
prove the performance of these two models, a parameter 7 is
introduced to control the number of candidate BSs surrounding
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Fig. 12: The convergence rate of Max-SINR, LDD and EBUAV-3

a user. Furthermore, the BDD techinque is carried out before
implementing the DCOP algorithms in order to improve the
resolution efficiency. In addition, we provide two lower bounds
of practical solution in terms of the configuration of 7. The
simulation shows that the DCOP based scheme is able to
provide a novel resource allocation strategy when n = 3.
Particularly, it has a better robustness when the number of
users increases but the available RBs are limited.
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