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Abstract— Considering spatio-temporal correlation between
traffic in different roads has benefit for building an accurate
spatio-temporal model for traffic prediction. However, it implies
high computational complexity for model building in the context
of a complicated network topology, e.g., urban network. Hence,
this paper develops a method for capturing and quantifying
the intricate spatio-temporal correlations. The contributions
of this paper are as follows. First, we offer a physically
intuitive approach to capture the spatio-temporal correlation
between traffic in different roads, which is related to the
road network topology, time-varying speed, and time-varying
trip distribution. With this approach, only the parameters,
namely time-varying lags, in our STARIMA (Space-Time Au-
toregressive Integrated Moving Average) based model should be
adjusted in different time periods of the day. It guarantees the
prediction accuracy and makes the predictor readily amendable
to suit changing road and traffic conditions. Second, a metric
named traffic transition probability calculated based on trip
distribution, as well as a threshold ε are applied for selecting
the most spatio-temporally correlated neighbors of a target
road. Thus, the complexity of model building will be reduced
dramatically. Trace-driven experiments are conducted from two
aspects. First, our proposed prediction method has superior
accuracy compared with ARIMA and the back propagation
neural network model (BPNN) based method, but has much
reduced computational complexity. Second, the results show
that the prediction accuracy is not always proportional to the
increase in the number of spatial neighbors considered for a
target road. The trade-off between accuracy and complexity
depends on the configuration of ε.

I. INTRODUCTION

Traffic flow prediction, as an integral component in many
Intelligent Transportation Systems (ITS) applications, has
the potential to help individual travelers to make a better
travel decision, alleviate traffic congestion and reduce carbon
emissions. Generally speaking, traffic flow prediction can be
broadly classified into short-term traffic prediction (ranging
from 5 minute to 30 minutes) and long-term traffic prediction
(ranging from 30 minutes to several days or months). In
particular, short-term traffic prediction provides the much-
needed information to drivers for real-time route optimization
and travel time prediction, and to traffic authorities for road
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traffic management and traffic signal control. Thus, it has
spurred great interest from traffic engineers and researchers
in this area [1], [2].

Recently, developing models that consider spatio-temporal
correlation between traffic data in analysis became in the
center of interest [3], [2], [4]. Unfortunately, existing meth-
ods still have certain challenges which are discussed as
follows. First, the spatio-temporal correlation between traffic
at different observation points is not stationary but varies
with time of the day [3]. To this end, multiple prediction
models corresponding to different times of the day have
been constructed to suit time-varying spatio-temporal traffic
correlations [5], [6]. Obviously, the complexity will be
increased due to the re-estimation of large amount of model
parameters. Third, the parameters of the developed traffic
prediction models lack physically intuitive explanations. As
a consequence, it becomes very difficult, if possible, for
traffic operators to adjust the model parameters to suit
changing traffic conditions. Lastly, in a complicated road
network, e.g., urban network, the estimation of time-varying
spatio-temporal correlation, which forms the basis of traffic
prediction, becomes more intricate since the spatio-temporal
correlation is also strongly affected by the trip distribution
and road topology.

In lieu of the aforementioned challenges, in this paper,
we develop an effective method to capture and quantify
the intricate spatio-temporal correlation between the traffic
in different roads. To evaluate the effectiveness of this
method, we further design a spatio-temporal model based on
STARIMA (Space-Time Autoregressive Integrated Moving
Average). Specifically, the contributions of the paper are
briefly summarized as follows:
• A physically intuitive approach to traffic prediction

is developed that captures the time-varying spatio-
temporal correlation between traffic in different roads,
which is related to the road network topology, time-
varying speed, and time-varying trip distribution. With
this approach, only the parameter, namely time-varying
lag , in our STARIMA based model should be adjusted
in different time periods of the day. It guarantees the
prediction accuracy and makes the predictor readily
amendable to suit changing road and traffic conditions

• A metric named traffic transition probability is calcu-
lated based on trip distribution and applied for selecting
the most spatio-temporally correlated neighbors of a
target road with the aid of a threshold ε. Thus, the com-
plexity of model building will be reduced dramatically.

• Experiments using real traffic traces are conducted,



which demonstrate that the proposed approach has
superior accuracy compared with the ARIMA and
the back propagation neural network model (BPNN,
back propagation neural network) based approaches, but
much reduced computational complexity. In addition,
the results show that the prediction accuracy is not
always proportional to the increase in the number of
spatial neighbors considered for a target road. The trade-
off between accuracy and complexity depends on the
configuration of ε.

The rest of the paper is organized as follows. In Section II,
existing research closely related to our work is reviewed. We
illustrate the methodologies in Section III. The performance
of our proposed methods are evaluated in Section IV. Finally,
Section V draws the conclusion.

II. RELATED WORK

Temporal models for traffic flow prediction have been
extensively applied in the past two decades. Particularly,
a kind of typical representatives are ARIMA-based models
[5], [7] which integrate knowledge of the underlying traffic
process in the form of traffic models. Anthony and Karlaftis
[7] developed a multivariate ARIMA model, denoted as
ARIMAX where the parameters are re-estimated in different
time periods of the day (e.g. peak hours and off-peak hours).
Similarly, Gurcan and Anton [5] built different ARIMA
models in different traffic states (Major Accident, Minor
Incident, Instability, Normal Driving) for the same purpose.

Spatio-temporal models are another category of traffic
prediction techniques that has been widely used in recent
years. The commonly used methods are on the basis of
the STARIMA model which describes the spatial relations
among locations by means of a spatial weight matrix. In
order to improve the predictive performance of STARIMA
model, a lot of work utilized some techniques which could
capture the impact of traffic parameters (i.e. travel speed) on
the spatial weight matrix [8], [9], [10]. Min and Wynter [8]
proposed a new way to calculate the spatial order between
two locations by dividing their physical distance by average
speed in different time periods. As a result, a dynamic
spatial weight matrix would be re-evaluated in different time
periods. Similarly, Tao et al. [9] incorporated the concepts of
dynamic spatial weights and dynamic spatial neighborhood
by the dynamic spatial weight matrix in order to better cap-
ture the spatial heterogeneity and temporal nonstationarity in
network data.

Due to the nature that more information (spatial and tem-
poral information) is required in the STARIMA-based model,
a large number of parameters and coefficients should be
estimated. Accordingly, the high computational complexity
makes such category of models incapable of providing an
accurate forecast in a timely manner when the network is
large and road structure is complex. In practice, we only
need to predict the traffic flow in a road of interest with
the traffic in its most spatio-temporally correlated neigh-
bors. However, little research has provided solutions. A
distinguished work is done by Athanasios et al. [2] who

developed a more efficient way to evaluate the spatial weight
matrix when the road structure was complex. More precisely,
they used a graph matrix to manage spatial dependence
between roads. With this graph matrix, the most spatio-
temporally correlated neighbors of a road were determined
by the score calculated according to the Pearson product-
moment correlation-coefficient-based metric. However, this
method can be regarded as “gray-box” approach since there
is no theoretical analysis on the variation of spatio-temporal
correlation. To overcome this shortcoming, our previous
work [3] proposed a convenient technique to adjust the lags
of the STARIMA model dynamically to suit different traffic
states. This was validated using measured traffic data on a
one-dimensional road segment.

In the literature, the spatial pattern of traffic between
origins and destinations is usually expressed by a trip dis-
tribution matrix based on the undirected graph model of
traffic network and widely used in the traffic state estimation,
traffic flow prediction or traffic flow demand estimation
and so forth. To extend the trip distribution matrix to the
digraph model, we propose the concepts of turning rate and
traffic transition probability which are capable of accurately
capturing the traffic distribution among roads with road
intersections.

III. METHODOLOGIES

A. Road Network Model

We decompose a road network into a series of one-
dimensional road segments. Each road segment is defined
as a route between two intersections. As a road segment
may have two ways, we use the concept of “link” defined
in [11] to represent a particular way in a road segment.
Hence, a road segment consists of one or two links. Without
loss of generality, we assume only one detector station is
equipped in a link. If there are more than one detectors, we
can further divide the link into smaller links where each small
link satisfies the aforementioned assumption. Based on the
above definitions, we model a road network with N links as
a digraph, denoted by D = (V,E). Specifically, the vertex
set V = {V1, V2, ..., VN } and Vi ∈ V represents the i-th link
or a particular point, e.g., a measurement point in the i-th
link. There is an arc ei,j , (Vi, Vj), ei,j ∈ E, going from Vi
to Vj if there is traffic traveling directly from Vi to Vj . Based
on digraph model, a route in the road network is defined as a
path including finite sequence of arcs connecting a sequence
of vertices which are all distinct from one another.

B. Spatio-temporal Correlation Quantification

Consider two detector stations A and B where A is located
downstream of B and the distance between A and B is
S. Suppose the vehicles travel from B to A with a stable
average speed v, then approximately time t = S/v is needed
for the vehicles to arrive at A. In other words, the traffic
flow collected at station A is strongly correlated with that
at B t time ago. Thus, the temporal lag with the maximum
correlation should be τ = [t/tlag] where tlag is the length of



one temporal lag. As v is time-varying, τ will change over
the time. Therefore, we name τ as time-varying lag.

Based on the digraph of a road network, we use P li,j to
denote the set of paths originated from vertex i with length
l. Given the k-th path P li,j(k) ∈ P li,j , the time-varying lag
upon P li,j(k) is τP l

i,j(k), which is calculated in the following
way:

τP l
i,j(k) =

∑
(Vns ,Vns+1

)∈P l
i,j(k)

τns,ns+1
. (1)

To obtain the time-varying lags upon all the paths between
two measurements, we can use a search algorithm like
breadth-first search (BFS).

Obviously, it implies high computational complexity for
considering the spatio-temporal correlation between the traf-
fic in any roads and any paths in a spatio-temporal model.
To solve this problem, we quantify the spatio-temporal
correlation based on the trip distribution in the road network.
Specifically, we capture the trip distribution by introducing
the concept of turning rate between two adjacent vertices
Vi and Vj , i, j ∈ N , which is denoted by πi,j and calculated
by

πi,j =

∑
yi,j(t)∑

yi(t− τi,j)
. (2)

In equation (2), yi,j(t) is the traffic entering into Vj from
Vi at t; yi(t− τi,j) is the total traffic in Vi at t− τi,j where
τi,j is the time-varying lag between Vi and Vj ;

∑
represents

the sum of traffic in a given time period. Clearly, πi,j is 0 in
the case that there is no arc between Vi and Vj , or there is
no traffic entering into Vj from Vi. Otherwise, πi,j is non-
zero. Based on the turning rate, we calculate the probability
of traffic entering Vj from Vi through P li,j(k) by

πP l
i,j(k)(k) =

∏
(Vns ,Vns+1

)∈P l
i,j(k)

πns,ns+1
. (3)

Thus, we propose a metric named traffic transition proba-
bility, which is defined as the total traffic entering Vj from
Vi through all the paths in P li,j , is estimated by

πli,j =

|P l
i,j |∑

k=1

πP l
i,j(k)(k). (4)

Based on the road network model, we use a N ×N turning
rate matrix, denoted by AD, to represent the turning rate
between Vi and Vj ,∀i, j ∈ N . With the turning rate matrix
AD, we define AlD as

AlD = AD ×AD × ...×AD︸ ︷︷ ︸
l

.
(5)

It is easy to find that the (i, j)th entry of AlD is the
traffic transportation probability between Vi and Vj along
all the paths with the length l. Clearly, the spatio-temporal
correlation between two links is weak if the traffic transition
probability between these two links is small (0 means no

correlation). Further, we introduce a threshold ε that is set
manually. We say there is a weak correlation between two
adjacent vertices Vi and Vj if the (i, j)th entry in AlD is
non-zero and less than ε. For ease of description, we denote
AlD after filtering by ε as Al/εD . With the aid of Al/εD , we can
obtain the maximal spatial order between any pair of vertices
in D, denoted as λi,j , i, j ∈ N .

C. Spatio-temporal Model

Based on the above methods, we present a spatio-temporal
model based on STARIMA(pλ, d, qm) which is defined as
follows:

(I −
p∑
k=1

λk∑
l=0

φklWlL
k)(1− L)dY (t)

=(I −
q∑

k=1

mk∑
l=0

θklWlL
k)εt. (6)

In this paper, Y (t) = {y1(t), y2(t), ..., yN (t)} is a N × 1
vector including the traffic flow from N links att, L is the
lag operator: yi(t − 1) = Lyi(t), i ∈ N , φkland θkl are
coefficients, Wl is the spatial weight matrix, and εt is white
noise. There are three steps to set up a STARIMA model
including 1) Model Identification, 2) Parameter Estimation
and 3) Diagnostic Checking [12].

We provide the derivation of our STARIMA based model
with consideration of time-varying lags as follows. Given a
vertex Vj ∈ V , the relationship between the traffic of Vj and
the traffic from its upstream links Vi ∈ V can be represented
as a function of time-varying lags along all the paths from
Vi to Vj :

yj(t) = φi,j

∑
i∈N

∑
Pk∈P l

i,j

πli,j(k)yi(t− τPk
i,j (t)), (7)

where φi,j is the coefficient with the same definition in the
original STARIMA model. With the lag operator L defined
in the STARIMA model, we can rewrite yi(t − τPk

i,j (t)) by

yi(t − τPk
i,j (t)) = Lτ

Pk
i,j (t)yi(t). Given a l ∈ λi,j , we define

two N ×N matrices, respectively denoted as Πl and Ξl,
namely the traffic transition probability matrix and the time-
varying lag matrix. For ∀i, j ∈ N , Πl(i, j) is a N dimension
vector in which each element is πP l

i,j(k)(k), k ∈ |P li,j |, and
Ξl(i, j) is also a N dimension vector in which each element
is Lτ

Pk
i,j (t), Pk ∈ P li,j . In this way, formulation (7) can be

rewritten as

yj(t) = φi,j
∑
i∈N

Πl(i, j)Ξl(i, j)yi(t). (8)

We use Y (t) to represent a N × 1 vector in which each
element is the traffic flow data observed at each link at time
t, on the basis of formulation (8), we can get the following
equation

Y (t) = φΠT
l ΞlY (t), (9)
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where φ is the vector of φi,j , i, j ∈ N ; ΠT
l is the transporta-

tion of Πl. We use λ = max{λi,j , i, j ∈ N} as the spatial
order parameter in the STARIMA model, Thus, the format
of our STARIMA based model is presented as

(I −
λ∑
l=0

φlΠ
T
l ΞlL

d)Y (t) =

(I −
q∑

k=1

mk∑
l=0

θklWlL
d)εt.

(10)

The main difference between the parameters estimation of
our STARIMA model and original one lies in that additional
time-varying lags should be first considered in the phase of
model identification. In each time period, e.g, peak hour or
off-peak hour, the time-varying lags and λ can be estimated
using Algorithm 1.

Algorithm 1 The estimation of λ and time-varying lags
between measurements (links) in road network
1 Input: Ω, AD , N , ε, λ = +∞

2 for ∀i, j ∈ N

3 if AD(i, j) 6= 0

4 τi,j ←
Si,j

vi,jtlag
5 endif
6 endfor

7 while l ≤ λ
8 A

l/ε
D ← Al

D

9 for ∀i, j ∈ N

10 if Al
D(i, j) 6= 0 and Al

D(i, j) ≥ ε

11 P l
i,j : using BFS algorithm

12 for ∀P l
i,j(k) ∈ P l

i,j
13 τ

Pl
i,j

(k)
=

∑
(Vns ,Vns+1

)∈Pl
i,j

(k)
τns,ns+1

14 endfor

15 elseif Al
D(i, j) 6= 0 and Al

D(i, j) < ε

16 A
l/ε
D (i, j)← 0

17 endif
18 endfor

19 if all non-zero Al
D(i, j) < ε

20 λ← l

21 else
22 l← l + 1
23 endif
24 endwhile

In Algorithm 1, the inputs include {Ω, AD,N , ε, λ}. More
precisely, Ω is time period clusters which is obtained using
some classification algorithms such as ISODATA [3]. As the
classification algorithm is not the key point in this paper,
thus, we mainly divide different time periods in one day
into off-peak or on-peak hour. In other words, Ω = {Ω1 :
Peak,Ω2 : Off − peak}. AD can be estimated based on
the traffic data in two adjacent links during a time period.
N is the number of links in the road network and ε is an
empirical value set manually. To find the maximal spatial
order between measurements, the initial value of λ is set
by λ = +∞. The time-varying lag between each pair of
adjacent links is calculated in line III-C. It is to be observed
that vi,j should be the average speed computed as the length
of the segment between two detectors located on two links
at time t divided by the total time required to travel the

segment, in other words, could be regarded as space mean
speed (SMS). However, the speed collected by detectors,
mostly refer to the time mean speed (TMS) [13], [6]. To
infer the SMS from TMS, we use a more common model
which better reflects the relationship between TMS and SMS
in [14]. From line 9 to 18, we search all the paths P li,j
according the the traffic correlation between Vi and Vj . We
get Al/εD by comparing AlD(i, j) and ε in line 15 and 16.
Line 19 to 23 are used for determining λ. The computational
complexity of Algorithm 1 mainly consists of two parts. One
is the implementation of BFS algorithm. The other one is the
determination of time-varying lags. However, as the topology
of a road network is fixed, thus, the BFS algorithm is only
proceeded once.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

In this section, we use the measurement data collected
from I-205 NB Portland-area freeway to establish the validity
and accuracy of the proposed traffic flow predictor 1 The
freeway in Fig. 1 covers 8.23km including a major road
and on- and a series of on and off-ramps. As there are no
detector stations at off-ramps, we roughly infer the amount
of traffic leaving the freeway through an off-ramp from the
traffic collected at the existing detector stations. For instance,
consider the off-ramp between station 1046 and 1047, we can
infer the traffic yoff by yoff = y1046 − (y1047 − y5047). We
select the data within 10 working days (Monday to Friday)
from Sept. 19, 2011 to Sept. 30, 2011 with sampling interval
of 20 seconds (tlag = 20s). We use the first 9-days data to
train the model and the data in the last day to validate the
prediction. Theoretically, there should be 4320 data at each
station in one day. Unfortunately, there are some missing
and dirty data inside. Hence, we use a commonly used way,
named historical average, to replace the missing data by the
average of the known values [15], [16]. In addition, all the
experiments are implemented in 64-bit Windows operating
system with 16G memory.

1046

5047

1047

5117

1117 10481046

5047

1047

5117

1117 1048

5142

Fig. 1. The map and topology of I-205 NB freeway

We compare our proposed method (denoted as
STARIMA*) with other two approaches, respectively
the ARIMA(p, d, q) based model (denoted as ARIMA*) in
which the parameters and coefficients would be re-evaluated
in different time periods, and the BPNN model. ARIMA*
is a linear predictive models, while BPNN is a non-linear
predictive model. We use a 4 × 20 × 1 BPNN model

1The data can be downloaded from: http://portal.its.pdx.edu.



including a hidden layer and an output layer to predict the
traffic flow at each measurement point. The configuration of
parameters of BPNN is based on the counterparts used in
the experiment in [17]. Specifically, there are 4 input nodes
which respectively denote the traffic flow data collected
from the same measurement at t, t−10min, t−20min and
t− 30min. There are 20 nodes in the hidden layer and one
node in the output layer. The initial weights are randomly
distributed inside a range [−0.12, 0.12] and the thresholds
have initial values of 0. We use the sigmoid function as
the activation function. Besides, we set the momentum
coefficient to be 0.7, and the learning rate to be 0.3. An
gradient descent optimization algorithm is used to adjust the
weights and thresholds by calculating the gradient of the
loss function iteratively until the sum of squared errors is no
more than the learning error set by 0.01. In order to verify
the prediction accuracy and the efficiency of the proposed
scheme, the metrics of the mean square error (MSE), the
mean absolute percentage error (MAPE) and running time
are considered. More precisely, let ŷ be the estimate of
N -dimensional vector y, the performance measure MSE
can be expressed as 1

N

∑N
n=1(ŷn − yn)2, and MAPE is

1
N

∑N
n=1 |

ŷn−yn
yn
|.

B. Experimental Results

Based on the traffic flow collected at the stations, we
intuitively divided a day into five time periods (Ω) and
estimate the time-varying lag between two adjacent mea-
surements which are shown in in Table I. It verifies that
the time-varying lag has a close relation with the distance of
two measurements, as well as different travel speeds during
different time periods of the day. Then, we calculate the
time-varying lags between any two measurements Algorithm
1. For instance, the time-varying lag between station 1046
and 1048 is 11 (5 + 3 + 3) within 6:00am-9:00am, while 8
(4 + 2 + 2) within 9:00am-16:00pm.

TABLE I
THE TIME VARYING LAG BETWEEN MEASUREMENTS IN THE MAJOR

ROAD DURING DIFFERENT TIME PERIODS OF THE DAY

From 1046 1047 1117
To 1047 1117 1048

0:00am-6:00am 4 2 2
6:00am-9:00am 5 3 3

9:00am-16:00pm 4 2 2
16:00pm-18:00pm 5 3 3
18:00pm-24:00pm 4 2 2

The non-zero elements in the turning rate matrix AD are
presented in Table II. To save space, the values of the turning
rates estimated by both methods are rounded off to the two
decimal places. With AD, we can calculate traffic transi-
tion probability between two reachable measurements. For
instance, the traffic transition probability between detector
stations 1046 and 1048 is 0.43 (0.78× 0.69× 0.8).

We then predict the traffic flow of the day at 4 stations
with ε = 0, that is, we consider all the links which are spatio-
temporally correlated with the link of interest. From Table

TABLE II
THE ESTIMATED TURNING RATES BETWEEN ADJACENT LINKS

From 1046 1047 1117
To 1047 Off 1117 Off 1048 Off

0:00am-6:00am 0.78 0.22 0.69 0.31 0.80 0.20
6:00am-9:00am 0.79 0.21 0.54 0.46 0.79 0.21

9:00am-16:00pm 0.90 0.10 0.55 0.45 0.84 0.16
16:00pm-18:00pm 0.76 0.24 0.47 0.53 0.77 0.23
18:00pm-24:00pm 0.88 0.12 0.66 0.34 0.85 0.15

III, we can see that the best predicted results are obtained by
our proposed model. Comparing with the forecasting results
obtained by STARIMA* and ARIMA*, it further validates
that the accuracy of prediction is improved if we consider
both spatial and temporal correlation between traffic data. In
the worst case there is ∼ 16% (at station 1117) gap between
the MAPE of our method and ARIMA*, as well as BPNN.

TABLE III
THE MAPE/MSE OF ONE-DAY TRAFFIC FLOW PREDICTION USING

STARIMA* (ε = 0), ARIMA* AND BPNN

St. STARIMA* ARIMA* BPNN
1046 19.29%/184.91 21.08%/152.90 38.43%/394.25
1047 12.57%/103.54 19.98%/124.04 44.26%/405.67
1117 35.95%/413.51 51.47%/687.21 51.28%/481.24
1048 15.72%/116.64 18.81%/142.97 35.11%/375.22

TABLE IV
THE MAPE/MSE OF ONE-DAY TRAFFIC FLOW PREDICTION USING

STARIMA* WITH DIFFERENT CONFIGURATIONS OF ε

St. ε = 0 ε = 0.3 ε = 0.4 ε = 0.6

1046 19.29%/184.91 19.29%/184.91 19.29%/184.91 19.29%/184.96
1047 12.57%/103.54 12.57%/103.54 12.57%/103.54 15.78%/123.41
1117 35.95%/413.51 38.70%/481.35 40.66%/517.12 41.22%/578.62
1048 15.72%/116.64 15.38%/138.33 16.92%/136.43 18.52%/154.79

In order to make an intuitive grasp of the impact of
different configurations of εs on the prediction performance
by our proposed method, we proceed an experiment by
setting ε = 0.3, 0.4, 0.6 . The corresponding results are
listed in Table IV. Comparing with Table III, we can see
that the results at station 1046 and 1047 are the same as
the ones when ε = 0 because the transportation probability
between each of these three stations and the correlated roads
are above 0.6. Therefore, the formulations of STARIMA*
are the same, thereby the predicted results are the same. The
case is different at other stations because the traffic transition
probability will be affected by ε. For instance, the traffic
transition probability between detector stations 1046 and
1148 is 0.43. Hence, station 1046 is out of the consideration
when we predict the traffic at station 1148. On the other
hand, the accuracy of the prediction at target location does
not always decrease when few correlated neighbors of the
target road are considered. For instance, the result at station
1048 at ε = 0.3 are better than that at ε = 0. This can be
explained by the overfitting that may exist when we consider
too many correlated neighbors of the target road. Moreover,
the difference between MAPE of the results estimated at



ε = 0.3 and ε = 0.4 (ε = 0.4 and ε = 0.6) in different
stations is less than 3%. However, the efficiency of the model
building will be improved due to the fact that few number
of parameters are to estimate.
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Fig. 2. The running time of STARIMA* (ε = 0.6), ARIMA* and BPNN

In Fig. 2, we present the running times including model
building and forecasting for our method (ε = 0.6) and the
counterparts. It is clear to see that less time is consumed
for our proposed model. Based on the results in Table IV
and Fig.2, it is sufficient to say that our proposed model is
available for a more complicated road network.

V. CONCLUSIONS

In this paper, we develop a method for capturing and
quantifying the intricate spatio-temporal correlations be-
tween traffic in different roads. More precisely, we cap-
ture the time-varying spatio-temporal correlation with the
parameters, namely time-varying lags, which are related to
the road network topology, time-varying speed, and time-
varying trip distribution. Further, a metric named traffic
transition probability calculated based on trip distribution, as
well as a threshold ε are applied to select the most spatio-
temporally correlated neighbors of a target road. With the
aid of time-varying lag, the estimation of traffic transition
probability and ε, we developed a STARIMA based model
which removes the need to reconstruct different models for
different time periods of the day for traffic prediction. Aside
from a superior accuracy achieved based on our data set,
the improved computational efficiency revealed through our
work is that our proposed predictor potentially can be applied
to a more complicated road network, e.g. the urban roads
where there is a large number of road segments. However,
the detector stations cannot cover every road in the urban
network. Thus, it is part of our future work plan to extend
our prediction technique with consideration of missing data.
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