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Abstract— This paper proposes a unified spatio-temporal
model on the basis of STARIMA (Space-Time AutoRegressive
Integrated Moving Average) for short-term road traffic predic-
tion. The contributions of this paper are as follows. First, we
develop a physically intuitive approach to traffic prediction that
captures the time-varying spatio-temporal correlation between
traffic at different measurement points. The spatio-temporal
correlation is affected by the road network topology, time-
varying speed, and time-varying trip distribution. Distinctly
different from previous black-box approaches to road traffic
modeling and prediction, parameters of the proposed approach
have physically intuitive meanings which make them read-
ily amenable to suit changing road and traffic conditions.
Second, unlike some existing techniques which capture the
variation of spatio-temporal correlation by a complete re-
design and calibration of the model, the proposed approach
uses a unified model which incorporates the physical factors
potentially affecting the variation of spatio-temporal correlation
into a series of parameters. These parameters are relatively
easy to control and adjust when road and traffic conditions
change, thereby greatly reducing the computational complexity.
Experiments using two set of real traffic traces demonstrate that
the proposed approach has superior accuracy compared with
the widely used ARIMA (AutoRegressive Integrated Moving
Average) and is only marginally inferior to that obtained by
constructing multiple STARIMA models for different time of
the day, however with a much reduced computational and
implementation complexity.

I. INTRODUCTION

Accurate prediction of short-term traffic flow can benefit
both road users and traffic management authorities. On
one hand, road users can use traffic prediction to make
better travel decisions, choose a faster route to reach the
destination, and reduce fuel costs. On the other hand, traffic
management authorities can utilize traffic prediction to im-
prove traffic operation efficiency and apply more effective
traffic control strategies to alleviate traffic congestion and
improve the efficiency of road networks [1], [2], [3].

Over last two decades, extensive research has been done
on short-term prediction. According to the mathematical
models used in these research, the techniques of traffic flow
prediction can be broadly categorized into three categories:
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1) Parametric model whose structure has been defined in ad-
vance, e.g., the ARIMA (AutoRegressive Integrated Moving
Average) model [2], [4]. ii)) Non-parametric model which can
capture more subtle aspects of the data and has more degrees
of freedom than parametric model, e.g., ANN (Artificial
Neural Network) [5], [6], iii) Hybrid integration model which
combines the parametric and non-parametric model together,
e.g., Bayesian classifier together with SVR (Support Vector
Regression) [3].

It is worth pointing out that, there is no theoretical
evidence to suggest one method is clearly superior over other
methods. However, developing models that consider spatio-
temporal correlation between traffic data in analysis became
in the center of interest [7], [4]. Particularly, the linear
parametric model, STARIMA (Space-Time AutoRegressive
Integrated Moving Average) and corresponding modified
versions are widely used in recent years [1], [7], [4]. Apart
from the parameters as the ones in the ARIMA model that
capture the temporal correlation, another set of parame-
ters, namely spatial weight matrix, is introduced into the
STARIMA model (more details of the STARIMA model
will be discussed in Section II-B) with the aim of capturing
spatial correlation.

However, road traffic is not stationary and the spatio-
temporal correlation is time-varying. To capture this time-
varying nature of road traffic and produce more accurate
traffic prediction, several STARIMA based methods develop
multiple STARIMA models for use during different time
periods of the day [8], [1], [3]. For instance, Wanli and
Laura [8] proposed a new way to calculate the spatial order
between two locations by dividing their physical distance by
the average speeds in different time periods. As a result, a
dynamic spatial weight matrix, as well as model parameters
would be re-evaluated for different time periods. Similarly,
Tao et al. [1] incorporated the concepts of dynamic spatial
weights and dynamic spatial neighborhood using the dy-
namic spatial weight matrix in order to better capture the
spatial heterogeneity and temporal nonstationarity in road
traffic. Later on, Athanasios et al. [4] developed a more
efficient way to evaluate the spatial weight matrix for com-
plex road structure. More precisely, they used a graph theory
based technique to manage spatial dependence between road
traffic, where correlations among road traffic at different
locations were determined by scores calculated according
to the Pearson product-moment correlation-coefficient-based
metric and stored as elements of the adjacency matrix of the
corresponding graphical model of the road network.

The use of multiple models may accurately capture spatio-
temporal correlation variation and improve prediction accu-



racy, however, it significantly increases computational com-
plexity, especially in the case that there may be a large
amount of roads contained in a road network (see the analysis
in Section II-B), reducing the flexibility of a traffic flow
predictor due to the correlation variability considered in these
studies is not independent of model building.

To overcome these problems, in this paper, we are moti-
vated to develop a unified STARIMA model for short-term
traffic prediction to replace traditional techniques of using
multiple STARIMA models for different time of the day. The
contributions of the paper are briefly summarized as follows:

o We analyze the CCF (cross-correlation function) of traf-
fic at different detector stations, and establish the time-
varying spatio-temporal correlation with time-varying
lag corresponding to the maximum correlation and the
speed variation.

o The time-varying lag component is previously deter-
mined using training data and then applied in the
STARIMA model, where all model parameters are only
needed to estimate once.

o A trade-off between complexity and prediction accuracy
is guaranteed. Particularly, with a theoretical analysis,
the predictor has less computational complexity than
the method by constructing multiple STARIMA models.
Besides, experiments using real traffic data collected
from a segment of a freeway are conducted, showing
that the proposed predictor has superior accuracy.

The rest of the paper is organized as follows. In Section II,
we give the definition of time-varying lag component along
with the way to construct the unified STARIMA model. The
performance of different predictors are compared using real
traffic flow data in Section III. Finally, Section IV concludes
the paper.

II. APPROACH

In this section, we commence with the estimation of time-
varying lag component, which is the key step to capture
temporal variation of spatio-temporal correlation. Then we
depict the unified STARIMA model embedded with time-
varying lag component.

A. Time-varying Lag Component

we first explore the underlying causes for the correlation
variability based on the context of the data. For example,
suppose there are two points A and B in a road segment.
Without loss of generality, the same set of vehicles passing
A will finally reach B. Therefore, it readily follows that there
is a strong spatio-temporal correlation between the traffic at
A and B and intuitively, the correlation will peak at different
time lags corresponding to different time periods of a day.
To validate such intuition, we analyze the CCF of traffic flow
data measured at two traffic detector stations (s3 and sg) from
I-80 freeway. Fig.1 and 2 show the topology of the freeway
and the CCF of the traffic flow data respectively. The CCF
is calculated using (1) where u and y are the traffic flow
data collected at s3 and sg, 7 is the discrete time lags in the
range of [0,1,2,..., N] C N, where the length of one time

lag, donoted by ;44 corresponds to tq5 = 305, 0y and oy,
are respectively the standard deviation of w and y.

COT”I’uy (7_) _ E [(ut — a)(yt+k - y)] (1)

A higher value of CCF indicates a stronger correlation of the
traffic at both stations. As shown in Fig. 2, the correlation
between traffic at stations 6 and 3 peaks at different time lags
depending on the time of the day. During peak period (ap-
proximately from 6:30am - 9:00am), the correlation peaks at
a time lag of 3, while during off-peak period (approximately
from 19:00pm - 21:30pm), the correlation peaks at a time
lag of 2. We further observe that during peak hours, the time
lag corresponding to the maximum correlation is larger than
that for off-peak hours.
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Fig. 2. The CCF between traffic flows measured at traffic detector stations
6 and 3 during two different time periods.

In practice, the difference between time lags in aforemen-
tioned two situations is related to the travel time between
two locations, which is mainly attributable to the temporal
speed variations. Assuming the distance between s3 and sg



is D and the average speed of this road segment is v in
a particular time period, then the travel time between these
two locations is approximately ¢ = D/v. In other words,
the traffic observed at sg at a certain time instant 7' is
strongly correlated with that at s3 at 7' — ¢. So, the time
lag with the maximum correlation between ss and s¢ should
be 7 = [t/tiag] Where [z] operator rounds x to the nearest
integer.

It is worth noting that, the speed v actually refers to
the spatial mean speed (SMS), which is the spatial average
speed derived from the average travel time of vehicles to
traverse a road segment. However, the speed collected by
the dual loop detectors are the temporal mean speed (TMS)
at a particular spatial location [9], [10]. In order to infer the
SMS from TMS, a simple way is to regard the harmonic
average of TMS as an approximate estimation of SMS [11].
Nevertheless, this method is based on an assumption that all
the vehicles in each lane in one time lag have the same speed
so that the TMS and the instantaneous speed is transferable.
This assumption is effective when 7 is small, but impractical
when t;,, is large like 30s or more. In this case, we prefer
to use a more common model which can better reflect the
relationship between TMS and SMS [12]:

02

2

Vtms = Usms T
VUsms

In (2), vyms and v, s are respectively TMS and SMS, and
02 equals to E((vins — Vsms)?) in which vy, represents
instantaneous vehicle speed and F(vins) = vtms. Then, the
solution of (2), vsmns, can be obtained as follows [9]:

Vems = 3Utms + \/9vt2ms — 8E(vi2ns) (3)
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Jiang et al. [9] assumed a quadratic relationship between
E(v,,) and E(vins): E[v},,] = aE(vins)? + bE(vins) +
¢ where the parameters {a,b,c} was estimated using 9304
samples as {a, b, c} = {1.22,-15.21,207.95}.

In this paper, we use the result from [9] to obtain the
SMS from thenmeasyred TMS data. Furthermore, vi,s =
E(vins) = Zﬂ# where n is the number of lanes,
Yi,t € n and vz,; are respectively the traffic flow and the
TMS measured by the detector located in the ith lane within
a specific time period. Accordingly, the SMS between s3 and
s¢ in peak (6:30am - 9:00am) and off-peak hours (19:00pm
- 21:30pm) are respectively v; = 12.7251 m/s and vy =
19.1791 m/s. Meanwhile, the time lags corresponding to the
maximum CCF in these two time periods are 7; = 3 and
T9 = 2. According to the definition of time lag 7, we have
D = v X7 xt144. Consider two speeds vy, vz in two different
time periods and let 7; and 72 be time lags corresponding to
the maximum correlation, we are able to obtain the following
equation:

V1 X T1 RV X Ty (4)

Substituting real data into formulation (4), it is easy to find
that 12.7251 x 3 = 19.1791 x 2. This result validate our

earlier conjecture in Section I and suggest that the time lag
is a function of the SMS.

With the relationship between the time lags and the speed,
there are two possible ways to obtain the time-varying
lags between two detector stations on the one-dimensional
freeway using the traffic speed measurements: 1) the time
lag can be computed from the CCF of the observed traffic
between two locations and its value is the time lag cor-
responding to the maximum CCF; 2) the time lag can be
calculated using the distance between two locations divided
by the average speed. Either approach has its advantages
and disadvantages. For instance, more traffic measurements,
e.g., speed, is required by the second approach whereas only
traffic flow measurement is required in the first approach.
However, the first approach requires more computations.
We wish to further comment that the observed relationship
between the time lag corresponding to the maximum CCF
and the travel time between two locations may also provide
a technique to estimate travel time from the measured traffic
flow information without the need for speed measurement.

B. The Unified STARIMA Model

The STARIMA model can be expressed in the form of
STARIMA (py, d, ¢,n,) where p and ¢ are time lags for the
STAR (Space-Time Autoregressive) model and the STMA
(Space-Time Moving Average) model respectively, d is the
degree of differencing, A and m are the numbers of spatial
lags for the STAR model and the STMA model respectively.
More concretely, STARIMA (p, d, ¢, ) is defined as follows:
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In (5), Y(t) = {y1(t),y2(¢),...,yn(t)} is a N x 1 vector
including the traffic flow data from N detector stations at
time ¢; L is the lag operator by y;(t — 1) = Ly;(t),i € N;
W is the spatial matrix that comprises two components: a
spatial adjacency structure and a spatial weight structure. As
for the spatial adjacency, it reflects first order spatial rela-
tions between all observations where two directly adjacent
observations are termed as first order spatial neighbors. For
the spatial weight, it reflects the spatial correlation between
two first order neighbors. Generally speaking, spatial weight
is either 1 or 0 where 1 means there exists correlation and
0 means the opposite.
There are three steps to set up a STARIMA model:

o

o Model Identification: using STACF (space-time auto-
correlation function) and STPACF (space-time partial
autocorrelation function) to identify which parameters
should be estimated;

o Parameter Estimation: estimating the model parame-
ters by non-linear optimization techniques;

« Diagnostic Checking: checking the residuals between
the measurement data and that obtained from the fitted



model and determine whether an optimum model has
been obtained.

The main difference between the unified STARIMA model
and original one lies in that additional time-varying lags
should be first considered in the phase of model identifica-
tion. Given a one-dimensional freeway, the detailed process
is as follows:

Step 1: Data preprocessing. Due to the existence of
noise and missing in raw data collection, data cleaning is
proceeded using the technique such as probabilistic principal
component analysis [13]. Besides, the data is classified into
two categories including training data and testing data. After
filtering out the data in the festivals, the remainder is further
divided into the ones in weekdays (From Mon. to Fri.) and
the ones on weekends (Sat. and Sun.).

Step 2: Time periods division. According to the periodic
variation of traffic flow in weekdays or on weekends, we
use a clustering algorithm to allocate different time intervals
during a day into a set of clusters where the label of each
cluster represents a specific traffic state. For simplicity, in
this paper, we roughly use two labels respectively denoted
by “peak hour” and “off-peak hour”. Besides, successive
time intervals in a cluster consist of a time period. As the
classification algorithm is not the focus of this research,
we use ISODATA algorithm given in [7] which makes a
classification based on traffic flow along with traffic speed.

Step 3: Time-varying lag estimation. Given a specific
time period n, we first estimate the SMS between a pair
of detector stations ¢ and j, denoted by v;;(n),,j € N by
means of training data. With the known topology of a road
network, we then determine the distance between detector
stations ¢ and j, denoted as D;;. After that, the time-varying
lags between detector stations ¢ and j, denoted by 7;; (n), is

calculated by 7;;(n) = [ Dij

W} Obviously, when i = j,
D;j =0 and 7;;(n) = 0.

Step 4: Given a specific time period, constructing the
STARIMA model through model identification, parameter
estimation and diagnostic checking using training data, tak-
ing into count the time-varying lags 7;;(n) in different time
periods n. That is, the traffic data collected at station j is
time-shifted by an amount 7;;(n) before the estimation of
relevant model parameters.

To further illustrate how to identify parameters in our
proposed unified model with consideration of time-varying
spatio-temporal correlation, we take the parameter p as an
example. It has been introduced earlier that p is decided
by STPACF. The STPACF is calculated from Yule-Walker
equation and expressed as the product of two coefficient
matrices. Each element in the sequence of STPACF, ~;;(s),
is denoted as the space-time covariance between the ith and
jth spatial order neighbors at time lag s. It follows that ~y;, (s)
with time-varying lags, denoted as 4;;(s + 7;;(n)), can be

calculated from (6) using training data:

g (s + 7i5(n))
1 N T-s ores (m)
N7 ; ; WiYi () (W; L Yi(1) - (6)

Instead of spatial weight matrix W in original STARIMA
model, we introduce a new N x N matrix I' where for a
spatial order | € A, the (4, j)" entry of T is L™("), In other
words, the variation of time lag p is previously determined
with time-varying lag shift. Thus, in the prediction model, the
most correlated point is added by the time-varying lag. The
benefit with such operation is obvious, it is not necessary to
re-estimate parameters {p, A, ¢, m} in the STARIMA model.
Instead, we only need to adjust time-varying lag in I'.

We now analyze the computational complexity of param-
eters estimation for building multiple STARIMA models.
According to literature [14], Dave suggested that the com-
putational complexity of identifying parameter p using ACF
(autocorrelation function) (resp. parameter g using PACF
(partial autocorrelation function)) for the ARIMA model
is O(NgN;) where N, is the number of samples from
an observation and N; is the number of time lags [14].
Unlike the ARIMA model, the parameters p and \s in the
STARIMA model are identified by STACF (resp. STPACF
for ¢ and mygs). Thus, the computational complexity of
calculating STACF (STPACF) between two links is O((N —
1)N;N;) where N — 1 is the maximal spatial lag between
two links. Consider any pair of links and the number of time
periods n in a day, we have the computational complexity
of parameters estimation in multiple STARIMA models is
O(nN;N,N3).

The computational complexity of parameters estimation
for the unified STARIMA model mainly relies on the fol-
lowing two parts: 1) the identification of time-varying lag
between any pair of adjacent road segments with computa-
tional complexity O(N) 2) the estimation of parameters for
STARIMA model with complexity O(N;N;N3). As a result,
the total computational complexity is O(N + N;N,N3) =
O((ﬁ + N;N,)N3). Generally speaking, ﬁ + NN, <«
nN;N;. Particularly, when a large amount of road segments
is considered, the proposed predictor helps to reduce com-
putational complexity with order of n — 1 ( Agz_}ngo ﬁ = 0).

III. EXPERIMENTAL VALIDATION
A. Experimental Setup

In this section, we use measurement data from a road
segment on a freeway to establish the validity and accuracy
of the proposed traffic flow predictor. It is part of our future
work plan to extend the proposed technique to more complex
urban road networks. More precisely, the data was collected
from six detector stations deployed on a road segment of
Interstate 80 (I-80) freeway located in Emeryville, California
[15]. Furthermore, 10-days traffic data collected from April
13th to April 22th, 2005 were recorded with a sample interval
of 30 seconds by means of dual-loop detectors equipped at
each observation station, numbered by 1, 3, 4, 5, 6 and 7



respectively. We select the data from 8 weekdays in which
the first 7-days data are used for training model and the
data of the last day is used for checking the availability
of the model. With the help of dual-loop detectors, the
average speed in each sample interval can be calculated
[16]. The speed measurement, together with known distances
between stations, allows us to estimate the aforementioned
time-varying lags directly. The map and the topology of
considered freeway segment is shown in Fig.1. Note that
traffic data at detector station 2 was not supplied. We
compare our proposed technique with other two well-known
approaches, viz., the multiple ARIMA/STARIMA models
based approach, denoted as ARIMA*/STARIMA* in which
each ARIMA/STARIMA model is set up in a specific time
period of the day.

B. Experimental Results

The performance of the forecast is measured by the mean
square error (MSE) and the mean absolute percentage error
(MAPE). Let g be the estimate of N-dimensional vector ¥,
the performance measure MSE can be expressed as:

N
" 1 "
MSE(5,y) = 5 Y_(in — yn)? (7
n=1
MAPE is given as follows:
1 o~ G0 =y
MAPE(j),y) = — e ®)
(5:9) = 5 21722
TABLE I

DIFFERENT TIME-VARYING LAGS DURING ONE DAY BETWEEN sg AND
ITS ITH (I = 1,2, 3) SPATIAL ORDER NEIGHBORS

Day =3 (56,53) 1 =2 (s6,54) =1 (ss,55)
Y T 1 T 1 T
i 3 2 2 i i i
2 3 2 2 1 1 1
3 3 2 2 1 1 1
4 3 2 2 1 1 1
5 3 2 2 1 1 1

To further verify the relationship between time-varying
lags with speed in different time periods of one day and the
accuracy of the estimates of time-varying lags used in our
proposed model, which is obtained from measured speed,
we use the CCF to analyze the time-varying lags over 5-
days traffic flow data between station 6 and its any possible
spatial order neighbors in Table I. From the table, we get
knowledge that the time of one day is divided into two
disjoint sets, denoted as T and T, where Ty = {(6 :
30am — 9 : 00am),(16 : 30pm — 18 : 00pm)} and
Ty = Day(24hours) — Ty. It reveals an encouraging result
that the time lags evaluated by these two methods are the
same with the exception of some parts of the results in
day 2. Note that the time-varying lags in 77 and 715 are
the same when [ = 1 between sg and s5, which can be
explained by the close distance between the two stations.
Table I and other analysis (not shown in the paper due to

space limitation) allow us to further conclude that the time-
varying lag calculated between any two detector stations with
different spatial orders is as those presented in formulation
(9) and (10).

Tl S3 S4 S5 S

S3 - - - -

s4 | 1 — — - 9
S5 2 1 — —

ss |3 2 1 -—

T2 S3 S4 S5 Sg

S3 - = - -

a1 — — = (10)

S5 1 1 — —

ss |2 1 1 —

In Table II, we provide the MAPE/MSE of the forecast
results in different time periods of the day at four detector
stations using our proposed prediction technique along with
STARIMA* and ARIMA¥*.

TABLE II
THE MAPE/MSE OF ONE-DAY TRAFFIC FLOW PREDICTION USING
UNIFIED STARIMA MODEL, STARIMA*, AND ARIMA *

St. Unified STARIMA* ARIMA*

sz 17.80%/206.33  14.86%/164.21  27.33%/262.50
sq 17.12%/191.25  15.84%/179.06  35.70%/375.64
s5  15.13%/178.59  14.92%/159.57  29.15%/297.13
s 14.41%/136.27  12.65%/112.44  33.98%/342.98

From the experimental results in Table II, we can ob-
serve that the best performance is the ones obtained from
STARIMA* model. Such phenomenon can be explained by
that the STARIMA* based technique considers both the
spatial and temporal information as well as using mul-
tiple models for different time periods for prediction. In
comparison, the time-varying traffic correlation are captured
using a single parameter, i.e., the time-varying lags, in the
proposed technique, thereby significantly reduce computation
complexity at the expense of a slight increase in prediction
error (~ 3% of the measured value). Comparing with the
ARIMA* based technique, unsurprisingly, the proposed tech-
nique achieves much better prediction accuracy. Particularly,
the MAPE of the proposed technique is at least 10% better
than that achieved by the ARIMA* based technique.

Furthermore, Fig.3 shows the running time of each ap-
proach. More precisely, we implement different approach
based on the same data at sg for 10 times. Each running
time is the time needed for the prediction of the traffic flow
in one day. From the figure, we know that the running time
of our proposed unified predictor is much less than the other
two methods, attributable to the single model employed for
traffic prediction during different time periods.

IV. CONCLUSIONS

Motivated by the observation that spatio-temporal cor-
relation between different detector stations is time-varying
and the time lag corresponding to the maximum correlation



Max:11.3210

1MF |

Max:10.2740

Avg:9.7985

Avg:9.4895

or :
‘ :

L ~— Min:8.2231 |
[ —
Min:7.6270

Running time (s)
©

6k
Max;5.258
5} ==—— Avg:5.1769
. _Min:5.0170 L L
Unified STARIMA* ARIMA*
Fig. 3. The running time of the unified STARIMA model, STARIMA*
and ARIMA*

approximately equals to the distance between two traffic
detector stations divided by the speed of vehicles between
them, in this paper, we developed a unified STARIMA model
which removes the need to reconstruct different models
for different time periods of the day for traffic prediction.
Except a superior accuracy achieved in the case of one-
dimensional freeway, the improved computational efficiency
revealed through our work is that our proposed predictor can
be potentially applied for a more complicated road network,
e.g. the urban roads where there is a large number of road
segments. However, in an urban environment, the spatio-
temporal correlation between traffic tends to be much more
intricate since more factors affecting such correlation should
be considered like the routing selection and road topology
modeling. Thus, it is part of our future work plan to extend
our prediction technique to the urban roads.
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