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Abstract— This paper proposes a unified spatio-temporal
model for short-term road traffic prediction. The contributions of
this paper are as follows. First, we develop a physically intuitive
approach to traffic prediction that captures the time-varying
spatio-temporal correlation between traffic at different measure-
ment points. The spatio-temporal correlation is affected by the
road network topology, time-varying speed, and time-varying
trip distribution. Distinctly different from previous black-box
approaches to road traffic modeling and prediction, parameters
of the proposed approach have physically intuitive meanings
which make them readily amendable to suit changing road
and traffic conditions. Second, unlike some existing techniques
that capture the variation of spatio-temporal correlation by a
complete re-design and calibration of the model, the proposed
approach uses a unified model that incorporates the physical
factors potentially affecting the variation of spatio-temporal
correlation into a series of parameters. These parameters are rel-
atively easy to control and adjust when road and traffic conditions
change, thereby greatly reducing the computational complexity.
Experiments using two sets of real traffic traces demonstrate
that the proposed approach has superior accuracy compared
with the widely used space–time autoregressive integrated moving
average (STARIMA) and the back propagation neural network
approaches, and is only marginally inferior to that obtained
by constructing multiple STARIMA models for different times
of the day, however, with a much reduced computational and
implementation complexity.

Index Terms— Spatio-temporal correlation, time-varying lag,
trip distribution, digraph, unified.

I. INTRODUCTION

ACCURATE short-term traffic flow prediction can bene-
fit both road users and traffic management authorities.

On one hand, road users can use traffic prediction to make
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better travel decisions, choose a faster route to reach the
destination, and reduce fuel costs. On the other hand, traf-
fic management authorities can utilize traffic prediction to
improve traffic operation efficiency and apply more effective
traffic control strategies to alleviate traffic congestion and
improve the efficiency of road networks [1]–[6].

Existing work for short-term traffic prediction suffers from
a number of shortcomings. First, the accuracy of a prediction
model heavily depends on the traffic flow data which is
spatially and temporally correlated [7]. It is challenging for
the prediction model to take full account of the intricate
spatio-temporal correlation. Second, the spatio-temporal cor-
relation between traffic at different observation points is not
stationary but varies with time of the day [8]. To this end,
multiple prediction models corresponding to different times
of the day have been constructed to suit time-varying spatio-
temporal traffic correlations [9], [10]. Third, many approaches
adopt a black-box approach to traffic prediction, e.g., prin-
cipal component analysis based techniques, neural network-
based techniques. The parameters of the developed traffic
prediction models lack physically intuitive explanations. As a
consequence, it becomes very difficult, if possible, for traffic
operators to adjust the model parameters to suit changing road
topology and traffic conditions. Lastly, in two-dimensional
road networks, e.g., urban road networks, the estimation
of time-varying spatio-temporal correlation, which forms the
basis of traffic prediction, becomes more intricate since the
spatio-temporal correlation is also strongly affected by the trip
distribution and road topology.

In lieu of the aforementioned challenges, in this study,
we design a unified spatio-temporal model based on
STARIMA (Space-Time Autoregressive Integrated Moving
Average) which captures the intricate spatio-temporal corre-
lation structure between road traffic and hence can potentially
deliver more accurate traffic flow prediction. Furthermore,
parameters of the developed predictor have physically intuitive
meanings, which make the model readily amendable to suit
changing road topology and traffic conditions. Specifically,
the following contributions are made in this paper:
� A physically intuitive approach to traffic prediction

is developed that captures the time-varying spatio-
temporal correlation between traffic at different measure-
ment points. Distinctly different from previous black-box
approaches to road traffic modeling and prediction, para-
meters of the proposed approach have physically intuitive
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meanings which make them readily amendable to suit
changing road and traffic conditions.

� Unlike some existing techniques which capture the
variation of spatio-temporal correlation by a complete
re-design and calibration of the model, the proposed
approach uses a unified model which explicitly incor-
porates the impact of those physical factors affecting the
variation of spatio-temporal correlation into the model
parameters.

� Experiments using real traffic traces are conducted, which
demonstrate that the proposed approach has superior
accuracy compared with the STARIMA and the back
propagation neural network model (BPNN, back prop-
agation neural network) based approaches, and is only
marginally inferior to that obtained by constructing mul-
tiple STARIMA models for different time period of
the day, however with a much reduced computational
complexity.

The rest of this paper is organized as follows. In Section II,
existing research closely related to our work is reviewed.
In Section III, the unified spatio-temporal model is developed
based on a digraph model of the road network. The strategy
and algorithm for estimating parameters of the proposed
prediction model are presented in Section IV. After that,
we evaluate the performance of the proposed methods in
Section V. Finally, we draw the conclusion in Section VI.

II. RELATED WORK

Depending on the traffic information employed for pre-
diction, traffic prediction models can also be classified into:
(i) temporal models which predict future traffic at a particular
location of interest using historical (temporal) traffic data
at the same location [11]–[13], (ii) spatio-temporal models
which explore both historical traffic information and traf-
fic information of spatially close measurement points for
prediction [5], [14], [15].

Temporal models have been extensively applied in the
past two decades. Particularly, time series based methods
such as the ARIMA (Autoregressive Integrated Moving
Average) model and its variants have attracted significant
attention [2], [13], [16]. Van Der Voort et al. [16] proposed a
Kohonen ARIMA (KARIMA) model, which applies Kohonen
self-organizing map technique to classify the input data into
a set of clusters, and then establishes an individually tuned
ARIMA model for each cluster. Williams et al. [13] devel-
oped a seasonal ARIMA (SARIMA) model, which tries to
identify seasonal patterns in the traffic to capture the cyclical
variation of traffic states, such as peak and off-peak hours
in each work day. In another work, Abadi et al. [2] used the
SARIMA model to obtain accurate short-term prediction with
limited input data. To capture the stochastic and nonlinear
characteristics of historical traffic data in a temporal model,
techniques from areas such as machine learning, economics,
and stochastic analysis are also employed by researchers
for traffic flow prediction. Some examples include Artifi-
cial Neural Network (ANN) [15], [17], Bayesian Network
(BN) [18] and Support Vector Regression (SVR) [19]. How-
ever, spatial traffic correlation that can potentially be explored

to improve the prediction accuracy was not considered in the
aforementioned research.

To overcome the above shortcomings, spatio-temporal
models have emerged as an efficient way to improve the
prediction accuracy. Williams [20] developed a multivari-
ate ARIMA model, denoted by ARIMAX (ARIMA with
exogenous variables), which uses exogenous variables to
capture the influence of upstream flows on downstream
flows. An extension based on the ARIMAX model was
developed by Stathopoulos and Karlaftis [21] by setting up
various ARIMAX models for different time periods of the
day. Xia et al. [3] proposed a spatio-temporal weighted KNN
model, named STW-KNN, which predicts the traffic flow of
a road by finding the most correlated flow from historical
records at K adjacent up/downstream roads. The novelty
of their research lies in the adoption of a state vector to
describe the traffic conditions and a suitable distance metric
to determine the proximity and correlation of traffic flows at
different roads. In [22], Sun et al. modeled the road network
as a Bayesian network where a road is represented as a
node and the causal relation between two adjacent roads
is represented as an edge. The joint probability distribution
between the nodes with known data and the ones to be
predicted was described by a Gaussian mixture model (GMM)
where the parameters are estimated using the competitive
expectation maximization algorithm. Bayesian network is also
applied in Horvitz et al.’s work [23] which modeled traffic
flow in the road, as well as the factors (e.g., incident, major
events, weather) potentially affecting the variation of traffic
flow as the nodes in the Bayesian network. To find the causal
relation between nodes, a heuristic search together with a
Bayesian scoring criterion to guide the search was performed
over the models. Lv et al. [4] considered the traffic data as
variables in the space-time cube. The generic traffic flow
features embedded in these input variables are learned by
a stacked auto-encoder model, a kind of neural networks.
The model is trained in a greedy layerwise fashion and then
used for forecasting. Deep learning was also used in [24]
where Polson and Sokolov applied l1-regularization technique
to identify the spatio-temporal patterns. The experimental
results showed that the preidctor was able to provide precise
short-term traffic flow predictions even in the case that traffic
flow regime changed drastically. Mitrovic et al. [25] used
a singular value decomposition (SVD) based technique to
construct a relationship matrix with which the traffic data of a
few selected roads is able to map to that of the whole network.
The traffic flows of the selected roads are then predicted by
the SVR models and extrapolated to the whole network using
the aforementioned relationship matrix.

Another major class of spatio-temporal models is the
STARIMA based methods. In the STARIMA, a spatial
weight matrix W is introduced that comprises two compo-
nents: a spatial adjacency structure and a spatial weighting
structure [7], [14]. As for the spatial adjacency, it reflects
first-order spatial relations between all observations where
two directly adjacent observations are termed as first-order
spatial neighbors. For the spatial weight, it is the element
of W that expresses the spatial correlation between two
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first-order neighbors. The parameters in the STARIMA model
are �pλ, d, qm� where p and q are time lags for the STAR and
the STMA models respectively, d is the degree of differencing,
λ and m are the spatial orders for the STAR and the STMA
models respectively. The improvements in the performance
of a STARIMA model are primarily shown in the aspect of
capturing the temporal variation of spatio-temporal correlation.
A common method is to re-estimate the parameters of the
STARIMA model in each traffic state of the day to better
capture the traffic similarity in the same state. For example,
Min and Wynter [7] redefined a spatial order as an ordering
with respect to the Euclidean distance traveled by vehicles
within a unit time interval. As travel speed varies temporally,
the spatial weight matrix is re-evaluated in different time
periods of the day. Similarly, Cheng et al. [14] transformed
the static spatial weight matrix into a dynamic one by defining
the spatial weight as a function of the time-varying speed
between two neighboring locations. Unfortunately, with the
rapid variation of traffic conditions, this causes a large increase
in the number of estimated parameters and an explosive
growth of computational time. To improve the efficiency of
estimating the parameters in multiple STARIMA models cor-
responding to different times of the day, Salamanis et al. [26]
only employed a prescribed number of spatially correlated
neighbors of a road of interest. They analyzed the degree
of the spatio-temporal correlation between the traffic from
different measurement points using a Pearson product–moment
correlation-coefficient-based metric, which is based on the
cross correlation function. Our previous work [8] proposed
a convenient technique to adjust the lags of the STARIMA
model dynamically to suit different traffic states, which was
validated using measured traffic data on a highway.

As mentioned in Section I, to apply the approach developed
in [8] to an intricate two-dimensional road network, a number
of challenges need to be conquered, including the explicit
consideration of the road topology and trip distribution in
traffic prediction. As for the road topology, most studies use
graph-theoretic techniques to transform a road network into
a mathematical model convenient for subsequent analysis.
Kelly [27] modeled the road network by an incidence matrix.
Each column in the matrix corresponds to a road and each row
corresponds to a measurement point in a road. The column
for a road comprises entries of 0s or 1s with 1 indicating
a particular measurement point is on a particular road and
0 otherwise. The 1s in a row suggest which roads pass
through that measurement point. However, the dimension of
an incidence matrix quickly explodes for even a moderate
number of roads and measurement points. To overcome the
scalability problem, Salamanis et al. [26] represented a road
network by an adjacency matrix where each column and each
row represented a road. If two roads are adjacent, the cor-
responding entry in the adjacency matrix is 1; otherwise,
the entry becomes 0. It is worth noting that all aforementioned
methods modeled the road network as an undirected graph, that
is, prediction must be executed before specifying a particular
traffic direction. Unlike existing graph-theoretic techniques,
we employ a digraph to model the road network which can
better capture directionality of road traffic flows.

In the literature, the spatial pattern of traffic between origins
and destinations is usually expressed by a trip distribution
matrix based on the undirected graph model of traffic network
and widely used in the traffic state estimation [28], traffic flow
prediction [2] or traffic flow demand estimation [29] and so
forth. To extend the trip distribution matrix to the digraph
model, we propose the concepts of turning rate and traffic
transition probability (TTP) which are capable of accurately
capturing the traffic distribution among roads with road inter-
sections. To estimate turning rate or TTP, we apply the gravity
model based method where not only traffic data, but also the
spatial separation between two locations is considered [30].
As the gravity model merely requires the traffic information
at the origin and the destination, the adverse impact of
missing traffic measurements on some roads along the paths
between the origin and the destination can be omitted. Indeed,
in the real life, it is economically prohibitive to deploy traffic
detectors across the whole road network.

III. UNIFIED SPATIO-TEMPORAL MODEL

In this paper, we introduce a unified spatio-temporal model,
which is based on the STARIMA model. For complete-
ness, we briefly introduce the STARIMA�pλ, d, qm� model as
follows:

�I �
p�

k�1

λk�
l�0

φkl W l Lk��1 � L�d Y �t�

� �I �
q�

k�1

mk�
l�0

θ kl W l Lk�εt . (1)

In (1), Y �t� is a N � 1 vector including the traffic flow
collected from N observation points at t where t is considered
to be a discrete variable, representing a time interval with
integer index t � 1, 2, . . .; L is the lag operator with Lyi�t� �
yi�t � 1�, i � N ; φkl and θ kl are the coefficients; W is the
spatial weight matrix, and εt is white noise.

The establishment of the STARIMA model, especially the
parameters �p, q, λ, m�, are closely related to the correlation
of traffic data at the corresponding spatial and temporal lags.
Therefore, when the correlation structure of the underlying
traffic process changes, the model for traffic prediction also
needs to change adaptively for more accurate prediction. In the
literature, this has been done by setting up multiple models
for different time periods of the day. The establishment of
multiple models incurs much greater complexity and com-
putational costs. Furthermore, the condition triggering the
transition between these multiple models is also not always
clear as the road traffic process does not necessarily repeat
itself following exact temporal cycles, e.g., the occurrence
of traffic peaks may easily shift by several minutes or tens
of minutes from day to day. To handle above challenges,
we propose a unified STARIMA model where the impact
of the time-varying spatio-temporal correlation is taken into
account by adjusting the values of temporal lags in the model.
In the proposed approach, the time-varying components are
captured by a series of parameters where each parameter has
physically intuitive meanings and can be directly related to the
road topology, trip distribution, travel speed and distance.
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To better illustrate the establishment process of the unified
spatio-temporal model, we model a road network as a digraph.
We partition the road network into a set of road segments. Each
road segment is a piece of road bounded by two road intersec-
tions and there is no intersection within a road segment. A very
long road segment may be further partitioned into multiple
smaller road segments. We call a particular travel direction
of a road segment a link. Depending on whether the road is
one-way or two-way, a road segment may be represented by
one or two links [27]. Without losing generality, we further
assume that there is at most one measurement point within a
link. If there are multiple measurement points within a long
road, this can be readily handled by dividing the long road
into multiple road segments where each segment contains up
to one measurement point only. Drawing from graph theory,
an arrangement of links can be modeled as a digraph D �
�V , E� with a set of V of vertices and a set E of arcs
(or directed edges). The vertex set V � �V1, V2, . . . , VN �
and Vi � V represents the i -th link or a particular point,
e.g., a measurement point, if it exists, within the i -th link.
There is an arc ei, j � �Vi , Vj �, ei, j � E , going from Vi to Vj

if there is traffic traveling directly from Vi to Vj . Based on the
digraph model, a route from link i to link j is defined as a path
from Vi to Vj , including a finite sequence of arcs connecting
a sequence of vertices that are all distinct from one another.
Moreover, the number of arcs is denoted by l, which is the path
length. Since a vertex Vi � V has both incoming and outgoing
arcs, the neighbors of Vi are classified into two categories.
The first category is a set of vertices that are the links located
upstream of link i . We denote it by V 1�

i . Correspondingly,
the second category is a set of vertices including the neighbors
of Vi that are the links located downstream of link i . We denote
it by V 1�

i .
In the following, we first explore the spatio-temporal cor-

relation between Vi � V and Vj � V 1�
i . To begin with,

we introduce the concept termed “turning rate” πi, j to rep-
resent the ratio of traffic at Vi and traveling to Vj . Then, we
approximately estimate the incoming traffic at Vj from Vi by:

yi, j �t� � πi, j yi�t � τi, j �, τi, j � Z
�, (2)

where yi�t � τi, j � represents the traffic at Vi at t � τi, j . τi, j

is the time-varying lag corresponding to the time required to
travel from Vi to Vj because at that time lag, the (approximate
same) set of vehicles yi, j �t� have reached Vj . Note that,
the turning rate πi, j varies over the time of the day. In this
paper, we assume that πi, j remains constant during a given
time period of the day, e.g., peak or off-peak hours. The
estimation of πi, j and τi, j will be discussed in next section.
Utilizing the lag operator L, Equation (2) can be rewritten as

yi, j �t� � πi, j Lτi, j yi�t�, τi, j � Z
�. (3)

Based on (2), we obtain the traffic at Vj :

y j �t� �
�

Vi�V 1�
j

yi, j �t�. (4)

Unfortunately, not every vertex in V 1�
j has measurement data

available since in real applications many links may not be

equipped with traffic detectors. Denoting the subset of vertices

with measurement data in V 1�
j by �V 1�

j , whereas the subset

of vertices without measurement data by �V 1�
j . In this case,

y j �t� can be expressed as the sum of the traffic coming from�V 1�
j and �V 1�

j :

y j �t� �
�

Vi1�
�V 1�

j

yi1, j �t� 	
�

Vj1�
�V 1�

j

y j1, j �t�. (5)

In (5), the traffic from �V 1�
j can be calculated directly. As for

the traffic from �V 1�
j , we should estimate it by considering

the traffic upstream from the adjacent neighbors of Vj1 .
Moreover, if there is still no measurement traffic upstream
from the adjacent neighbors of Vj1, we have to further consider
the traffic upstream from the neighbors that are far away

from Vj1 . For the sake of simplicity, we term �V 1�
j as the first

in-level-available vertices of Vj . Second in-level-available

vertices of Vj , denoted by �V 2�
j , and so on. Correspondingly,�V l�

j , l 
 1 are termed as the l-th in-level-unavailable vertices

of Vj . To find �V l�
j and �V l�

j in the general case, a BFS (breadth
first search) based algorithm is designed and applied. We will
present such algorithm in next section.

We use Pl
il , j , Vil �

�V l�
j , to denote a set of paths where

each path Pz � Pl
il , j starts from Vil and ends at Vj via

l � 1 vertices respectively belong to �V 1�
j ,
�V 2�

j , . . . ,
�

V
�l�1��
j .

We use yl
il , j �t� to denote the traffic traveling from Vil to Vj

along �Pz � Pl
il , j . Besides, yl

il , j �t� is estimated by

yl
il , j �t� �

�
pz�Pl

il , j

π
Pz
il , j yil �t � τ

Pz
il , j �

�
�

pz�Pl
il , j

π
Pz
il , j L

τ
Pz
il , j yil �t�. (6)

Particularly, π
Pz
il , j and τ

Pz
il , j are respectively the turning rate and

time-varying lag between Vil and Vj upon path Pz � Pl
il , j .

Both π
Pz
il , j and τ

Pz
il , j are estimated on the basis of πi, j and τi, j .

Suppose there is a λ j satisfying
�
V

λ j�
j � ∅. With (6), we can

calculate y j �t� by

y j�t� �
λ j�

l�1

�
Vil �
�
V l�

j

yl
il , j �t�. (7)

Up to this point, we draw a clear and physically intuitive
picture of the spatio-temporal correlation between any two
links. To better illustrate above process, we give an artificial
instance in Fig. 1a where the gray nodes are the vertices with
measured data, whereas the red nodes are the vertices without

measured data. In this instance, �V 1�
1 � �V2� and �V 1�

1 � �V3�.
As there is no traffic measured at V3, we should consider�V 2�

1 � �V5, V6�. Since �V 2�
1 � ∅, we get λ1 � 2. Finally,

we calculate y1�t� � y1
2,1�t� 	 y2

5,1�t� 	 y2
6,1�t�.
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Fig. 1. Traffic flow prediction for a vertex (link) in an artificial road network
with consideration of the situations that there is (not) enough traffic data.

In (7), a big challenge we face is that in some situations,

there is no such value of λ j which satisfies
�
V

λ j�
j � ∅. In other

words, there are no enough detectors to provide sufficient
data to calculate y j �t�. Consider Fig.1b where the digraph
structure of the road network topology is the same as the one
in Fig.1a. However, not only V3 but also V5 and V7 do not
have measured data. In order to estimate the traffic at V3,
the BFS algorithm will be executed until the leaf node V7
is achieved. As the traffic at V7 can not be inferred from
its child nodes, it is impossible to accurately estimate the
traffic at V5 and V3. Furthermore, the traffic at V1 can not
be calculated via (7). To tackle this problem, we assume that
a BFS algorithm terminates when there is l � λ j satisfying

each node in
�
V

λ j�
j has no child. In this way, y j �t� consists

of two parts. The first part is the traffic from measured links
while the second part is the traffic from unmeasured links.
Thus (7) can be expressed as follows:

y j �t� �
λ j�

l�1

�
Vil �
�
V l�

j

yl
il , j �t� 	

�
Vi�
�
V

λ j�

j

y
λ j
i, j �t� (8)

For simplicity, we use �y j�t� and �y j �t� to represent the first
and second part in (8) respectively. Based on (2), (3) and (8),�y j �t� can be estimated by

�y j �t� �
λ j�

l�1

�
Vil �
�
V l�

j

�
pz�Pl

il , j

πil , j Lτil , j yil �t� (9)

Assuming that there are N̂ � N links in the road network
with measured data. We then define two N̂ �1 vectors Y �t� �
�y j �t� j � N̂ �� and �Y �t� � ��y j �t� j � N̂ ��. Then, (9) can be
expressed as

�Y �t� � λ�
l�1

�φlY �t�, (10)

In (10), �φl is a N̂ � N̂ matrix where the �i, j�th entry is�
pz�Pl

i, j
πi, j Lτi, j if Vi �

�V l�
j , Otherwise, the entry is equal

to 0. Beside, we define λ as the maximal value of λ j , j � N̂ ,

mathematically, denoted as

λ � max
	 j�N̂

λ j . (11)

With estimated results of π , τ and λ (using the methods in
the next section), �y j �t� can be calculated by y j�t� ��y j �t�.
We define a N̂ � 1 vector �Y �t� � ��y j �t� j � N̂ �. Then we
construct a STARIMA model for �Y �t�, formulated as follows:

�Y �t�� p�
k�1

λk�
l�0

	φkl W l Lk�Y �t� 	 εt �

q�
k�1

mk�
l�0

	θ kl W l Lkεt . (12)

Unlike original STARIMA model where l refers to the spatial
order between two vertices, in (12), l is the path length. The

�i, j�th entry of Wl is 1 if Vi �
�V l�

j . Otherwise the entry is 0.
Eq. (12) can also denoted as

�I �
p�

k�1

λk�
l�0

	φkl W l Lk��1 � L�d�Y �t�

� �I �
q�

k�1

mk�
l�0

	θ kl W l Lk�εt . (13)

According to (10), �Y �t� � Y �t� ��Y �t� � �I �
�λ

l�1
�φl�Y �t�.

Substituting it into (13), we have the unified spatio-temporal
model in the following way:

�I �
p�

k�1

λk�
l�0

	φkl W l Lk��1 � L�d�I �
λ�

l�1

�φl�Y �t�

� �I �
q�

k�1

mk�
l�0

	θ kl W l Lk�εt . (14)

For simplicity, we define φπ,τ,λ1
� I �

�λ
l�1
�φl , φ p,λ2

�

I �
�p

k�1

�λk
l�0
	φkl W l Lk , ∇d � �1 � L�d , and θq,m � �I ��q

k�1

�mk
l�0
	θ kl W l Lk�. Finally, (14) can be rewritten as

φπ,τ,λ1
φ p,λ2

∇dY �t� � θq,mεt (15)

In our model, we put the physical factors potentially
affecting such spatio-temporal correlation in the component
φπ,τ,λ1

, which is independent of φ p,λ2
and θq,m . Besides,

π reflects the trip distribution between adjacent links, and
τ reflects the travel time delay between links in terms of
the travel speed and route length; λ1 reflects the number
of spatially correlated links surrounding a link of interest.
In this case, the accuracy of traffic flow prediction greatly
relies on the estimation of φπ,τ,λ1

, relies to a lesser extent on
φ p,λ2

and θq,m . The term “unified” in our proposed model
is mainly manifested in the following aspects: 1) a day is
divided into different time periods (e.g. peak and off peak
hours) where traffic state in each time period can be regarded
as static. The prediction model (15) in different time periods is
identified by only adjusting φπ,τ,λ1

, which is estimated using
the historical traffic data from the same time period of different
days. 2) φ p,λ2

and θq,m are required to be estimated once
only based on traffic data and φπ,τ,λ1

in any time period of
the day. SACF (spatial autocorrelation function) and SPACF
(spatial partial ACF) are applied to estimate φ p,λ2

and θq,m .
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Consequently, the challenging problem in model identification
is the determination of λ1, τ , and π , which will be further
discussed in the next section.

IV. METHODOLOGY FOR PARAMETER ESTIMATION

In this section, we first propose the kernel strategies to
estimate τ and π . After that, a BFS based algorithm is
proposed to estimate λ1 as well as τ and π . Finally, the
computational complexity of model construction is analyzed.

A. Time-Varying Lags τ

Consider two detector stations A and B with distance
S where the vehicles keep a stable average speed v, then
approximately t � S�v is needed for vehicles to travel from B
to A. In other words, the traffic flow collected at station A is
strongly correlated with that at B t time ago. Thus the temporal
lag with the maximum correlation should be τ � �t�tlag�
where tlag is the length of one temporal lag. As v is time-
varying, τ will change over the time. Therefore, we name τ
as time-varying lag.

In (6), τ
Pz

i, j can be abbreviated as τ i, j if the length of Pz is
l � 1. τ i, j is the time-varying lag between two adjacent links
and estimated by

τi, j �
Si, j

vi, j tlag
. (16)

where Si, j is the distance between Vi and Vj along the road,
vi, j is the average traffic speed from link i to link j . Here
the situation that τi, j may not be an integer is ignored for
simplicity.

As a matter of fact, vi, j is the space mean speed (SMS).
However, the speed collected by detectors is mostly the time
mean speed (TMS) [10], [31]. To derive the SMS from the
TMS, a commonly used technique, which is also adopted in
this paper, is via the equation vtms � vsms 	 σ 2�vsms where
vtms and vsms are the corresponding TMS and SMS respec-
tively and σ 2 � E��vins � vsms�

2� with vins being the instan-
taneous vehicle speed and E�vins� � vtms . Han et al. [31]
assumed a quadratic relationship between E�v2

ins � and E�vins �
by E�v2

ins � � a E�vins�
2 	 bE�vins� 	 c where the parame-

ters �a, b, c� were estimated using 9304 traffic samples as
�a, b, c� � �1.22,�15.21, 207.95�.

In the case that the length l of Pz is l � 1, the physical
significance of π

Pz
i, j within a sampling time interval t , denoted

as τ
Pz,t

i, j can be interpreted as the sum of the delay caused by
the travel time from link i to link j upon the path Pz . We use
� to denote a set of time period clusters where the label of a
cluster represents a specific time period of the day. We divide
the successive time intervals of a day T � �1, 2, 3, . . .�
into different clusters where the successive time intervals in
a cluster compose a time period T n

m � �n � �. As the
classification algorithm is not the focus of this research, we
use the ISODATA algorithm given in [8], or roughly make a
division according to the observation of the traffic flow data
variation. After that, we have π

Pz
i, j within a specific time period

of day by

τ
Pz

i, j � �

�
t�T n

m
τ

Pz,t
i, j

T n
m 

�, (17)

where �x� is the smallest integer that is greater than or equal
to x . Further note that, the absence and breakdown of traffic
detectors causes data missing, e.g., traffic speed and traffic
flow. Thus, the aforementioned way to estimate τ

Pz ,t
i, j is not

available in this situation. Consider traffic flow or traffic speed
data are not observable in a link Vmiss � V , we use a
KNN based method [32] to estimate the TMS vmiss at Vmiss

by vmiss �
�K

k�1 vk�K , where vk, k � K is the TMS at
the k-th nearest links of Vmiss ordered with respect to the
Euclidean distance.

B. Turning Rate Estimation

In (2), πi, j is a special case of π
Pz
i, j (in (6)) in the case that

the length of Pz is l � 1. Indeed, the physical significance of
π

Pz
i, j is the ratio of the traffic attached to Vj with the traffic

produced in Vi and traveling in Pz . Due to the fact that the
turning rates at different intersections along a path are i.i.d.,
a simple way to estimate π

Pz
i, j , l � 1 is the accumulation of

the turning rate between any two adjacent links in the path Pz

from link i to link j . However, such estimation method is an
intuitive, but not a general approach since a prior knowledge
of the turning rate between any two adjacent links are needed.
As the estimation of turning rate between two adjacent links
Vi and Vj is closely correlated with the traffic at these two
vertices, it is hard to infer πi, j once there is data missing in
any link of Vi and Vj .

To overcome the aforementioned problem, we come up with
a method motivated by the gravity model that is widely used
for estimating the trip distribution between two zones. More
precisely, the principle of gravity model states that the number
of trips between two traffic zones is directly proportional to
the number of trip attractions generated by the destination
zone and inversely proportional to a function of travel time
between the two zones [33]. Based on the gravity model,
we estimate π

Pz
i, j by the following three-steps procedure which

only requires the traffic at both ends of a path Pz , rather than
the traffic from each link in the path.
� Divide a path Pz into a sequence of concatenate sub-path

by Pz � �s Pzs where the links without measured data
are distributed into each sub-path Pzs , whereas the links
at the both ends of Pzs have measured data;

� Apply a modified gravity model to calculate the turning
rate upon sub-path Pzs ;

� π
Pz
i, j �



s π

Pzs
i, j .

Suppose a vertex Vi � V , as well as �V l�
i where each Vj �

�V l�
i

has measured data and there is a path Pz with length l from Vi

to Vj . We use �Pl
i, j to denote the collection of paths from Vi

to �Vj �
�V l�

i . The gravity model based method is formulated
as follows:

y Pz
i, j � yi

�
� y jCPz

i, jBPz
i, j�

Pz�
�Pl

i, j

y jCPz
i, jBPz

i, j

�
��. (18)
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Fig. 2. Consider the path Pz from V9 to V1 where V4 and V8 have no
traffic data. Pz � Pz1 
 Pz2 where Pz1 is the path from V9 to V6, whereas
Pz2 is the path from V6 to V1. We first get the turning rate upon Pz1 is

π
Pz1
9,6 , and we also get the the turning rate of Pz2 is π

Pz2
6,1 . Then we have

π
Pz
9,1 � π

Pz1
9,6 � π

Pz2
6,1 .

Particularly, when l � 1, the turning rate between two adjacent
links is calculated. We use tPz to denote the travel time of
vehicles traveling along the path Pz and is calculated by tPz �

τ
Pz

i, j � tlag based on (16). Thus the inverse function of travel

time tPz , CPz
i, j in (18), can be obtained from the calibration

process [33]. Bi, j is socioeconomic adjustment factor for the
interchange between vertices Vi and Vj , and in this paper,
Bi, j � 1. Within a time period T n

m � �n � �, yi , y j and y Pk
i, j

are defined in the following way:

yi �
�

t�T n
m

yi�t�, y j �
�

t�T n
m

y j �t�

y Pz
i, j �

�
t�T n

m

y Pz
i, j �t�. (19)

The objective of the gravity model is to estimate y Pz
i, j so

that π
pz
i, j can be further estimated by π

pz
i, j �

y
Pz
i, j
yi

. We use an
iterative procedure [33] to estimate y j until convergence is
reached:

y j,w �
y j�

i�N
�

y Pz
i, j

y j,w�1. (20)

In (20), w is the iteration number. Finally, we have π
pz
i, j .

To better understand the above estimation process, we give
an example in Figure 2 where no detectors are configured at
V4 and V8, causing the turning rates upon the dash and red
lines can not be estimated directly.

C. Spatial Order λ1 and Parameters Estimation Algorithm

To identify λ1, as well as τ and π , a BFS based algorithm
is designed in (1). In order to improve the efficiency, the esti-
mation of τ , π and λ j , j � N̂ is executed in each vertex
concurrently (line 2 to 24). With λ j ,� j � N̂ , λ1 is calculated
in a centralized way (line 25).

With the determination of τ , π , and λ1, the uniform
STARIMA model is set up according to the following three
steps [34]:
� Model Identification: using STACF (space-time auto-

correlation function) and STPACF (space-time partial
autocorrelation function) to determine the maximum lags
(�p, λ, q, m�) in the uniform STARIMA model.

� Parameter Estimation: estimating the model parameters
(φ p,λ2

and θq,m ) by non-linear optimization techniques;
� Diagnostic Checking: there are two phases in this

process. In the first phase, the residuals will be examined
in order to make the model adequately represents the data.
In the second phase, it analyzes the statistical significance
of the estimated parameters in order to avoid constructing
a unduly complex (e.g., overfitting) model.

Algorithm 1 The Estimation of τ , π , and λ1

1: τ , π and λ j for each link j � N̂
2: Initialization:
3: P � ∅, λ j � 0, Q � ∅, vi si ted � 0
4: Q � Vj ,vi si ted� j � � 1
5: while Q � ∅ do
6: Vtemp �the head in the Q
7: Vi : there is an arc from Vi toVtemp

8: while Vi � ∅ do
9: if vi si ted�i � � 0 then

10: if there is traffic data at Vi then
11:

�V 1�
temp � Vi

12: P � Pz from Vi to Vj with length l
13: if λ j � l then
14: λ j � l
15: end if
16: Estimate τ

Pz
i, j and π

Pz
i, j

17: else if there is no traffic data at Vi then
18: vi si ted�i � � 1

19: Q � Vi ,
�V 1�

temp� Vi

20: end if
21: Vi : the next vertex that there is an arc from

Vi to Vtemp

22: end if
23: end while
24: end while
25: Calculate λ1 using (11)

The parameters τ , π and λ1 in the modified STARIMA
model can be regarded as “hyper parameters” like those
in deep learning model, e.g., the number of hidden layers.
The difference is that these hyper parameters have physical
meanings. Besides, with Algorihtm 1, these hyper parameters
can be easily estimated (the algorithm complexity is analyzed
in the following paragraph). Comparing with most studies
where a lot of parameters have to estimate due to the fact that
multiple models, particularly non-parametric models built in
different time periods of the day, the distinguished advantage
of our method is that we only need to adjust τ , π and λ1
in different time periods of the day, rather than re-estimating
all the parameters repeatedly. Thus, the accuracy complexity
trade-off can be guaranteed.

We now analyze the computational complexity of para-
meters estimation in the STARIMA model. According to
literature [35], Dave suggested that the computational com-
plexity of identifying parameter p using ACF (autocorrelation
function, resp. parameter q using PACF, partial autocorrelation
function) for the ARIMA model is O�NS Nl� where Ns is the
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Fig. 3. The map and the topology of considered segment in I-80 freeway.

number of samples from an observation and Nl is the number
of time lags [35]. Unlike the ARIMA model, the parameters
p and λks in the STARIMA model are identified by STACF
(resp. STPACF for q and mks). Thus, the computational
complexity of calculating STACF (STPACF) between two
links is O��N �1�Nl Ns� where N �1 is the maximal spatial
lag between two links. Consider any pair of links and the
number of time periods n in a day, we have the computational
complexity of parameters estimation in the STARIMA model

is O�nNl NsN 3�.
The computational complexity of parameters estimation

for the unified spatio-temporal model mainly relies on the
following two parts: 1) the identification of τ , π , and λ which
relies on Algorithm 1 for paths searching, executed by the
N vertices in parallel with computational complexity O�N 2�
2) the identification of parameters in STARIMA model that
has the complexity is O�Nl NsN 3�. As a result, the total

computational complexity is O�nN 2 	 Nl NsN 3� � O�� n
N 	

Nl Ns�N 2�. Generally speaking, n
N 	 Nl Ns � nNl Ns when a

large amount of samples is considered at each observation.

V. EXPERIMENTAL VALIDATION

A. Experimental Setup

In order to verify the performance of the proposed
model, two datasets are used, thereafter referred as the
dataset from one-dimensional freeway and the dataset from
two-dimensional freeway incorporating on- and off-ramps
(Fig.3 and 4).1 The reason for using different datasets is
the need for exploring the impact of different road net-
work topology on the prediction accuracy of the unified
spatio-temporal model. For example, with the aid of the dataset
from the two-dimensional network, we can clearly present
the estimation of turning rate with the methods provided
in Section IV-B.

The dataset in the first group is sampled from six dual-loop
detector stations deployed on a road segment of Interstate 80
(I-80) freeway in Emeryville, California, which are numbered
by 1, 3, 4, 5, 6 and 7 (Fig.3). Furthermore, 10-days traffic data
is recorded with sampling interval of 30 seconds (tlag � 30s).
We regard the mean traffic flow of every 3 data points as one
data point. Thus, 960 (2880/3)/day�9 data points are available
for training model, and the data in the last day are used for
prediction.

1The first set of data can be downloaded from: http://ngsim-community.org.
The second set of data can be downloaded from: http://portal.its.pdx.edu.

Fig. 4. The map and topology of I-205 NB freeway.

The dataset in the second group is collected from
I-205 NB Portland-area freeway. The freeway in Fig. 4 cov-
ers 10.09 miles (16.24km) including a major road with on-
and off-ramps. In addition, the freeway is equipped with
14 detector stations to record the traffic traveling from north to
south. Particularly, we select the data within 10 working days
(Monday to Friday) from Sept. 19, 2011 to Sept. 30, 2011
with sampling interval of 20 seconds (tlag � 20s). The
locations of the detectors are marked by yellow and orange
lines in the figure. The yellow lines are the detectors installed
at the major road, while the orange lines are the detectors
installed at the entrance from the on-ramp to the major road.
The station surrounded by the red circle means there is no
available traffic data. We use the first 9-days data to train the
model and the data in the last day to validate the prediction.
Theoretically, there should be 4320 data at each station in
one day. Unfortunately, there are some missing and dirty data
inside. Hence, we use a commonly used way, named historical
average, to replace the missing data by the average of the
known values [22], [36].

We compare our proposed model (denoted as
uSTARIMA) with other three approaches, respectively
the STARIMA�p, q, λ, m� (denoted as STARIMA), multiple
STARIMA based method (denoted as STARIMA*) in which
the parameters and coefficients would be re-evaluated in
different time periods of the day, and the BPNN method. The
STARIMA and STARIMA* are both linear predictive method,
while BPNN is a non-linear predictive method. We use a
4 � 20 � 1 BPNN model including a hidden layer and an
output layer to predict the traffic flow at each measurement
point. There are 4 input nodes which respectively denote
the traffic flow data collected from the same measurement
at t , t � 10min, t � 20min and t � 30min. There are
20 nodes in the hidden layer and one node in the output
layer. The initial weights are randomly distributed inside a
range ��0.12, 0.12� and the thresholds have initial values
of 0. We use the sigmoid function as the active function.
Besides, we set the momentum coefficient to be 0.7, and
the learning rate to be 0.3. A gradient descent optimization
algorithm is used to adjust the weights and thresholds by
calculating the gradient of the loss function iteratively until
the sum of squared errors is no more than the learning
error set by 0.01. We use R language running on 64-bit
Windows system with 4 CPUs and 16G RAM. With the aid
of starma 2 and neuralnet packages,3 we develop our uniform

2https://cran.r-project.org/web/packages/starma/starma.pdf
3https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
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TABLE I

THE TIME-VARYING LAGS BETWEEN STATIONS
WITH SPATIAL ORDER l � 2

TABLE II

THE MAPE/MSE OF ONE-DAY TRAFFIC FLOW PREDICTION

USING USTARIMA, STARIMA*, STARIMA AND BPNN

model as well as the other counterparts. Particularly, starma
packages integrated three-stage iterative modeling procedure.
In order to verify the prediction accuracy and the efficiency
of the proposed scheme, the metrics of the mean square
error (MSE), the mean absolute percentage error (MAPE)
and running time are considered. More precisely, let ŷ be
the estimate of N-dimensional vector y, then MSE can be
expressed as M SE�ŷ, y� � 1�N

�N
n�1�ŷn � yn�

2, and MAPE
is calculated by M AP E�ŷ, y� � 1�N

�N
n�1 

ŷn�yn
yn

.

B. Experimental Results for One-Dimensional Freeway

According to the traffic data collected at stations 3 and 6 on
I-80 freeway, we intuitively set �1 � � (peak hour) by �1 �
�T 1

1 � where T 1
1 covers the time period from 6:30am to 9:00am.

Correspondingly, �2 (off-peak hour) is the set of time periods
outside the range of 6:30am-9:00am. Hereafter, we provide
the MAPE/MSE of the traffic prediction at different time of
the day in Table II.

From the experimental results, we can observe that the
best performance is the one achieved by STARIMA*. Such
phenomenon can be explained by the fact that the simple road
topology structure enables the time-varying spatio-temporal
correlation can be successfully captured by re-estimating all
the parameters ({p, q, λ, m� and �φp,λ, θq,m�) of STARIMA*
in each time period of the day. In comparison, our proposed
uSTARIMA model has a slight increase in prediction error
(� 3% of the measured value). The loss of accuracy is
caused by that a nearly monotonous structure of uSTARIMA
is set up in different time periods. In other words, there is
no obvious difference between the parameters �π, τ, λ1� of
uSTARIMA in different time periods. For instance, the turning
rate between any two adjacent links is a constant value
“1” since there is no intersection in the study site. Further,
as the road segment (between s3 and s6) is not long, we can
find the maximal time-varying lag is 3 between s3 and s6
in peak hour from Table I. On the contrary, the minimal
time-varying lag is 1 between s3 and s5 in off-peak hour.
The time-varying lags between any adjacent stations are not
presented in Table I since the values are smaller than 1, but

Fig. 5. The running time of STARIMA�
�, STARIMA*, ARIMA* and
BPNN.

TABLE III

THE TIME VARYING LAG BETWEEN TWO NEIGHBORING LINKS ON

THE MAJOR ROAD IN DIFFERENT TIME PERIODS OF THE DAY

approximately equal to 1 according to formulation (17). Also,
λ1 � 3 based on the graph model of the study site. The
slight change of �π, τ, λ1� has no significant impact on the
estimation of φπ,τ,λ1 . Thus, the performance of uSTARIMA
is a little worse than STARIMA*. In practice, the forecasting
accuracy of uSTARIMA is sensitive to the fluctuation of
above three parameters �π, τ, λ1�. This can be observed from
the experimental results on the basis of the study site in
the second group, which we will illustrate in the next sub-
section. In addition, comparing with the STARIMA and BPNN
technique, unsurprisingly, the proposed technique achieves
much better prediction accuracy. Particularly, the MAPE of
the proposed technique is at least 5%, at most 15% better
than that achieved by these two techniques.

Fig. 5 shows the running time of each approach. From the
figure, we know that the running time of uSTARIMA is much
less than the other two methods, attributable to the unified
model employed for traffic prediction during different time
periods.

C. Experimental Results for Two-Dimensional Network

Based on the traffic data collected at 6 stations on the major
road of I-205 NB freeway, we intuitively divide a day into
three time periods. Specially, �1 � �T 1

1 , T 1
2 � where T 1

1 covers
the time period from 6:00am to 9:00am and T 1

2 covers the
time period from 16:00pm to 18:00pm. Correspondingly, �2
consists of the set of time periods outside of T 1

1 and T 1
2 . Since

the major road in the freeway is long, we divide it into a set
of links where each detector station is distributed in one link.
In this paper, we mainly provide the traffic prediction at each
detector station on the major road.

We list the time-varying lags between two neighboring links
in the major road in Table III. It further verifies that the
time-varying lag has a close relation with the distance of
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TABLE IV

THE ESTIMATION OF TURNING RATES AT THE INTERSECTIONS OF MAJOR ROAD AND OFF-RAMPS (GRAVITY BASED METHODS/DATA-DRIVEN METHOD)

two stations, as well as different travel speeds during different
time periods of the day. Then, we calculate the time-varying
lags between stations by means of Algorithm 1. For instance,
the time-varying lag between station 1045 and 1117 is 14
(6	5	3) within 6:00am-9:00am, while 11 (5	4	2) within
9:00am-16:00pm.

As the vehicles coming from on-ramps will move into
the major road, the turning rate at the intersection between
on-ramps and major road is equal to 1. However, the vehicles
at the intersection of off-ramps and major road have two
alternatives. One is leaving the freeway through off ramps, and
the other one is to keep traveling straightly on the major road.
The results of turning rate estimation are presented in Table IV.
Table IV presents the turning rates respectively estimated
by gravity based method and data-driven method. We regard
the data-driven based method as the “actual scenario” where
the turning rate at an intersection is calculated by the ratio
of “the traffic flow streaming into the off-ramps” to “traffic
flow traveling from the major road”. As there is no detector
configured in the off-ramps, we cannot obtain the traffic flow
streaming into the off-ramps directly. However, we can roughly
estimate it using the traffic flow data collected at two adjacent
detector stations as well as the stations configured in the
on-ramp between these two stations. For instance, suppose we
have time-spaced traffic flow data at station 1046, 1047 and
5047, respectively y1046, y1047 and y5047. Then the traffic flow
streaming into the off-ramps between station 1046 and 1047 is
calculated by “yof f � y1046 � �y1047 � y5047)”. Given a time

period T , we estimate turning rate by “
�

T yof f�
T y1046

”. Note, there is

no data at station 5046, thus, we can only use the data-driven
method to estimate the turning rates at the other intersections.
To save space, the values of the turning rates estimated by
both methods are rounded off to the two decimal places.
From Table IV, we can observe that the results obtained from
gravity based methods are approximately the same as the ones
calculated by data-driven method. As we have mentioned in
Section IV-B, one advantage of gravity based model is that it
can be used to estimate the turning rate even there is missing
data in some roads such as the estimation turning rates between
station 1045 and off-ramp at the second column (with ’-’).
Except for the turning rates labeled in red, all the other turning
rates show that above 70% vehicles will keep traveling on the
major road. As for the turning rates between station 1047 and
the downstream off-ramp, we observe that the off-ramp is
connected with a road named “SE Powell Blvd” across the
segment between station 1047 and 1117 (circled by the dashed

Fig. 6. The running time of uSTARIMA, STARIMA*, STARIMA and BPNN.

TABLE V

THE MAPE/MSE OF ONE-DAY TRAFFIC FLOW PREDICTION
USING USTARIMA, STARIMA*, STARIMA AND BPNN

line in red). In [37], Stoll et al. indicated that Powell Blvd road
was a major arterial road in the Portland metropolitan area
and carried between 45,000 and 30,000 vehicles a day. The
large traffic volume in Powell Blvd road implies that a lot of
vehicles will leave the major road and move into Powell Blvd
road (e.g. the vehicles traveling from A to B or from A to C).
Therefore, in each time period of the daytime (from 6:00 am
to 18:00 pm), the turning rate between station 1047 and 1117
are less than the ones estimated between any other pairs
of stations. The discrepancies in the estimated turning rates
further verify our idea that road trip distribution has a critical
influence on the analysis of spatio-temporal correlation.

With turning rate and time-varying lag estimated above,
we predict the traffic flow at 6 stations (without station
1142). From Table V, we can see that the MAPE of our
proposed model is at most � 6% (at stations 1046 and
1117) lower than STARIMA*. Note that the forecasting results
obtained from our proposed model have the best accuracy.
This can be illustrated that the time-varying spatio-temporal
correlation affected by the frequent variation of travel speed
and trip distribution in the study site of I-205NB freeway can
be better captured by the introduced parameters �π, τ, λ1�
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in our method. For instance, given two stations 1047 and
1048, the gap between the time-varying lag in peak and
off-peak hours can be 7 (30 in peak hour from 16:00 pm to
18:00 pm and 23 in off-peak hour from 9:00 am to 16:00 pm).
Distinctly different from uSTARIMA, the determination of
lags in STRAIMA* is by means of STACF and STPACF
which depend on the assumption that we are comfortable
making with respect to the constancy of the trend in the
data. It is difficult to select accurate number of lags. Thus,
the forecasting accuracy of STARIMA* will be reduced in
some cases, e.g., station 1047 and 1048. Unsurprisingly, in the
worst case there is � 22% (at station 1117) gap between
the MAPE of uSTARIMA and BPNN, and at worst � 10%
(at station 1047) gap between the MAPE of uSTARIMA and
STARIMA.

In Fig. 6, we present the running time of different methods.
It is clear to see that less time is consumed for our proposed
model, which is consistent with the result in Fig.5. Based on
the results in Table V and Fig.6, it is sufficient to say that our
proposed model is also available for the two-dimensional road
network.

VI. CONCLUSIONS

In this paper, we developed a unified spatio-temporal model,
which does not need a complete re-design and calibration
of the prediction model for short-term traffic flow prediction
during the day. In the model, the spatio-temporal traffic
correlation is captured by the turning rate at the intersections,
as well as the time-varying lag which is formulated as a
function of the spatial separation and the travel speed between
two measurement points. Fundamentally, a better performance
is achieved because, instead of using a black-box approach to
model the traffic correlations, the proposed method explicitly
takes into account the road topology, trip distribution and travel
speed and offers a physically intuitive approach to capturing
the spatio-temporal correlation between traffic at different
locations. In this sense, a deeper insight revealed through our
work is that by incorporating the knowledge of the underlying
road topology into traffic prediction, a better accuracy can be
achieved. As the STARIMA model is unable to capture the
non-linear trend of traffic data, thereby, it is part of our future
work to explore other non-linear models with spatio-temporal
correlations to solve traffic prediction problems.
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