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Abstract— Recently, link travel time distribution (LTTD)
estimation has gained a lot of interest since the probabilistic
model not only captures the dynamic features of link travel
time but also provides abundant knowledge like the mean
and variance which can be used as indicators to analyze
link travel time reliability. However, existing methods still
suffer from a number of problems: 1) most studies employ
parametric models, e.g., Gaussian, which is only suitable in
the limited traffic conditions like free flow or congestion. 2)
many techniques heavily rely on the measurements detected on
the roads. They cannot be applied to the whole road network
since there is absence of observations in some roads due to
the limited number of traffic detectors installed in the road
network. In lieu of the aforementioned challenges, in the paper,
we employ kernel density estimator (KDE) to model LTTD
which is validated to be effective in any state of traffic condition.
Further, motivated by the network tomography techniques, we
propose an expectation maximization (EM) based algorithm
to estimate model parameters only with end-to-end (E2E)
measurements detected by traffic detectors at or near some
road intersections. With 3.0e+07 GPS trajectories collected by
the taxicabs in Xi’an, China, the experimental results show that
the LTTD estimated by our proposed method are in excellent
agreement with the empirical distributions, and better than its
counterparts adopting Gaussian and log-normal models.

I. INTRODUCTION

Link travel time is a kind of intuitive and easily understood
traffic parameter which can be used as an indicator to
measure traffic state of each link in the road network. On one
hand, accurate estimation of link travel time helps travelers
to make decisions for departure time and travel route in
order to minimize overall trip travel time. On the other
hand, it benefits the transportation agencies by identifying
key bottlenecks in a road network, thereby allowing proactive
traffic control like dynamic traffic signal operation.

In the last several years, it has attracted great research
interest in estimating link travel time distribution (LTTD)
using probabilistic models [5], [9], [16] since link travel time
is stochastic and varies frequently due to the heterogeneous
and dynamic nature of traffic in the complex road condi-
tions [8], [9], [18]. Particularly, advanced data collection
technology makes great progress on the techniques of LTTD
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estimation. These data sources [7] includes global position
system (GPS), Bluetooth device, loop detectors and traffic
cameras [17], [8], [9]. However, existing work still has some
major challenges that have to be addressed. More precisely,
these challenges exist in the following aspects:

Model selection: The widely used probabilistic models are
mainly parametric, having a fixed structure (the number of
parameters is finite). They have nice properties and make the
parameters (the mean and covariance) estimation and relia-
bility analysis simpler. However, the shortcomings are also
obvious, that is, a parametric model is usually feasible under
a particular traffic condition, e.g., free flow or congestion. In
this case, given a road network including thousands of links,
the selection of probabilistic models become more intricate
since the traffic conditions of the links may be different from
each other and vary with the time of the day.

Practicability: Many techniques of LTTD estimation heav-
ily rely on direct active or passive measurements detected
on the links. Direct active measurements refer to that link
travel time is calculated by the time difference that the
vehicles pass through (near) two endpoints of the link.
Passive measurements mean that link travel time is calculated
using the link distance divided by the space mean speed.
Unfortunately, all these methods are only available for the
links with sufficient observed data. They cannot be applied
to the whole road network since it is impractical and cost
prohibitive to cover all the links with traffic detectors.

Computational resource: To estimate travel time distri-
bution of links without traffic detectors, a common method
is to infer the data of these links by means of geospatial,
temporal and historical contexts learned from the data in
spatial-temporally correlated links [14]. However, a lot of
computing resource and time will be consumed for missing
data estimation. Also, the spatial-temporal correlation be-
tween links varies with the time of the day and road topology,
and are difficult to capture accurately.

In lieu of the aforementioned problems, in this paper, we
propose a framework to estimate a non-parametric model
of link travel time with limited traffic detectors. The main
contributions are briefly summarized as follows:
• We employ kernel density estimator (KDE) to model

LTTD, which is a non-parametric model that can capture
the dynamics of LTTD in any state of traffic condition.
Further, an expectation maximization (EM) based algo-
rithm is proposed to estimate model parameters.

• To improve the practicability of the estimator and save
computational resource, we employ network tomogra-
phy techniques to estimate LTTD with the aid of end-

2019 IEEE Intelligent Transportation Systems Conference (ITSC)
Auckland, NZ, October 27-30, 2019

978-1-5386-7024-8/19/$31.00 ©2019 IEEE 2598



to-end (E2E) measurements collected at or near the
road intersections. As there is no need to estimate
missing data for the links without traffic detectors, the
computational resource is much reduced.

• We validate the proposed method based on a data set
including over 3.0e+07 GPS trajectories collected by the
taxicabs in Xi’an, China. The experimental results show
that the LTTD estimated using our proposed model are
in excellent agreement with empirical distribution, and
have better performance than its counterparts adopting
Gaussian and log-normal distributions.

The organization of the paper is as follows. In Section II,
the related work is briefly introduced. In Section III, we
describe our approaches including the principle of network
tomography and model building. The EM based algorithm
is illustrated in Section IV. After that, we explore the
performance of the proposed methods in Section V. Finally,
we draw the conclusion in Section VI.

II. RELATED WORK

In recent years, growing interest is motivating a shift
toward estimating LTTD with different kinds of probabilis-
tic models. In these models, Gaussian and log-normal are
the most extensively researched. Particularly, Li et al. [6]
suggested Gaussian was appropriate to model travel time
in the presence of free flow, small time interval (e.g., 5
minutes), whereas log-normal was appropriate to model
travel time in the presence of congestion, large time interval
(half an hour). Other probabilistic models were also used
to model link travel times such as Weibull distribution and
Burr distribution [3]. Based on the analysis of real data,
Hamdar et al. [4] found LTTD had a shorter right tail under
free-flow conditions. Therefore, a hazard-based modeling
approach was proposed with consideration of lane-changing
behavior. Similarly, Moylan and Rashidi [8] constructed
different hazard-based models of LTTD in the congested and
non-congested state where different states were modeled by
a latent-class-style approach.

The estimation of model parameters is based on the traffic
data collected by different kinds of data detectors mentioned
in Section I. A common weakness of these data detectors
is that the collected traffic data has limited coverage, which
leads to the fact that there are few or no observations in
some links. To cope with this problem, techniques of missing
data estimation have been used, but these techniques are
mainly applied for mean travel time estimation. For instance,
with GPS data, Wang et al. [14] and Tang et al. [11]
applied a tensor to model link travel times as multi-linear
manner geometric vectors. The tensor without GPS data was
estimated based on the geospatial, temporal and historical
contexts learned from the neighboring tensors. Unfortunately,
these methods consumed a lot of computational resources.
Another method is proposed by Zhang et al.’s [18] who
estimated mean travel time with the data collected from
limited number of traffic cameras. Note that this work
also applied network tomography techniques. However, it
could not be used for LTTD estimation since travel time

was viewed as a deterministic variable, as opposed to a
random variable. The limited coverage of traffic data is
also considered in some research of travel time distribution
estimation. A distinguished work was done by Prokhorchuk
et al. [9] which developed a Gaussian copula graphical
model. However, the travel time distribution estimated in
these research was at the path level.

Network tomography uses the information derived from
end-to-end (E2E) measurements to explore the internal char-
acteristics of an Internet, e.g., the packet transmission delay.
Specifically, a series of literature concentrates on the re-
search of estimating link delay distribution, which is similar
as LTTD estimation in the road network. However, these
techniques cannot be directly used in our work since most
of them are based on parametric models such as Gaussian
or exponential distributions with the shortcomings discussed
in Section I. Although bin size model, as a kind of non-
parametric model [12], was used in the network tomography,
it can vary wildly with the different configuration of bins,
especially with a relatively small number of data. Therefore,
in this paper, we use kernel density estimator (KDE) which
provides similar distribution even with varying bandwidth
and/or kernel type.

III. KDE BASED MODEL

The probability density function (PDF) of the kernel
density estimator (KDE) is defined as:

p(x) =
1

nh

n∑
i=1

K(
xi − x

h
), (1)

where x is the random variable, n is the number of samples,
h > 0 is called the smoothing bandwidth that controls
the amount of smoothing, xi is the i-th sample, K(x) is
named the kernel (function) that is generally a smooth and
symmetric function. In this paper, we use the Gaussian
kernel, which has been widely used in the literature. In
particular, K(xi−xh ) follows the standard normal distribution
of N (0, 1).

We model a road network as a digraph. Specifically, we
partition the road network into a set of links where each
link is an one-way road segment bounded by two road inter-
sections and there is no intersection within a link. Drawing
from the graph theory, the digraph model is represented as
G = (V,E) where V is the set of vertices and E is the set
of directed edges. Each vertex Vi ∈ V represents an inter-
section. There exists an edge eij ∈ E, eij = (Vi, Vj) if there
is a link with traveling direction from Vi to Vj . We name a
vertex Vi as a measurement point if there are observations
detected by the traffic detectors like traffic cameras at Vi.
Then V = {Vmeas, Vunmeas} where Vmeas is the set of
measurement points and Vunmeas = V \Vmeas. Obviously,
the travel time distribution on eij can be estimated if both
end points of eij , Vi, Vj ∈ Vmeas. However, in real life, it
is impractical to cover ∀Vi ∈ V with traffic detectors. As
a result, there is always a sequence of links between two
measurement points. With the principle of graph theory, we
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define a travel route between two intersections as a path,
denoted by:

r = {e1, e2, ..., edr}, (2)

where dr is the number of links and the edges in r
are all distinct from each other. Given a path r between
Vi, Vj ∈ Vmeas, we can obtain the travel time on r with the
observations at Vi and Vj . For instance, a vehicle traveling
from Vi to Vj through r is captured by the traffic cameras at
Vi and Vj at time t1 and t2, then the travel time t = t2− t1.
In this paper, we also name t as an E2E measurement.

Consider the situation that the positions of the traffic data
collected by some traffic detectors are not exactly located
at the road intersections, but somewhere nearby, e.g., GPS
data collected by the probe vehicles. We use a distance
and time proportion method to estimate E2E measurements.
More details will be illustrated in Section V. We use t to
represent a random variable of travel time. The objective of
our work is to estimate the distribution of tek for ∀ek ∈ E
with the E2E measurements detected by the limited traffic
detectors.

Travel time in the neighboring links is spatially and tempo-
rally correlated to a greater or lesser extent. For simplicity, in
this paper, we assume the travel time of a vehicle on different
links is spatially independent. Furthermore, we assume that
the travel time of different vehicles on the same link is also
independent. Ignoring dependencies have a lot of benefits on
the assumptions. For instance, in [14], to simply the objective
function of path travel time estimation, Wang et al. assumed
the travel time on different links are independent. Based on
the above analysis, we are now ready to derive the estimates
of LTTD.

We model the distribution of tek with KDE as follows:

p(tek |Θek) =
1

nekhek

nek∑
i=1

N (tek |µek,i, h2ek), (3)

where Θek = {nek , hek , µek} is the set of parameters
characterizing the KDE. More precisely, nek is the number
of vehicles traveling through ek during a given time interval
(e.g., 8:00am-8:30am), hek is the bandwidth and µek =
{uek,i|i = 1, 2, ..., nek} where uek,i ∈ µek is the travel time
when the i-th vehicle traverses ek. As tr =

∑dr
k=1 tek , the

distribution of tr conditioned on Θek can be parameterized
as follows:

p(tr|Θr) = p(te1 |Θe1) ∗ ... ∗ p(tedr |Θedr
), (4)

where ∗ represents the convolution operation and Θr =
{Θek |k ∈ dr}.

In the network tomography, the transmission route of a
packet is always known. However, in our work, the path r
where an E2E measurement is collected is usually unknown
because of the following two reasons: i) the limited number
of traffic detectors makes the travel route unobservant, and
ii) there may be multiple paths between two measurement

points. We use R = {r1, r2, ..., r|R|} to denote the alternative
paths between two measurement points where | · | is the
carnality of a set. Given an E2E measurement t, we introduce
a binary variable pt|rj , rj ∈ R where pt|rj = 1 if t is
collected from rj ⊆ R and pt|rj = 0 otherwise. Obviously,∑
rj∈R pt|rj = 1 since an E2E measurement is collected only

from a unique route. We use Pt|R = {pt|r1 , pt|r2 , ..., pt|r|R|}
to represent the set of binary variables for t based on routes
R, so that the probability of t conditioned on Pt|R and ΘR

is modeled by:

p(t|Pt|R,ΘR) =
∏
rj∈R

p(trj |Θrj )
pt|rj , (5)

where ΘR = {∪Θrj |rj ⊆ R}. Given the set of E2E
measurements between two measurement points in a time
interval, T , we define PT |R = ∪t∈TPt|R, then the log-
likelihood of T is formulated as:

L(T |PT |R,ΘR) =
∑
t∈T

ln p(t|Pt|R,ΘR). (6)

In a road network, supposing that we have M pairs of
measurement points, then we use T = {t ∈ Tm|m ∈ M}
to denote the set of all E2E measurements over the whole
study site. The log-likelihood of T is formulated as:

L(T|PT|R,ΘR) =
∑
m∈M L(Tm|PTm|Rm ,ΘRm), (7)

where R = {Rm|m ∈M} is the set of paths with measured
data in the road network, PT|R = ∪m∈MPTm|Rm and ΘR =
∪m∈MΘRm . By substituting (4) and (6) into (7), we obtain
L(T|PT|R,ΘR) as follows:

L(T|PT|R,ΘR) =
∑
m∈M

∑
t∈Tm

∑
rj∈R

pt|rj ln p(trj |Θrj ). (8)

To simplify (8), we introduce R = ∪m∈MRm. Moreover,
we define PT|R = {pt|rj |t ∈ T, rj ⊆ R} where pt|rj = 1 if
and only if t is collected on route rj and otherwise, pt|rj = 0.
Obviously, the significance of R and PT|R are similar as R
and PT|R. Meanwhile, we introduce ΘR = {∪Θrj |rj ⊆ R}.
As both R and R should cover. all the edges in G, we have
ΘR = ΘR = {∪Θek |ek ∈ E}. In this case, (8) can be
rewritten as

L(T|PT|R,ΘR) =
∑
t∈T

∑
rj∈R

pt|rj ln p(trj |Θrj ). (9)

The parameters of KDE, ΘR, heavily rely on R and PT|R,
which has a close relationship with the placement of traffic
detectors and the road topology. In this paper, we estimate
R and PT|R based on Google Map and the method proposed
by Zhang et al. [18]. To simply the problem, we only
consider one path with the shortest length between two
intersections. It can be easily extended to the case of multiple
possible paths between two intersections. The difference only
relies on the increment of the computational complexity. The
estimation procedure is described as follows:
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Step 1: Obtain the candidate paths between any pair of
intersections using Google Map Javascript API. After that,
we get the routing matrix W .

Step 2: Calculate the bases of the routing matrix W ,
denoted by BW , where each basis BW ∈ BW is defined
as a maximal subset of linearly independent paths.

Step 3: Define RBW as the set of paths in BW . Meanwhile,
assign a weight to each road intersection with the significance
of being the cost for deploying the traffic detectors. By
deploying the traffic detectors at both ends of each path in
RBW , the costs of traffic detectors deployment for ∀BW ∈
BW can be calculated. The basis with the minimal cost,
denoted by Bopt ∈ BW , is selected and then R = RBopt .

Step 4: As there is only one path between two intersec-
tions, PT|R is known with the estimated R.

With above algorithm, the paths in R cover all the links
E in the road network G. Thus, we can estimate travel time
distribution of all the links from the E2E measurements
detected by the traffic detectors deployed at the ends of
each path in R. However, this deployment strategy of traffic
detectors are not the optimal one since we can further
reduce the number of traffic detectors with a little sacrifice
of estimation accuracy. Therefore, the trade-off between
the estimation accuracy and the number of deployed traffic
detectors is the problem that has its own merit and warrants
a separate study. It will be researched in our future work. In
next section, we will introduce the approach to estimating
ΘR with R and PT|R.

IV. EM BASED ALGORITHM

Recall (3), ∀Θek ⊆ ΘR has the parameters
{nek , hek , µek}. nek is related to the number of data
collected on the paths that cover ek. We define a |R|
dimensional vector Pt|R = (pt|rj |rj ⊆ R). Then, nek can be
estimated by

nek =
∑
t∈T

Pt|R ·W k, (10)

where W k is the k-th column of W .
In order to estimate hek and µek , we first simplify the

representation of (3) based on: 1) the associative property of
convolution, that is, f1(x)∗(f2(x)+f3(x)) = f1(x)∗f2(x)+
f1(x)∗f3(x), and 2) the property that the convolution of two
Gaussian distributions, i.e. N (µ1, σ

2
1) ∗N (µ2, σ

2
2), is also a

Gaussian distribution: N (µ1 +µ2, σ
2
1 + σ2

2). With these two
properties, (4) can be rewritten as

p(tr|Θr) = (

dr∏
k=1

1

nekhek
)

Zr∑
z=1

N (tr|µr,z, h2r), (11)

where Zr =
∏dr
k=1 nek , µr,z =

∑dr
k=1 uek,i,∀i ∈ nek and

h2r =
∑dr
k=1 h

2
ek

.
Given the natural logarithm of p(tr|Θr):

ln p(tr|Θr) =

dr∑
k=1

ln
1

nekhek
+ ln

Zr∑
z=1

N (tr|µr,z, h2r), (12)

we obtain L(T|PT|R,ΘR) as follows:

L(T|PT|R,ΘR) =
∑
t∈T

drj∑
k=1

ln
1

nek
+ L(T|ΘR), (13)

where T = {t|t ∈ T, pt|rj = 1}.

Algorithm 1 EM algorithm

Initialization: Θ(0)
R

1 for q ∈ 1, 2, ...
E-step:
2 γ

(q)
trj

(yz): Being updated using (16) with Θ
(q−1)
R

M-step:
3 for each µ(q)

ek,i
in Θ

(q)
ek ⊆ Θ

(q)
R and h(q)

ek , ek ∈ E

4 µ
(q)
ek,i
←

∑
rj⊆Rek

∑
trj
∈Trj

∑
z∈Zrj (µek,i)

γ
(q)
trj

(yz)trj

Nrj

5 (h
(q)
ek )2←

∑
rj⊆Rek

∑
trj
∈Trj

∑
z∈Zrj

γ
(q)
trj

(yz)(trj−uek,i)
2

Nrj
6 endfor
Terminal:
7 if Θ(q)

R converges to a local optimum
8 return Θ

(q)
R

9 endif
10 endfor

From (13), we can observe that the parameters ΘR are
only included in L(T|ΘR). Thus, setting the derivative of
L(T|PT|R,ΘR) with respect to ΘR to zero, we have

dL(T|PT|R,ΘR)

dΘR
=

dL(T|ΘR)

dΘR
= 0. (14)

Unfortunately, there is no closed form solution for (14)
due to the logarithm of cumulative Gaussian distribution.
As a result, the Maximum Likelihood (ML) method does
not work here. To address this problem, we employ the
EM algorithm to estimate ΘR (Algorithm 1) based on the
following assumption:

Assumption 1: The heks of the KDE models for the travel
time in ∀ek ∈ E are same.

To begin with, we introduce the latent variables. For ∀rj ⊆
R, we define Zrj -dimensional latent variables as yrj in
which ∀yz ∈ yrj satisfies yz ∈ {0, 1} and

∑
yz∈yrj

yz = 1.
Given the definition that the marginal distribution over yrj
is p(yz = 1) = Z−1rj , we formulate the distribution of yrj
as p(yrj ) =

∏
yz∈yrj

Z−yzrj . We also define the conditional
distribution of an E2E measurement trj as a Gaussian
distribution with p(trj |yz = 1) = N (trj |µrj ,z, h2rj ). The
joint distribution of trj is given by:

p(trj ) =
∑
yrj

p(yrj )p(trj |yrj )

= Z−1rj
∑
z∈Zrj

N (trj |µrj ,z, h2rj ) (15)

We define γrj (yz) ≡ p(yz = 1|trj ), which can be calculated
based on Bayes theorem:
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γrj (yz) =
p(yz = 1)p(trj |yz = 1)

p(trj )

=
N (trj |µrj ,z, h2rj )∑

z∈Zrj
N (trj |µrj ,z, h2rj )

(16)

In Algorithm 1, Θ
(0)
R are the initial values of ΘR. In line

4, Rek = {rj |ek ∈ rj , rj ⊆ R}, Zrj (uek,i) , {z|z ∈
Zrj , µek,i ∈ urj ,z} and Nrj is

Nrj =
∑

rj⊆Rek

∑
trj∈Trj

∑
z∈Zrj (µek,i)

γrj (yz(trj )). (17)

As the performance of the EM algorithm heavily relies
on Θ

(0)
R , we use the initialization strategy given in [1].

Convergence is achieved when Θ
(q)
R ≈ Θ

(q−1)
R .

V. EXPERIMENTAL RESULTS

To validate our proposed method, we use the GPS trajec-
tories anonymously reported by over 11,000 taxicabs on Sep.
5th, 2016 (Mon.) in Xi’an, China. With an average sampling
frequency of 30 seconds, we yield over 3.0e+07 raw data
records. Noises exist in the collected GPS data, mainly
due to erroneous measurements. Thus, we carry out data
preprocessing as follows: 1) map matching with a weight-
based topological algorithm proposed by Velaga et al. [13].
2) Outliers filtering such as the data where the detected
locations are outside the scope of Xi’an city. Techniques of
GPS data preprocessing has been further researched over past
years [14], [15]. To save space, we do not include the details
of these techniques. The travel time when a taxi traverses a
link is calculated in two different ways, which depend on
the number and the positions of GPS data reported by this
taxi: 1) Only one GPS data record reported by a vehicle in a
link. The travel time is the link length divided by the space
mean speed inferred from the instantaneous speed recorded
by the GPS using the method in [2]. 2) Multiple GPS data
records reported by a vehicle on a link. These GPS data
might not exactly reside at the endpoints of the link. To
counter this effect, we apply the method, namely distance
and time proportion proposed by Sanaullah et al.’s [10]. We
use the method to evaluate the E2E measurements.

TABLE I
THE NUMBER OF LINKS AND TRAVEL STATES IN EACH TIME INTERVAL

Time intervals Travel state No. of links No. of
intersections

τ17 8:00am-8:30am Congestion 4934 3545
τ19 9:00am-9:30am Congestion 5271 4031
τ23 11:00am-11:30am Free flow 5178 3804
τ31 15:00pm-15:30pm Free flow 5023 3752
τ35 17:00pm-17:30pm Congestion 5201 3957
τ41 20:00pm-20:30pm Free flow 4885 3524

We divide a day into 48 equal time intervals, denoted
by {τi|i = 1, 2, ..., 48} where ∀τi represents half an hour,
e.g., the time interval between 8:00am-8:30am. After that,

TABLE II
THE PERCENTAGE OF INTERSECTIONS THAT SHOULD DEPLOY TRAFFIC

DETECTORS

Time intervals τ17 τ19 τ23 τ31 τ35 τ41
Percentage 59% 61% 63% 53% 57% 60%

TABLE III
AVERAGE KL DIVERGENCE FOR DIFFERENT MODELS

Time KDE-E2E Gaussian log-normal GMM Hazard
τ17 0.92 1.51 1.24 0.93 1.13
τ19 1.03 1.46 1.37 0.89 1.07
τ23 0.96 1.73 1.19 1.01 1.15
τ31 0.90 1.93 0.91 0.87 0.97
τ35 0.94 1.49 1.25 0.98 1.14
τ41 0.86 1.28 0.94 0.91 1.02

we set up the model in each τi and implement the LTTD
estimation in Java and Matlab. We use the following two
ground truths to validate the accuracy of our estimation: 1)
Opt-KDE : the travel time distributions estimated by the KDE
with the optimal bandwidth. As discussed in Section III, Opt-
KDE can fit the distribution of empirical data better than any
other models. Thus, we compare the results of our proposed
method with Opt-KDE to validate estimation accuracy; 2)
Empirical CDF : the CDF of empirical data. With the KS test
defined in Section III, we can observe whether the estimated
probability distribution is accepted or not.

To assess the deviation between an estimated LTTD and
the ground truth (Opt-KDE) in a link, we use the metric
named Kullback Leibler (KL) divergence, which is defined
as follows:

DKL(Popt||Pes) =
∑
t∈Tek

pem(t) ln
pem(t)

pes(t)
, ek ∈ E. (18)

In (18), popt represents the LTTD with Opt-KDE, and pes is
LTTD with our proposed model and the counterparts includ-
ing Gaussian, log-normal, GMM (Gaussian mixture model)
and hazard based model. In particular, the GMM has three
components of Gaussian, formulated by

∑3
i=1 φiN (µi,Σi).

The hazard based model was proposed by Emily and Taha
in [8]. It provides a good performance in estimating LTTD
by considering such factors as travel speed, weather, traffic
condition, etc. As we do not have the data like the weather,
we cannot re-build the model as the one in [8], which con-
sidered numerous factors that potentially affect the variation
of travel times. In our paper, we only use the traffic speed
and traffic condition to set up the hazard based model. To
evaluate the performance of the estimated results over the
whole study site, we calculate the average KL divergence by∑
ek∈E DKL(Popt||Pes)/|E|.
Due to page limit, we only present the estimated results in

six representative time intervals listed in Table I, including
the traffic states of free flow and congestion. The study site
(number of links and number of intersections) in each time
interval are presented in the third and fourth column where
each link has enough observations. After estimating R, Table
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TABLE IV
THE KS TEST BASED ON DIFFERENT PROBABILISTIC MODELS WITH SIGNIFICANCE LEVEL α = 0.01.

Dem,es
τ17 τ19 τ23 τ31 τ35 τ41

c(α) = 0.120 c(α) = 0.085 c(α) = 0.093 c(α) = 0.115 c(α) = 0.960 c(α) = 0.120
Opt-KDE 0.027 0.033 0.021 0.029 0.045 0.030
KDE-E2E 0.042 0.059 0.037 0.045 0.064 0.038
Gaussian 0.231 (reject) 0.189 (reject) 0.204 (reject) 0.176 (reject) 0.271 (reject) 0.266 (reject)

log-normal 0.117 0.134 (reject) 0.802 0.095 0.131 (reject) 0.128 (reject)
GMM 0.051 0.046 0.043 0.055 0.088 0.039
Hazard 0.109 0.087 0.091 0.103 0.882 0.130 (reject)

II shows the percentage of intersections that should deploy
traffic detectors. In the best scenario, approximately 53% of
intersections require deploying traffic detectors, and in the
worst scenario, approximately 63% of intersections require
deploying traffic detectors.

From Table III, we can observe that the performance of
our proposed method, namely KDE-E2E, is always better
than Gaussian, log-normal and hazard based model in each
time interval, but a little worse than GMM in τ17 and τ31.
This can be explained by the fact that GMM has a similar
structure with Opt-KDE. However, GMM, together with
other counterparts are feasible based on the assumption that
there should be observed data in each link. It is difficult to
estimate their parameters once there are no observations.

Table IV presents the results of the KS test implemented
on a randomly selected link. Clearly, our proposed model is
accepted at each time interval. Compared to KDE-E2E and
GMM, we can find that Dem,es of GMM in τ19 is smaller
than Dem,es obtained from our proposed model. This result
is consistent with the result in Table III.

VI. CONCLUSION

Motivated by the network tomography, in this paper, we
proposed a KDE based method to estimate LTTD over the
whole road network. As the method only needs the E2E
measurements detected by the traffic data collected at or near
both ends of the path, only a limited number of traffic detec-
tors are necessary. With the real data, the proposed method
has better performance than the widely used parametric
models, e.g., Gaussian and log-normal in both traffic states of
free flow and congestion. From Algorithm 1, we can observe
that the complexity of the EM based algorithm depends on
the number of parameters in the KDE, which has a close
relationship with the number of E2E measurements. In our
future work, we aim to come up with a sampling algorithm to
control the number of available E2E measurements in order
to improve the efficiency of the EM based algorithm.
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