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Abstract— Motivated by the network tomography, in this
paper, we present a novel methodology to estimate link travel
time distributions (TTDs) using end-to-end (E2E) measurements
detected by the limited traffic detectors at or near the road
intersections. As it is not necessary to monitor the traffic in
each link, the proposed estimator can be readily implemented
in real life. The technical contributions of this paper are as
follows: First, we employ the kernel density estimator (KDE)
to model link travel times instead of parametric models,
e.g., Gaussian distribution. It is able to capture the dynamic of
link travel times that vary with the change of road conditions.
The model parameters are estimated with the proposed C-
shortest path algorithm, K -means-based algorithm, as well as
expectation maximization (EM) algorithm. Second, to reduce
the complexity of parameter estimation, we further propose a
Q-opt and an X-means-based algorithm. Finally, we validate
our proposed method using a dataset consisting of 3.0e +
07 GPS trajectories collected by the taxicabs in Xi’an, China.
With the metrics of Kullback Leibler and Kolmogorov–Smirnov
test, the experimental results show that the link TTDs obtained
from our proposed model are in excellent agreement with the
empirical distributions, provided that ∼ 70% of the intersections
are equipped with traffic detectors.

Index Terms— Link travel time distribution, network tomog-
raphy, kernel density estimator, expectation maximization (EM)
algorithm.

I. INTRODUCTION

TRAVEL time plays an important role in measuring traffic
conditions of the road networks. In most studies, travel

times are estimated at level of link or path, where a link is
usually defined as a oneway road segment without any road
intersections inside, while a path is composed of a sequence
of links [1], [2]. In this paper, we focus on link travel time
estimation since link travel times deliver more benefits to both
travelers and traffic administrators. On the one hand, it allows
travelers to make optimal route choice to minimize their
overall travel times. On the other hand, traffic administrators
can accurately locate where congestion happens, and carry

Manuscript received February 13, 2019; revised June 19, 2019; accepted
July 12, 2019. The Associate Editor for this paper was W. Jin. (Corresponding
author: Baoqi Huang.)

P. Duan and G. Mao are with the School of Computing and Communication,
University of Technology Sydney, Sydney, NSW 2007, Australia (e-mail:
Peibo.Duan@student.uts.edu.au; g.mao@ieee.org).

J. Kang is with the Department of Internet of Things and Net-
work Engineering, Chang’an University, Xi’an 710064, China (e-mail:
junkang@chd.edu.cn).

B. Huang is with the College of Computer Science, Inner Mongolia
University, Hohhot 010021, China (e-mail: cshbq@imu.edu.cn).

Digital Object Identifier 10.1109/TITS.2019.2932053

out effective traffic management to improve road network
performance accordingly.

Recently, travel time distribution (TTD) estimation has
attracted considerable research attention. Unlike mean travel
time estimation where travel time is estimated as a determinis-
tic variable [1], [3]–[5], TTD estimation assumes travel time to
be a random variable, which addresses the intuition that travel
time is time-varying due to the heterogeneous and dynamic
nature of traffic [4], [6], [7]. Moreover, the knowledge of the
moments (e.g., mean and variance) obtained from a probability
distribution can be used as the indicators to analyze travel time
reliability [8].

Existing methods to estimate link TTDs suffer from the
following shortcomings. First, many methods are based on
the parametric models like Gaussian distribution or log-
normal distribution [9], [10]. These models are easy for
mathematical analysis, yet unable to capture all of interest-
ing dynamics of travel times that vary with the change of
road conditions [3], [5], [11]. Second, to estimate the model
parameters such as the means and variances in a Gaussian
distribution, it is necessary to guarantee that there are sufficient
travel time data in the target links [6]. Unfortunately, this con-
dition cannot be satisfied in an urban road network involving
thousands of links, that are impractical to be fully covered by
any type of data detector, e.g., global position systems (GPSs)
or traffic cameras. Third, given the links where there is
no observation, the travel times of these links are usually
estimated based on contexts learned from their spatially and
temporally correlated neighbors. However, the spatio-temporal
correlation varies with the time of the day [12]. Therefore, not
only is it hard to guarantee the estimation accuracy of link
travel times, but also a large amount of computing resource
are consumed on data modeling [13].

Network tomography and travel time estimation bear a
strong resemblance to each other. They both face the prob-
lem that the internal features (link delay in the network
tomography, link travel time in the road network) cannot be
directly measured because of the limited coverage of observers
(beacons in the network tomography, traffic cameras in the
road network). Such similarity enables the techniques for
network tomography to have the potential on estimating link
travel times. To the best of our knowledge, the study closest
to ours is Zhang et al.’s work [7]. The authors estimate mean
travel times using a linear model, which is also feasible in the
case that the travel times follow Gaussian distribution [14].
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However, the Gaussian distribution has the shortages discussed
above.

To cope with the aforementioned problems, in this paper,
we estimate link TTDs with a non-parametric model, namely
kernel density estimator (KDE). The model parameters are
estimated using the data collected at or near the road inter-
sections. The main contributions are briefly summarized as
follows:
• With the proposed KDE based model, we are able to

capture the dynamic of link travel times that vary with
the change of road conditions. The model parameters are
estimated with the proposed C-shortest path algorithm,
K -means based algorithm, as well as the expectation
maximization (EM) algorithm.

• We analyze the performance bottleneck of the proposed
parameter estimation algorithms. To reduce the complex-
ity and guarantee the estimation accuracy, we propose a
Q-opt algorithm and an X-means based algorithm.

• We validate the proposed method based on a dataset
including over 3.0e+ 07 GPS trajectories collected by the
taxicabs in Xi’an, China. The experimental results show
that the TTDs estimated using our proposed model are in
excellent agreement with empirical distribution, provided
that only ∼ 70% of the intersections are equipped with
traffic detectors.

The organization of the paper is as follows: Related work is
summarized in Section II. Then we introduce the principles of
network tomography and KDE in Section III. The proposed
model and parameter estimation algorithms are described in
Section IV and V respectively. We explore the performance
of the proposed model in Section VI. Finally, we draw the
conclusion in Section VII.

II. RELATED WORK

Research on link travel time estimation are mainly divided
into two categories: 1) mean travel time estimation, and
2) TTD estimation. In the remainder of this section, we first
introduce the work in terms of mean travel time estimation
according to the utilization of traffic detectors. After that,
the research with respect to TTD estimation are summarized
and analyzed according to the application of probabilistic
models.

Data driven methods are well studied in the mean travel time
estimation because of the coming of big data era for trans-
portation. These traffic data are collected by different types
of detectors, mainly including GPS, Bluetooth device, loop
detector and traffic camera. A significant part of GPS based
methods is devoted to solve map matching and data sparsity
problems. Map matching aims to calibrate the GPS coordinates
that did not fall into the roads where the vehicles were
traveling in. The corresponding approaches are on the basis of
geometric, topological, probabilistic, and artificial intelligence.
The details of these approaches have been introduced in
Sanaullah et al.’s work [15]. Data sparsity is mainly caused by
the low sampling frequency and limited number of data. The
solve this problem, the distinguished work was done by Wang
et al. [13] and Tang et al. [1]. They both introduced the tensor,
a technique utilized in the deep learning, to model travel times

on different links as multi-linear manner geometric vectors.
As the neighboring links are spatially correlated, the tensor
without observed data were estimated based on the geospatial,
temporal and historical contexts learned from the neighboring
tensors.

Bluetooth device is an alternative to provide traffic data
for mean travel time estimation. The Bluetooth device in
each vehicle has the unique Media Access Control address
(MAC address). The traffic information of these vehicles
will be captured by the Bluetooth Traffic Monitoring Sys-
tems (BTMSs) installed in the roads. Bluetooth based methods
focus on solving the following two issues: i) the measurement
reliability produced by BTMSs, e.g., transmission power, and
ii) the probability of detecting the same vehicle by two
successive Bluetooth detectors. To get rid of these problems,
Bhaskar et al. [16] calibrated Bluetooth data with the aid of
loop detectors. José et al. [17] introduced a series of weights
to adjust the travel times estimated from Bluetooth data. The
weights were predefined according to different traffic patterns
such as free flow or congestion.

Loop detector is also a widely used detector in mean
travel time estimation. Unlike GPS and Bluetooth, it can-
not identify the vehicles. As a result, related research are
usually on the basis of traffic flow theory. In other words,
travel times were inferred from traffic flow and travel
speed [18], [19]. For instance, Li et al. [18] designed
an a temporal-spatial queuing model with consideration of
travel speed, headway time series and travel times. Yi and
Williams [19] proposed a dynamic Nam-Drew model to esti-
mate travel times under traffic conditions of free flow and
congestion.

Traffic camera collect data through videos or images. With
the rapid development of the techniques in the realm of artifi-
cial intelligence [20], [21], the improvement of vehicle recog-
nition accuracy enable the traffic camera data to become more
reliable. Unfortunately, it is impractical to monitor every link
in the whole urban network by traffic cameras. To address this
problem, Yeon et al. [22] developed a Discrete Time Markov
Chains (DTMC) model with consideration of different road
conditions like congestion and free flow. Rahmani et al. [23]
proposed a method extended from kernel-based estimation by
means of both traffic camera data and GPS data.

In recent years, growing interest is motivating a shift toward
estimating TTD. The corresponding work usually assume
travel times follow either Gaussian distribution or log-normal
distribution. Specially, Li et al. [24] indicated Gaussian was
appropriate to model travel time in the presence of free flow,
small time interval (e.g., 5 minutes), whereas log-normal was
appropriate to model travel time in the presence of congestion,
large time interval (half an hour). Other probabilistic models
were also used to model travel times such as Weibull distri-
bution and Burr distribution [25]. To improve the estimation
accuracy, Pu [26] used the log-normal model with considera-
tion of the inter dependencies between the reliability measures
of travel times such as standard deviation, coefficient of
variation and frequency of congestion. Moylan and Rashidi [6]
constructed multiple hazard-based models under different road
conditions leveraging on the factors affecting the variation of
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road conditions such as the weather, the wind speed were
modeled as explanatory variables. Prokhorchuk et al. [4]
proposed a Gaussian copula graphical model to transform
the non-Gaussian characteristics of travel times into Gaussian.
Yang et al. [8] developed a Gaussian mixture model by con-
sidering the delay in the signalized intersections. From above
literature, we can observe that these methods are parametric
model based. As the structure (the number of parameters) of a
parametric model is fixed, it is difficult for them to capture all
of interesting dynamic of travel times varying with the change
of road conditions [12].

A common weakness in the existing research on TTD
estimation is that they seldom consider impact with respect
to the limited coverage of traffic detectors. This is because the
proposed estimators are generally implemented in the typical
study sites like the major roads in the urban city [6]. The
traffic detectors deployed in these study sites are dense. Thus,
there are always sufficient observations. However, consider the
whole urban network, a traffic detector, e.g., traffic camera,
is far away from another. It leads to a problem that the traffic
states in the links between two traffic detectors are unobserv-
able. To solve this problem, techniques of network tomography
are the candidates. More concretely, network tomography uses
the information derived from end-to-end (E2E) measurements
to explore the internal characteristics of an internet network,
e.g., the packet transmission delay. In the context of traffic
network, the travel times detected by the two traffic detectors
can be viewed as the E2E measurements. Thus, the TTDs of
the links between the two traffic detectors can be inferred from
the observations. Motivated by this idea, Zhang et al.’s [7]
provided a traffic camera deployment strategy with which the
accuracy of mean travel time estimation was improved, and
meanwhile, the overall deployment cost on traffic cameras was
minimized.

Different from Zhang et al.’s work, we focus on TTD esti-
mation. Although similar problem like the estimation of link
delay distribution has been researched in the network tomog-
raphy, the techniques cannot be directly used in our work since
most of them are based on parametric models such as Gaussian
or exponential distributions with the shortcomings discussed in
Section I. Note that bin size model is a kind of non-parametric
model [27], [28] used in the network tomography, however,
it can vary wildly with the different configuration of bins,
especially with relatively small number of data. Therefore,
in this paper, we use kernel density estimator which provides
similar distribution even with varying bandwidth and/or kernel
type.

III. PRELIMINARY

A. Network Tomography
To illustrate the principle of network tomography, a concrete

example is given in Fig.1, where there are 10 links, denoted
by {li |i = 1, 2, . . . , 10}. The E2E measurements are taken by
the beacons configured at {A, C, G}. Suppose the packets are
transmitted through the routes r j ⊆ {r1, r2, r3, r4, r5} (on the
upper right of Fig. 1), the E2E measurements on each route
are denoted by Y = {y1, y2, y3, y4, y5}. ∀y j ∈ Y can be
formulated as y j = ∑10

i=1 w j i xi , where xi is the delay on li ;

Fig. 1. An instance of network tomography.

w j i = 1, if li is covered by r j , otherwise w j i = 0. Given
a route matrix W where each row represents a route and
each column represents a link (on the bottom right of Fig. 1),
we formulate the delays on all the routes as:

Y T = W XT, (1)

where X = {xi |i = 1, 2, . . . , 10}, Y T and XT are the
transposes of Y and X respectively. A large number of methods
has been proposed to get the solution of X [14], [29].

B. Kernel Density Estimator
The probability density function (PDF) of the kernel density

estimator (KDE) is defined as:

p(x) = 1

nh

n∑

i=1

K (
xi − x

h
), (2)

where x is the random variable, n is the number of samples,
h > 0 is called the smoothing bandwidth that controls the
amount of smoothing, xi is the i -th sample, K (x) is named
the kernel (function) that is generally a smooth and symmetric
function. There are various choices among kernels, such as
uniform, triangle, Gaussian, and Epanechnikov kernels. The
best fitting performance (the lowest mean square error) is
obtained with the Epanechnikov kernel. However, it will
reduce the estimation efficiency. The fitting performances of
uniform, triangle, and Gaussian kernels are similar. Therefore,
for the sake of mathematical analysis, in this paper, we use
the Gaussian kernel [30]. In particular, K ( xi−x

h ) follows the
standard normal distribution of N (0, 1). Equivalently, we can
rewrite (2) as follows:

p(x) = 1

nh

n∑

i=1

N (x|ui , σ
2
i ), ui = xi , σi = h. (3)

IV. KDE BASED MODEL

To help readers keep track of symbols’ meanings, we clarify
the major notations in Table 1. Moreover, we provide a flow-
chart in Fig.2 to describe our proposed method. It includes:
• Model building: Given a study site, we use KDE to model

travel time distributions across all the links (Section IV).
• Parameter estimation: The number of model parameters

is closely related to the placement of traffic detectors.
To this end, we design a C-shortest path algorithm
(Section V-A) with which the maximal number of paths
between any pair of traffic detectors is C . As there may
be C > 1 paths between two traffic detectors, it is not
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TABLE I

SYMBOLS TABLE

Fig. 2. Flowchart of the proposed method.

clear which path an E2E measurement is collected from.
Therefore, we propose a data allocation strategy based on
K -means algorithm (Section V-B). Lastly, EM algorithm
(Section V-C) is implemented to estimate the parameters.

Fig. 3. The average travel time on a road in each time interval. The red line
is the 80% of all the points.

• Accuracy-complexity trade-off : The complexity of EM
algorithm depends on the number of links and the number
of E2E measurements between two traffic detectors (the
details will be illustrated in Section V-D). To guarantee
the accuracy-complexity trade-off, we first design a Q-opt
algorithm so that the maximal number of links in a path
is Q. It is executed together with the C-shortest path
algorithm. To filter the E2E measurements that contribute
little to the parameter estimation, we propose an X-means
based sampling algorithm, executed after K -means based
algorithm.

To illustrate the advantage of KDE model, we analyze the
cumulative density functions (CDFs) of travel times on a
randomly selected link in Xi’an road network. The details of
data will be illustrated in Section VI. In the analysis, we divide
a day into 48 time intervals, each of which is half an hour
(e.g., time interval 1 represents time period from 00:00:00am
to 00:30:00am). We consider two road conditions: free flow
and congestion. To identify the road condition in each time
interval, we use the method proposed by Nguyen et al. [31].
specifically, a road is considered to be congested, if the mean
travel time in a time period is greater than n-th percentile of
the mean travel times in the whole time intervals. In this paper,
we use n = 80. The red line in Fig.3 is the 80th percentile of
all the mean travel times in 48 time intervals. The congestion
happened in the time intervals where the points are above the
red line. Otherwise, the road is in the state of free flow.

In Fig. 4a and Fig. 4b, we present the CDFs of the empirical
data, Opt-KDE, Gaussian distribution and log-normal dis-
tribution under the road conditions of congestion and free
flow respectively. Opt-KDE represents the KDE with optimal
bandwidth estimated by the biased cross-validation method
proposed by Scott and Terrell [32]. From Fig. 4, we can
observe that the CDF of Opt-KDE matches the empirical data
better than the other two models. Furthermore, we use the KS
(Kolmogorov-Smirnov) test to measure the similarity between
the CDFs of two distributions. The null hypothesis of the
KS test is that the two distributions are the same. Given a
significance level (α = 0.01), we reject the null hypothesis,
if the maximal distance between two CDFs is greater than the
critical value, c(α), defined by:

c(α) =
√

−1

2
lnα ·

√
n + m

nm
, (4)

where n is the size of empirical data and m is the size of
data used for probabilistic model estimation. Moreover, we use
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TABLE II

THE KS TEST BASED ON DIFFERENT PROBABILISTIC MODELS WITH SIGNIFICANCE LEVEL α = 0.01

Fig. 4. CDFs based on empirical data, Opt-KDE, Gaussian and log-normal
models under the congestion and free flow respectively.

Dem,es to denote the maximal distance between the CDFs
of empirical data and estimated distribution. From Table II,
we find that the Gaussian model is rejected in the case of free
flow and both Gaussian and log-normal models are rejected
in the case of congestion. Moreover, with the bandwidth
2s ≤ h ≤ 5s, KDE model also fit the data better than the
Gaussian and log-normal models. Similar results can also be
obtained based on the data in other links.

We model a road network as a digraph. Specifically, we par-
tition the road network into a set of links where each link is
an one-way road segment bounded by two road intersections
and there is no intersection within a link. Drawing from the
graph theory, the digraph model is represented as G = (V , E)
where V is the set of vertices and E is the set of directed
edges. Each vertex Vi ∈ V represents an intersection. There
exists an edge ei j ∈ E, ei j = (Vi , Vj ) if there is a link with
traveling direction from Vi to Vj . We name a vertex Vi as
a measurement point if there are observations detected by
the traffic detectors like traffic cameras at Vi . Then V =
{Vmeas, Vunmeas} where Vmeas is the set of measurement points
and Vunmeas = V − Vmeas . Obviously, the TTD of ei j can be
estimated if both end points of ei j , Vi , Vj ∈ Vmeas . However,
in the real life, it is impractical to cover ∀Vi ∈ V with traffic
detectors. As a result, there is always a sequence of links
between two measurement points. With the principle of graph

theory, we define a travel route between one intersection and
another as a path, denoted by:

r = {e1, e2, . . . , edr }, (5)

where dr is the number of links and the edges in r are all dis-
tinct from each other. Given a path r between Vi , Vj ∈ Vmeas ,
we can obtain the travel time on r with the observations at Vi

and Vj . For instance, a vehicle travels from Vi to Vj through
r and is captured by the traffic cameras at Vi and Vj at time t1
and t2, then the travel time t = t2 − t1. In this paper, we also
name t as an E2E measurement.

Consider the situation that the positions of the traffic data
collected by some traffic detectors are not exactly located
at the road intersections, but somewhere nearby, e.g., GPS
data collected by the probe vehicles. We use a distance and
time proportion method to estimate E2E measurements. More
details will be illustrated in Section VI. We use the bold-faced
letter t to represent a random variable of travel time. The
objective of our work is to estimate the distribution of tek for
∀ek ∈ E with the E2E measurements detected by the limited
traffic detectors.

We assume the travel times for the vehicles traveling in dif-
ferent links are spatially independent. Meanwhile, we assume
different vehicles traveling in the same link will experience
independent travel times. We respectively term these two
assumptions as spatial independence and temporal indepen-
dence. In practice, travel times in the links are generally
spatially and temporally correlated to a greater or lesser extent.
However, these correlations are usually not strong enough.
In addition, ignoring dependencies can also have benefits on
the analysis. For instance, in [13], to simply the objective
function of path travel time estimation, Wang et al. assumed
the travel times on different links are independent. Based
on the above analysis, it is sufficient for us to use these
assumptions to derive the estimates of TTD.

We model the distribution of tek with KDE as follows:

p(tek |�ek ) =
1

nek hek

nek∑

i=1

N (tek |μek ,i , h2
ek

), (6)

where �ek = {nek , hek , μek } is the set of parameters. More
precisely, nek is the number of vehicles traveling through
ek during a time interval, hek is the bandwidth and μek =
{uek ,i |i = 1, 2, . . . , nek } where uek ,i ∈ μek is the travel time
when the i -th vehicle traverses ek . As tr = ∑dr

k=1 tek , the
distribution of tr conditioned on �ek can be parameterized as
follows:

p(tr |�r ) = p(te1 |�e1) ∗ . . . ∗ p(tedr
|�edr

), (7)

where ∗ represents the convolution operation and �r =
{�ek |k ∈ dr }.
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In the network tomography, the transmission route of a
packet is always known. However, in our work, the path r
where an E2E measurement is collected is usually unknown
because of the following two reasons: i) the limited coverage
of traffic detectors makes the travel route unobservant, and
ii) there may be multiple paths between two measurement
points. We use R = {r1, r2, . . . , r|R|} to denote the alternative
paths between two measurement points where | · | is the
cardinality of a set. Given an E2E measurement t , we introduce
a binary variable pt |r j , r j ∈ R where pt |r j = 1 if t is
collected from r j ⊆ R and pt |r j = 0 otherwise. Obviously,∑

r j∈R pt |r j = 1 since an E2E measurement is collected only
from a unique route. We use Pt |R = {pt |r1, pt |r2, . . . , pt |r|R| } to
represent the set of binary variables for t based on routes R,
so that the probability of t conditioned on Pt |R and �R is
modeled by:

p(t|Pt |R,�R) =
∏

r j∈R

p(tr j |�r j )
pt|r j , (8)

where �R = {∪�r j |r j ⊆ R}. Given the set of E2E measure-
ments between two measurement points in a time interval, T .
We define PT |R = ∪t∈T Pt |R , then the log-likelihood of T is
formulated as:

L(T |PT |R,�R) =
∑

t∈T

ln p(t|Pt |R,�R). (9)

In a road network, suppose we have M pairs of measurement
points, then we use T = {t ∈ Tm |m ∈ M} to denote the
set of all E2E measurements over the whole study site. The
log-likelihood of T is formulated as:

L(T|PT|R,�R) =
∑

m∈M

L(Tm |PTm |Rm ,�Rm ), (10)

where R = {Rm |m ∈ M} is the set of the paths with measured
data in the road network; PT|R = ∪m∈M PTm |Rm and �R =
∪m∈M�Rm . By substituting (7) and (9) into (10), we obtain
L(T|PT|R,�R) as follows:

L(T|PT|R,�R) =
∑

m∈M

∑

t∈Tm

∑

r j∈R

pt |r j ln p(tr j |�r j ). (11)

To simplify (11), we introduce R = ∪m∈M Rm . Moreover,
we define PT|R = {pt |r j |t ∈ T, r j ⊆ R} where pt |r j = 1 if
and only if t is collected on route r j and otherwise, pt |r j = 0.
Obviously, the significance of R and PT|R are equivalent to
R and PT|R. Meanwhile, we introduce �R = {∪�r j |r j ⊆ R}.
As both R and R should cover all the edges in G, we have
�R = �R = {∪�ek |ek ∈ E}. In this case, (11) can be
represented as

L(T|PT|R,�R) =
∑

t∈T

∑

r j∈R
pt |r j ln p(tr j |�r j ). (12)

From (10), we can observe that the estimation of {PT|R,�R}
relies on R. In the next section, we first illustrate the
approaches to estimate R, followed by the estimation of
{PT|R,�R}.

Fig. 5. The selected area in Xi’an, China and the number of paths in different
areas.

Fig. 6. A travel route between two intersections using BW and Google Maps.

V. PARAMETER ESTIMATION

In this section, we estimate R using a C-shortest paths
based algorithm. After that, we estimate PT|R with a K -means
algorithm based approach. Next, we estimate �R with the
EM (Expectation Maximization) algorithm. Finally, to make
a trade-off between the complexity and accuracy of the EM
algorithm, we design a Q-opt algorithm together with a
X-means algorithm.

A. The Estimation of R

R has a close relationship with the placement of traffic
detectors as well as the road topology. In [7], the authors
proposed a traffic camera placement strategy based on the
routing matrix W . Particularly, they calculated the bases of W ,
denoted by BW , where each basis BW ∈ BW was defined as
a maximal subset of linearly independent routes. After that,
the optimal basis Bopt ∈ BW was obtained with the minimum
cost on the deployment of traffic cameras.

However, the above routing matrix based method is faced
with two problems. First, W is usually a high dimensional
matrix, especially in the urban road networks. To show the
relationship between the number of links and the scale of W ,
in Fig.5a, we select six regions in Xi’an, each of which is
a disk centered at Zhonglou with the radius taking a value
among {1.0km, 1.25km, 1.5km, 1.75km, 2.0km, 2.1km}. The
larger the radius is, the more links are contained in the region.
In Fig.5b, the x-coordinate presents the numbers of the links
in these six regions are {126, 183, 253, 349, 440, 472}.

After modeling each region as a digraph G, we present the
number of paths in each region in Fig.5. Obviously, with the
growth of the number of links, the number of rows (paths)
in W experiences an approximately exponential growth. The
high dimension of W has an negative impact on the estimation
of BW . Such phenomenon is mainly attributable to the fact
that there may be hundreds or thousands of paths between
two intersections. Second, the route in each row of Bopt

does not always have observation data. For instance, in Fig.6,
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Algorithm 1 The Estimation of R

Input: G = {V , E}, C
Initialization: R← ∅, BW ← ∅, R̂← ∅

1 for ∀Vi , Vj ∈ Vmeas, i 
= j
2 Estimating RC

i j using Yen’s algorithm [33]

3 R̂← R̂ ∪ RC
i j

4 endfor
5 Obtaining W using E and R̂

6 BW ← one basis of W
7 for ∀Vi , Vj ∈ Vmeas, i 
= j
8 for each path r in each row of BW

9 if Vi and Vj are the end points of r
10 R ∪ r
11 endif
12 endfor
13 R← R ∪ R
14 endfor

we present an example where route r2 (path V1->V2->V4->
V5->V3) is obtained from Bopt , whereas r1 (path V1->V2->V3)
is achieved with Google Maps. Although r2 covers more links
than r1, there is no observation data on r2 since the motorists
prefer traveling in r1 due to the few travel time and short
distance.

To solve the above problems, we propose a C-shortest
paths based algorithm (Algorithm 1) to estimate R. Therein,
C is a manually set parameter which is used to control the
maximal number of paths between two vertices. From line 1
to line 4, Yen’s algorithm [33] is applied to find C-shortest
paths between any pair of vertices in Vneas , denoted by R̂.
The complexity is O(C|V |3(|E | + |V | log |V |)). After that,
we obtain W , each row of which is a route in R̂ and each
column of which is an edge in E . In line 6, a basis BW of W
is estimated using the Bareiss algorithm with the complexity
of O((|V | · |E |)2). Then we estimate R from line 7 to line 14
with the complexity of O(|V |2). Clearly, the complexity of
Algorithm 1 is polynomial.

B. The Estimation of PT|R
Given an E2E measurement t ∈ T detected by the m-th pair

of measurement points, we have pt |r j⊆R−Rm = 0 and there
exists only one path r j ∈ Rm with which pt |r j∈Rm = 1.
In this case, The problem of estimating pt |r j ∈ PT|R can be
interpreted as a clustering problem, that is, to allocate t to
a path in R. To this end, we use the K -means algorithm, an
unsupervised learning method, which is available for clustering
data without labels.

We implement the K -means algorithm on each pair of
measurement points parallelly. More precisely, for Tm ⊆ T,

we define K = |Rm |. Note that a problem we should address
is that we do not know which path a cluster represents. As the
shorter a path is, the less is the time that a vehicle needs to
travel through. We allocate different paths into the clusters
using the K -means algorithm in the following way:
• We classify the E2E measurements in Tm into |Rm |

clusters with the K -means algorithm.
• We evaluate the average travel time in each cluster

and sort the clusters according to their average travel
times.

• We sort the paths according to their lengths, then we
map each cluster to each path according to the lengths of
paths.

C. The Estimation of �R

Recall (6), ∀�ek ⊆ �R has the parameters {nek , hek , μek }.
Particularly, nek is related to the number of E2E measure-
ments collected on the paths that cover ek . We define a |R|
dimensional vector Pt |R = (pt |r j |r j ⊆ R). Then nek can be
estimated by

nek =
∑

t∈T

Pt |R ·W k , (13)

where W is the route matrix estimated using line 5 in
Algorithm 1, and W k is the k-th column of W . nek is the
function of PT|R. In this case, the parameters in ∀�ek ⊆ �R

are essentially {hek , μek }.
In order to estimate hek and μek , we first simplify the

representation of (6) based on: 1) the associative property of
convolution, that is, f1(x)∗ ( f2(x)+ f3(x)) = f1(x)∗ f2(x)+
f1(x) ∗ f3(x), and 2) the property that the convolution of two
Gaussian distributions, i.e. N (μ1, σ

2
1 ) ∗N (μ2, σ

2
2 ), is also a

Gaussian distribution in the format of N (μ1 + μ2, σ
2
1 + σ 2

2 ).
With these two properties, (7) can be rewritten as (14),
shown at the bottom of this page, where Zr = ∏dr

k=1 nek ,
μr,z = ∑dr

k=1 uek ,i ,∀i ∈ nek and h2
r =

∑dr
k=1 h2

ek
. To better

understand (14), consider the following case:
Consider a route r covering two links, each link of which

has two E2E measurements, that is, ne1 = 2 and ne2 = 2.
Then, p(tr |�r ) = 1

2he1
(N (te1 |μe1,1, h2

e1
) + N (te1 |μe1,2,

h2
e1

)) ∗ 1
2he2

(N (te2 |μe2,1, h2
e2

) + N (te2 |μe2,2, h2
e2

)). Based
on (14), Zr = 2 × 2. For each z ∈ Zr , we calculate μr,z by
μr,1 = μe1,1+μe2,1, μr,2 = μe1,1+μe2,2, μr,3 = μe1,2+μe2,1,
μr,4 = μe1,2 + μe2,2, and calculate hr,z by h2

r = h2
e1
+ h2

e2
.

Given the natural log of p(tr |�r ):

ln p(tr |�r ) =
dr∑

k=1

ln
1

nek

+
dr∑

k=1

ln
1

hek

+ln
Zr∑

z=1

N (tr |μr,z , h2
r ).

(15)

p(tr |�r ) = 1

ne1 he1

ne1∑

i=1

N (te1 |μe1,i , h2
e1

) ∗ 1

ne2 he2

ne2∑

i=1

N (te2 |μe2,i , h2
e2

) ∗ . . . ∗ 1

nedr
hedr

nedr∑

i=1

N (tedr
|μedr ,i , h2

edr
)

= (

dr∏

k=1

1

nek hek

) ·
Zr∑

z=1

N (tr |μr,z, h2
r ), (14)
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Algorithm 2 EM Algorithm
Input:R
Initialization: �

(0)
R

1 for q ∈ 1, 2, . . .
E-step:
2 γ

(q)
tr j

(yz): Being updated using (19) with �
(q−1)
R

M-step:
3 for each μ

(q)
ek ,i

in �
(q)
ek ⊆ �

(q)
R

and h(q)
ek , ek ∈ E

4 μ
(q)
ek ,i
←

∑
r j⊆Rek

∑
tr j ∈Tr j

∑
z∈Zr j (μek ,i )

γ
(q)
tr j

(yz)tr j

Nr j

5 (h(q)
ek )2←

∑
r j⊆Rek

∑
tr j ∈Tr j

∑
z∈Zr j

γ
(q)
tr j

(yz)(tr j−uek ,i )
2

Nr j
6 endfor
Terminal:
7 if �

(q)
R

converges to a local optimum

8 return �
(q)
R

9 endif
10 endfor

we obtain L(T|PT|R,�R) in (16), shown at the bottom of this
page, where T = {t|t ∈ T, pt |r j = 1}.

From (16), we can observe that the parameters �R are
only included in L(T|�R). Thus, setting the derivative of
L(T|PT|R,�R) with respect to �R to zero, we have

dL(T|PT|R,�R)

d�R

= dL(T|�R)

d�R

= 0. (17)

Unfortunately, there is no closed form solution for (17) due
to the log of cumulative Gaussian distribution. As a result,
the Maximum Likelihood (ML) method does not work here.
To address this problem, we employ the EM algorithm to esti-
mate �R (Algorithm 2) based on the following assumption:

Assumption 1: The hek s of the KDE models for the travel
time in ∀ek ∈ E are same.

To begin with, we introduce the latent variables. For
∀r j ⊆ R, we define Zr j -dimensional latent variables as yr j

in which ∀yz ∈ yr j
satisfies yz = {0, 1} and

∑
yz∈yr j

yz = 1.

Given the definition that the marginal distribution over yr j
is

p(yz = 1) = Z−1
r j

, we formulate the distribution of yr j
as

p(yr j
) =∏

yz∈yr j
Z−yz

r j . We also define the conditional distri-

bution of an E2E measurement tr j as a Gaussian distribution
with p(tr j |yz = 1) = N (tr j |μr j ,z, h2

r j
). The joint distribution

of tr j is given by:
p(tr j ) =

∑

yr j

p(yr j
)p(tr j | yr j

)

= Z−1
r j

∑

z∈Zr j

N (tr j |μr j ,z, h2
r j

) (18)

We define γr j (yz) ≡ p(yz = 1|tr j ), which can be calculated
based on Bayes theorem:

γr j (yz) =
p(yz = 1)p(tr j |yz = 1)

p(tr j )

=
N (tr j |μr j ,z, h2

r j
)

∑
z∈Zr j

N (tr j |μr j ,z, h2
r j

)
(19)

In Algorithm 2, �
(0)
R

are the initial values of �R. In line 4,
Rek = {r j |ek ∈ r j , r j ⊆ R}, Zr j (uek ,i ) � {z|z ∈ Zr j , μek ,i ∈
ur j ,z} and Nr j is

Nr j =
∑

r j⊆Rek

∑

tr j ∈Tr j

∑

z∈Zr j (μek ,i )

γr j (yz(tr j )). (20)

As the performance of the EM algorithm heavily relies
on �

(0)
R

, we use the initialization strategy given in [34].

Convergence is achieved when �
(q)
R

≈ �
(q−1)
R

. The proof
of parameters update in line 4 and 5 is presented in the
appendix A.

D. Q-opt and X-Means Based Sampling Algorithm
In the proposed EM algorithm, we can observe that the

computational complexity in each iteration depends on Zr .
Further, (14) indicates that Zr is determined by dr and nek .
Therefore, the way to reduce the computational complexity is
to limit the path length dr and reduce the value of nek .

Intuitively, the smaller dr is, the less computational com-
plexity it costs. However, more traffic detectors are needed
in the road network if dr is smaller. Consider the worst case
that dr = 1, each path can be viewed as a link. In this case,
each intersection should be configured with a traffic detector.
To guarantee the accuracy-complexity trade-off, and to control
the number of traffic detectors, we propose a Q-opt Algorithm,
termed Algorithm 3, where Q means the maximal number of
links in a path dr ≤ Q.

In Algorithm 3, numT D is the number of traffic detectors
needed in a road network. Line 3 to 7 guarantee the number

L(T|PT|R,�R) =
∑

t∈T

⎛

⎝

dr j∑

k=1

ln
1

nek

+
dr j∑

k=1

ln
1

hek

+ ln

Zr j∑

z=1

N (t|μr j ,z, h2
r j

)

⎞

⎠

=
∑

t∈T

dr j∑

k=1

ln
1

nek

+
∑

t∈T

⎛

⎝

dr j∑

k=1

ln
1

hek

+ ln

Zr j∑

z=1

N (t|μr j ,z, h2
r j

)

⎞

⎠ (16)

=
∑

t∈T

dr j∑

k=1

ln
1

nek

+ L(T|�R),
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Algorithm 3 Q-opt
Input: G = {V , E}, Q
Initialization: Vmeas ← ∅, numT D, B̂ ← ∅

1 Estimate R̂ using line 1 to 4 in Algorithm 1
2 for q = 1 to Q
3 for each r ⊆ RK

i j , RK
i j ⊆ R̂

4 if dr > Q
5 Remove r from RK

i j
6 endif
7 endfor
8 Calculate B̂ based on line 5 and line 6 in Algorithm 1
9 for each column B̂k

10 if B̂k = 0
11 B̂ =

[
B̂; I k

]

12 endif
13 endfor
14 for each row B̂ j

15 V k ←the end points of B̂ j

16 Vmeas ∪ V k

17 endfor
18 if |Vmeas | < numT D
19 numT D← |Vmeas |
20 B ← B̂
21 endif
22 endfor
23 Estimate R based on line 7 to 14 in Algorithm 1

of paths between two vertices is no more than C and the
length of each path is no more than Q. Note that a link may
not be covered by any row in B̂ (line 10). To address this
issue, in line 11 we expand B̂ by a |E | dimensional vector I k

where the k-th element in I k is 1 and the other elements are 0.
From line 18 to 21, we obtain B with minimum numT D.
Given C and Q, the complexity of Algorithm 3 is the same
as Algorithm 1.

nek , as the function of PT|R, is related with R and T. As R

has been estimated using Algorithm 1, the way to reduce nk is
to use the subset of T, denoted by T̂, following the principle
that the dynamic characteristics of E2E measurements in T
can be perfectly captured by the selected E2E measurements
in T̂. To obtain T̂, we first employ the X-means algorithm [35]
to classify the E2E measurements on each path Tr j∈R into X
clusters, each of which represents a feature of the data. The
procedure of the X-means algorithm contains the following
three steps:
• Step 1: Given an initial value of X = Xin , we run the con-

ventional K -means algorithm till reaching convergence.
• Step 2: To find out whether there is a new centroid using

the splitting strategy in [35]. More precisely, we randomly
select a centroid and run the K -means algorithm. We will
accept such a new centroid if the resulting model score
is better than before. After that, we have X = X + 1.

• Step 3: Repeat the second step until X reaches a given
threshold Xthre or there is no improvement on the result-
ing model score.

Unlike the K -means algorithm where the number of clusters
K is manually set in advance, the number of clusters in

Fig. 7. The instance of calculating link travel time for a vehicle using GPS
data.

the X-means algorithm is identified automatically. Thus, the
X-means algorithm is able to better capture the dynamic
features of E2E measurements in Tr j than the K -means
algorithm. After that, we obtain a subset of Tr j , denoted by T̂r j ,
by selecting data from each cluster using the simple random
sampling algorithm [36]. Finally, we obtain T̂ = ∪T̂r j⊆R.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup
In this paper, the study site is based on the citywide

road network in Xi’an, China, which covers 30,549 links.
To validate our proposed method, we use the GPS trajec-
tories anonymously reported by over 11,000 taxicabs on
Sep. 5th, 2016 (Mon.). With the average sampling frequency
of 30 seconds, we yield over 3.0e+07 raw data records.
Each data has the travel information including the time stamp
when the data was sent to the server, the location coordinates
(longitude and latitude), the instantaneous travel speed and
travel state that takes values from {stop, cruising, occupied}.
We divide the day into 48 equal time intervals, denoted by
{τi |i = 1, 2, . . . , 48} where ∀τi represents half an hour,
e.g., the time interval between 8:00am-8:30am. After that,
we set up the model in each τi and implement the TTD
estimation in Java and Matlab.

Noises exists in the collected GPS data, mainly on account
of the precision of GPS. Thus we carry out data preprocessing
as follows:
• Map matching: We employ a weight-based topological

algorithm proposed by Velaga et al. [37], Zou et al. [38].
There are two stages in the algorithm: i) calculating the
weight score for each of the candidate links where a GPS
data record is probably in; ii) selecting the link with the
highest weight as the correct link for a GPS data record.

• Outliers filtering: We filter the outliers mainly including:
i) the locations of the GPS data that are out the scope of
Xi’an city; ii) the data where the travel speeds exceed
the speed limitation, i.e. 120km/h; iii) the data where
there are conflicts between the travel state and travel
speed (e.g., the state of vehicle is “stop” but the travel
speed is not 0); iv) the data where the taxicabs are not in
service.

B. Ground Truth
In this paper, we adopt the following two ground truths:

1) Opt-KDE: link travel time distributions estimated by KDE
with the optimal bandwidth. As discussed in Section IV,
Opt-KDE can fit the distribution of empirical data better
than any other models. Thus, we compare the results of
our proposed method with Opt-KDE to validate estimation
accuracy; 2) Empirical CDF : the CDF of empirical data.
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Fig. 8. The percentage of intersections that should deploy traffic detectors with different configurations of Q and C in different time intervals.

TABLE III

THE NUMBER OF LINKS AND TRAVEL STATES IN EACH TIME INTERVAL

TABLE IV

AN INSTANCE OF K -MEANS BASED ALGORITHM USING THE DATA

COLLECTED FROM THE PATHS BETWEEN A AND B IN τ19

Fig. 9. The paths between two endpoints A and F .

With KS test defined in Section IV, we can observe whether
the estimated probability distribution is accepted or not.

The travel time when a vehicle traverses a link is calculated
in two different ways, which depend on the number of GPS
data records reported by this vehicle:
• Fig.7a illustrates the case with only one GPS data record

is reported by a vehicle. The travel time tAB is calculated
by dAB/vAB , where dAB is the length of link AB and vAB

Fig. 10. The performance of X-means based algorithm based on the instance
in Fig.9.

TABLE V

THE AACC OF K -MEANS BASED ALGORITHM AND GREEDY APPROACH

TABLE VI

AVERAGE KL DIVERGENCE FOR DIFFERENT MODELS

IN THE SELECTED TIME INTERVALS

is the space mean speed inferred from the instantaneous
speed using the method in Appendix B.

• Fig.7b presents the case that multiple GPS data records
reported by a vehicle. These data might not exactly reside
at the endpoints of the link. In this example, GPS data
records are transmitted at the points labeled by red.
Assuming A′ and B ′ are the two GPS data records closest
to A and B , respectively. Furthermore, the timestamps
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TABLE VII

THE KS TEST BASED ON DIFFERENT PROBABILISTIC MODELS WITH SIGNIFICANCE LEVEL α = 0.01

when the taxicab sent GPS data at A′ and B ′ are
tA′ and tB ′ . Clearly, tAB 
= tA′B ′ = tA′ − tB ′ . To counter
this effect, we apply the method, namely distance and
time proportion proposed by Sanaullah et al.’s [15],
to calculate link travel time. Take Fig.7 as an example,
tAB is calculated by:

tAB = dAB

dA′B ′
tA′B ′ . (21)

Similarly, we use the method to evaluate the path travel times.

C. Results
Due to the page limit, we only present the estimated results

in the six representative time intervals including the traffic
states of free flow and congestion. Note that the parameters
of Opt-KDE and other counterparts (including Gaussian, log-
normal, GMM, and hazard-based methods) are estimated
assuming that there are traffic detectors deployed on all the
links. In this case, we should select a set of links from the
whole road network, each of which has sufficient observed
data (Table III). By comparing with these methods, we are
able to observe the advantage of our proposed method, which
only uses a limited number of traffic detectors. In Fig.8,
we present the percentage of intersections that should deploy
traffic detectors. We then observe that fewer traffic detectors
are needed when the values of Q and C become larger.
In addition, the trend of curves is similar when C = 2, 3 and 4.
This can be explained by the fact that given a Q, there are at
most two candidate paths between most measurement points.
Moreover, the percentage converges when Q = 10. In the best
scenario, approximately 63% of intersections require traffic
detectors, and in the worst scenario, approximately 70% of
intersections require deploying traffic detectors (in Fig. 8f).
The convergence reflects the fact that the basis (BW ) obtained
from route matrix W changes little when Q ≥ 8. Based on
the above analysis, the following experiments are implemented
based on the results obtained from the algorithm with Q = 10
and C = 2. It is worth noting that the optimal strategy of traffic
detector placement is the problem that should be discussed
distinctively. It will be studied in our future work.

In Table IV, we present the experimental results of K -means
based algorithm using the data collected by the traffic detectors
at the endpoints A and F shown in Fig.9. The first path
has the links AB , BC , and C F . The second path has the
links AB , B D, DE , and E F . In τ19, we have 16 E2E
measurements collected on path 1 and 12 on path 2 (the left
side of Table IV). The right side of Table IV shows that

TABLE VIII

AVERAGE KL DIVERGENCE AND KS TEST OVER 48 TIME INTERVALS

13 out of 16 (10 out of 12) E2E measurements collected
on path 1 (2) are accurately allocated to the corresponding
links. We define ACC as clustering accuracy (the percentage
of correct decisions). Then, the ACC of K -means for the given
instance is 82.1%. To present the performance of K -means
based algorithm over the whole study site in each time interval,
we use the average clustering accuracy (AACC) calculated by
AACC =

∑
m∈M ACCm

M , where ACCm is the ACC of K -means
algorithm implemented on the data collected from the paths
between the m-th pair of measurement points. In Table V,
we can observe that the best result is obtained in τ35 with
AACC = 87.4%. The worst result is AACC = 79.5% in τ23.
Compared to the greedy approach used in [7], the experimental
results show a good performance of our proposed K -means
based algorithm.

Taking path 1 in Fig. 9 as an instance, we present the
performance of X-means based algorithm in Fig. 10. More
precisely, the red solid lines show the PDF and CDF of
path TTD using Opt-KDE model with 16 E2E measurements.
However, only half (8) E2E measurements are needed using
X-means based sampling algorithm. From the figures, we can
observe that the distributions using the selected E2E mea-
surements is similar with the ones using the whole data.
Similar experimental results are obtained based on the E2E
measurements on other paths. Therefore, it is sufficient for
us to believe that the E2E measurements filtered by X-means
based sampling algorithm can be viewed as the representatives
of the whole E2E measurements, and used for parameter
estimation without losing too much accuracy. As discussed in
Section V-D, with the limited number of E2E measurements,
the efficiency of EM algorithm will be improved.

To assess the deviation between an estimated TTD and the
ground truth (Opt-KDE) in a link, we use the metric named
Kullback Leibler (KL) divergence, which is defined as follows:

DK L(Popt ||Pes) =
∑

t∈Tek

pem(t) ln
pem(t)

pes(t)
, ek ∈ E . (22)

In (22), popt represents the TTD of Opt-KDE, and pes is the
estimated TTD with our proposed model (namely KDE-E2E)
and its counterparts. In particular, GMM has three components
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TABLE IX

AVERAGE KL DIVERGENCE AND KS TEST OVER ALL THE LINKS IN EACH TIME INTERVAL

of Gaussians. The hazard-based model was proposed by
Emily and Taha in [6]. It has a good performance in estimating
TTD by considering the factors like travel speed, weather, road
condition, etc. As we do not have the data like the weather,
we cannot re-build the model as the one in [6]. In our paper,
we only use the traffic speed and road condition to set up
the hazard-based model. To evaluate the performance of the
estimated results, we define the average KL divergence by:

D̄K L(Popt ||Pes) =
∑

ek∈E DK L(Popt ||Pes)

|E | . (23)

From Table VI, we can observe that the performance of
KDE-E2E is always better than Gaussian, log-normal and
hazard-based model in each time interval, but a little worse
than GMM in τ17 and τ31. This can be explained by the fact
that GMM has the similar structure with Opt-KDE. However,
in the real world, it is difficult to estimate the parameters
of GMM because there is usually a lack of data on the
target links. By comparing D̄K Ls of KDE-E2E under different
road conditions, we can also find out that the minimal and
maximal D̄K Ls under free flow are 0.86 (τ41) and 0.96 (τ23)
respectively, whereas the minimal and maximal D̄K Ls under
the congestion are 0.92 (τ17) and 1.03 (τ19) respectively.
The smaller isD̄K L , the better is the estimation accuracy.
Therefore, the estimation accuracy of our proposed KDE-E2E
method is superior under the free flow. This can be explained
by the fact that the fluctuation of travel times is usually large
under congestion. Thus, it is difficult to capture all the features
of the variation of travel times.

In Table VII, we use the KS test to measure the similarity
between the empirical CDF and the estimated one based on
our proposed model and the counterparts. Particularly, we
present the results of a randomly selected link. Obviously, our
proposed model is accepted in each time interval. Compared
to KDE-E2E and GMM, we can find that Dem,es of GMM in
τ19 is smaller than Dem,es obtained from our proposed model.
This result is consistent with the result in Table VI.

In Table VIII, we calculate KL divergence and implement
KS test over 48 time intervals based on KDE-E2E and its
counterparts. The second row denotes average KL diver-
gence (D̄K L) and the third row denotes the number of time
intervals in which the model is rejected. From Table VIII,
we can observe that D̄K Ls of KDE-E2E are smaller than the
other models over 48 time intervals. Meanwhile, KDE-E2E
models are all accepted in the whole time intervals. The second
best model is GMM. Not surprisingly, the Gaussian model
has the worst performance since it is rejected in 37 time

intervals, whereas our proposed methods are accepted in each
time interval. In Table IX, we compare KDE-E2E with other
models using the same metrics over all the links in each time
interval. More precisely, the column labeled by “KL” shows
the percentage of links that our model is better than the other
methods based on KL divergence. The column labeled by
“KS” means the percentage of the links that our model is
better than the other models based on KS test. Apparently, our
method is much better than Gaussian and log-normal models.
According to KS test results, GMM and the hazard-based
methods have good performance for link TTD estimation.
However, D̄K Ls of hazard-based model are still smaller than
those obtained by our proposed KDE-E2E over most links.
As for GMM, there are still at most 14.3% links whose D̄K Ls
are smaller than our method. This can be explained by the
fact that the fixed number of Gaussian components in GMM
is limited in capturing all the features of TTD. Combining
with experimental results in Table VI and VII, the efficiency
of our proposed method is further validated.

VII. CONCLUSION

Motivated by the network tomography, in this paper, we esti-
mated TTDs with the E2E measurements detected by a limited
number of traffic detectors deployed at or near the intersec-
tions. With the proposed KDE-E2E method, traffic adminis-
trators can deploy traffic detectors (e.g., traffic cameras) or
dispatch probe vehicles to collect traffic data at some critical
positions. Thus, a lot of resources can be saved. Furthermore,
through observing and analyzing the distribution of travel
times in the links, traffic administrators can carry out effective
measures to avoid the occurrence of congestion. As the number
of traffic detectors is related to financial costs, it is part of our
future work to explore the optimal strategy for traffic detector
placement, such as the minimum number of traffic detectors
requiring to be deployed.

APPENDIX A
M-STEP IN EM ALGORITHM

We use Tr j to denote the E2E measurements collected on
r j ⊆ R. Then L(T|�R) can be rewritten as

L(T|�R) =
∑

r j⊆R

∑

tr j ∈Tr j

dr j∑

k=1

ln
1

hek

+
∑

r j⊆R

∑

tr j ∈Tr j

ln

Zr j∑

z=1

N (tr j |μr j ,z, h2
r j

). (24)
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∂L(T|�R)

∂μek ,i
=

∑

r j⊆Rek

∑

tr j ∈Tr j

⎛

⎜
⎝

∂ ln
∑Zr j (μek ,i )

z=1 N (tr j |μr j ,z, h2
r j

)

∂μr j ,z
· ∂μr j ,z

∂μek ,i

⎞

⎟
⎠

=
∑

r j⊆Rek

∑
tr j ∈Tr j

∑Zr j (μek ,i )

z=1 γtr j
(yz)(μr j ,z − tr j )

2h2
r j

, (25)

Further, we use Rek to represent the set of paths which
cover ek . Then we take the derivatives of L(T|�R) with
respect to μek ,i ∈ μek in �ek ⊆ �R. As μr,z =
∑dr

k=1 uek ,i ,∀i ∈ nek ,
∂μr j ,z

∂μek ,i
= 1.Thus, ∂L(T|�R)

∂μek ,i
is formulated

as (25), shown at the top of this page, where γtr j
(yz) is the

responsibility.
Setting ∂L(T|�R)

∂μek ,i
to zero, we find that it is also difficult

to calculate μek ,i since hr j s for ∀r j ⊆ Rek are different.
To simplify the calculation, we assume that hek s on ∀ek ∈
E are the same (Assumption 1). With Nr j defined in (20),
we obtain uek ,i as follows:

uek ,i =
1

Nr j

∑

r j⊆Rek

∑

tr j ∈Tr j

∑

z∈Zr j (μek ,i )

γtr j
(yz)tr j . (26)

Similarly, setting the derivative of L(T|�R) with respect to
hek to zero, we have

h2
ek
= 1

Nr j

∑

r j⊆Rek

∑

tr j∈Tr j

∑

z∈Zr j (μek ,i )

γtr j
(yz)(tr j−uek,i )

2. (27)

In the q-th iteration of M-step, we update u(q)
ek ,i

and (h(q)
ek )2

with (26) and (27) using the responsibilities evaluated with
the parameters �

(q−1)
R

.

APPENDIX B
ESTIMATION OF SPACE MEAN SPEED

We denote the instantaneous speed of a vehicle i traveling
on a link by vi,ins . Furthermore, we use vtms and tsms to
denote time mean speed (TMS) and space mean speed (SMS)
of vehicles traveling on the same link respectively. We regard
tsms as an approximate value of real SMS for the i -th vehicle.
More precisely, based on [12], [39], we have the relationship
between TMS and SMS as follows:

vtms = vsms + σ 2

vsms
, (28)

where σ 2 = E((vi,ins − vsms)
2) and E(vi,ins ) = vtms . Then,

the solution to (28), vsms , can be obtained as follows:

vsms =
3vtms +

√
9v2

tms − 8E(v2
i,ins )

4
(29)

Han et al. [40] assumed a quadratic relationship between
E(v2

i,ins ) and E(vi,ins ): E[v2
i,ins ] = a E(vi,ins )

2+bE(vi,ins )+c
where the parameters {a, b, c} were estimated using 9304 sam-
ples as {a, b, c} = {1.22,−15.21, 207.95}. We estimate

E(vi,ins ) by

E(vi,ins ) =
n∑

i=1

vi,ins /n, (30)

where n is the number of GPS trajectories collected on the
link. Substituting (30) into (29), we have vsms .
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