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Abstract—Distance estimation is of great importance for local-
ization and a variety of applications in wireless sensor networks.
In this paper, we develop a simple and efficient method for
estimating distances between any pairs of neighboring nodes
in wireless sensor networks based on their local connectivity
information, namely the numbers of their common one-hop
neighbors and non-common one-hop neighbors. The proposed
method involves two steps: estimating an intermediate parameter
through a Maximum-Likelihood Estimator (MLE) and then
mapping this estimate to the associated distance estimate. In the
first instance, we present the method by assuming that signal
transmission satisfies the ideal unit disk model but then we
expand it to the more realistic log-normal shadowing model.
Finally, simulation results show that localization algorithms using
the distance estimates produced by this method can deliver
superior performances in most cases in comparison with the
corresponding connectivity-based localization algorithms.

I. INTRODUCTION

Wireless sensor networks, comprised of hundreds or thou-
sands of small and inexpensive nodes with constrained com-
puting power, limited memory and short battery lifetime,
can be used to monitor and collect data in a region of
interest. Accurate and low-cost sensor (the word “sensor”
connotes a node of unspecified location) localization is a
critical requirement for a wide variety of applications in
wireless sensor networks, and great efforts have been invested
in developing localization algorithms including both distance-
based algorithms and connectivity-based algorithms.

In reality, exact distance measurement is usually unavailable
and has to be estimated from information such as received
signal strength (RSS), time of arrival (TOA), or time difference
of arrival (TDOA) [1]. In large-scale sensor networks, it is,
however, impractical to localize all sensors by using additional
hardware such as GPS receivers and measuring devices due
to cost constraints. On the other hand, although classes of
connectivity-based localization algorithms without using any
additional measuring devices have been proposed [2], [3],
achieving a high localization accuracy usually demands a
comparatively large number of anchor nodes, hereafter termed
simply anchors, whose positions are known a priori.

In a static wireless sensor network, two nodes are termed
one-hop neighbors or simply neighbors as long as they can
communicate with each other. An intuitive observation shows
that two geographically close neighboring nodes often share
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more common one-hop neighbors than two distant nodes.
In this paper, we quantify and exploit this observation to
develop a method for estimating the distance between any
pair of neighboring nodes based on their local connectiv-
ity information, i.e. the numbers of their common one-hop
neighbors and non-common one-hop neighbors. Our method
involves two steps: first, an intermediate parameter relating the
distance and the numbers of different types of neighbors is
estimated based on a Maximum Likelihood Estimator (MLE);
second, through a mapping function we can obtain the distance
estimate from the estimate in the first step. After presenting
this method for the unit disk model, we expand it to the
more realistic log-normal shadowing model. Such distance
estimates can be directly used by distance-based localization
algorithms, and in comparison with traditional connectivity-
based localization algorithms, a significant improvement on
localization accuracies is reported through simulations.

The advantages of the proposed method are: independent of
additional hardware; totally distributed; energy efficient due
to its simple mechanism and computations. Prior to our work,
[4], [5] came up with the method of estimating distances based
on the same idea as ours; their treatments rest on empirical
observations rather than theoretical foundations. In comparison
to their work, our paper: (1) formalizes and gives mathematical
proofs of the correctness of the method; (2) bases the method
on the MLE in both the unit disk model and the more realistic
log-normal shadowing model; (3) reports the performance
improvement on localization after using the distance estimates
produced by the method through simulations.

The remainder of the paper is organized as follows: Section
II introduces the method of estimating distances in the unit
disk model and Section III expands it to the log-normal
shadowing model. Section IV investigates the performance
improvement on localization by using the proposed method
through simulations. Finally, Section V concludes the paper.

II. ESTIMATING DISTANCES IN THE UNIT DISK MODEL

We first introduce the network model used here and then
present the method in the unit disk model.

A. Network Model

Considering a static wireless sensor network where nodes
are randomly and uniformly distributed in 2-dimensional re-
gion, a homogeneous Poisson process provides an accurate
model for the distribution of nodes as the network size
approaches infinity [6]. Let λ denote the node density (the
number of nodes per unit square) and the probability mass
function of the number of nodes N in an area D is given by

Pr(N = n) =
(λD)n

n!
e−λD (1)



Fig. 1. Communication coverage of two neighboring nodes in the unit disk
model.
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Fig. 2. The true and approximate functions from d to ρ (r = 1).

where Pr(·) denotes the probability of a statistical event.
Obviously, N is a Poisson random variable with mean λD.

Moreover, throughout this paper we assume that:
Assumption 1: Nodes are uniformly and randomly de-

ployed with density λ in an infinite plane.
Assumption 2: Each node knows the neighborhood infor-

mation (i.e. the list of one-hop neighbors) of all its one-hop
neighbors.

Assumption 1 avoids the boundary effect and Assumption
2 ensures that local connectivity information is available for
each node to carry out the distance estimation method.

B. Estimating Distances

Given a static wireless sensor network conforming Assump-
tion 1, the node transmission range is identically r as we are
discussing with the unit disk model.

As shown in Fig. 1, provided two neighboring nodes A and
B separated by distance d (d ≤ r), two circles with radii r
and centered at A, B represent their individual communication
coverage, and intersect and create three disjoint regions. The
nodes residing in the middle one are common one-hop neigh-
bors of A and B and the nodes residing in the left (right) one
are non-common one-hop neighbors of A (B). Define S1 to
be the area of the middle one and both the areas of the left
and the right ones are πr2 − S1, denoted S2. Moreover, we
let three random variables M,P, Q denote the numbers of the

three kinds of neighbors and define a key parameter ρ:

ρ =
E(2M)

E(2M + P + Q)
(2)

where E(·) denotes the expected value of a random variable.
As pointed out in [7], M, P, Q are mutually indepen-

dent Poisson distributed random variables with the means
λS1, λS2, λS2. Equivalently, ρ can also be expressed as

ρ =
S1

S1 + S2
=

S1

πr2
(3)

According to the geometries among d, r and S1, we have

S1 = 2r2 arccos(
d

2r
)− d

√
r2 − d2

4
(4)

In effect, S1 is a monotonically decreasing function of d,
and so is ρ. Hence, as long as ρ is available, we can compute
d by using its inverse function, termed a mapping function.

The actual values of M, P and Q can be easily obtained in
the light of Assumption 2 and can be furthered employed to
estimate ρ according to Theorem 1.

Theorem 1: Given three independent Poisson distributed
random variables M, P and Q which define ρ = E(2M)

E(2M+P+Q) ,
the MLE for ρ, termed ρ̂, is

ρ̂ =





1, if M=P=Q=0 (5)
2M

2M + P + Q
, otherwise (6)

Proof: Establish a statistical model: measured data are
observations of M,P and Q, denoted φ = [ m p q ] where
m, p, q are non-negative integers; the unknown parameters are
θ = [ ρ λ ]. The likelihood function of this model is

L(θ, φ) = Pr(M = m)× Pr(P = p)× Pr(Q = q) (7)

The MLE is the solution to the following equation set

∂ lnL(θ, φ)
∂θ

= 0 (8)

which yields




m

ρ
− p + q

1− ρ
+ λπr2 = 0 (9)

m + p + q

λπr2
− (2− ρ) = 0 (10)

By eliminating λ, we can obtain

2m = (2m + p + q)ρ (11)

If 2m + p + q > 0, i.e. m, p and q are simultaneously 0,
the solution for ρ is 2m

2m+p+q ; otherwise, the solution for ρ is
not well-defined. But because ρ = 1 maximizes the likelihood
when 2m+p+ q = 0, we obtain the MLE for ρ, termed ρ̂, as

ρ̂ =





1, if M=P=Q=0
2M

2M + P + Q
, otherwise



By substituting (4) into (3) and applying the first order
Taylor series expansions on d = 0, we can obtain

ρ ≈ 1− 2d

πr
(12)

As depicted in Fig. 2, (12) displays a good approximation
to the true function from d to ρ when 0 ≤ d ≤ r. As such,
the mapping function is approximately

d̂ ≈ πr

2
(1− ρ̂) (13)

which enables us to obtain the estimate of d, i.e. d̂, from ρ̂.

III. ESTIMATING DISTANCES IN THE LOG-NORMAL
SHADOWING MODEL

Before expanding the method to the more realistic log-
normal shadowing model, we make the following assumptions
(as is commonly the case in the literature):

Assumption 3: The attenuations of the transmitting powers
between any pairs of nodes are independent and identically
distributed (i.i.d.) 1;

Assumption 4: Communication links are symmetric,
namely that node v can directly receive packets from node u
as long as node u can directly receive packets from node v;

Assumption 5: All nodes transmit at a fixed power level.
Although these assumptions may not fully reflect a real

network environment, they still enable us to obtain some
results as estimates for more realistic situations.

A. Log-normal Shadowing Model

The log-normal shadowing model predicts the received
signal power by a receiver with distance d from a transmitter,
denoted PR(d), to be log-normally distributed around the
ensemble average received power, denoted PR(d); this model
is based on a wide variety of measurement results [8] as well
as analytical evidence [9], and is typically modeled as [1]

PR(d)(dBm) = PR(d0)(dBm)− 10α log
d

d0
+ Z (14)

where Z is a random variable representing the shadowing
effect, normally distributed with mean zero and variance σ2;
PR(d0) (dBm) is the ensemble average received signal power
in dBm at a short reference distance d0; α is the path-loss
exponent. Both σ and α are a priori known constants; typically,
σ is as low as 4 and as high as 12, and α varies between 2 in
free space to 6 in heavily built urban areas [8].

Given a transmitter A and a receiver B, if PR(d) is no less
than some specified value Pc, a directional communication link
exists from A to B; equivalently, a directional communication
link also exists from B to A due to Assumption 4. In particular,
if the shadowing effect Z vanishes, i.e. σ = 0, the log-normal

1Even though field measurements in real applications seem to indicate
that the attenuations between two links with a common node are correlated
[10], this i.i.d assumption is generally considered appropriate for far field
transmission and is widely used in the literature [10]–[12].

shadowing model is equivalent to the unit disk model with the
communication range of

r = d0(
PR(d0)

Pc
)

1
α (15)

which is a constant given α. Otherwise, the probability that
two nodes with distance d can communicate is

g(d) =
∫ ∞

k1 ln d
r

e−
z2

2σ2

√
2πσ

dz (16)

where k1 = 10α
ln 10 .

B. Distributions of M, P,Q

We still use M, P,Q to denote the numbers of common and
non-common one-hop neighbors associated with A and B. The
following theorem and corollary provide their distributions in
the log-normal shadowing model.

Theorem 2: Suppose a sensor network where nodes are
randomly and uniformly distributed with density λ in a disk of
radius R; given two nodes A and B, let M be the number of
their common one-hop neighbors and P and Q be the numbers
of their non-common one-hop neighbors. M , P and Q are
Poisson random variables in the limiting case of R →∞.

Proof: Let (x1, y1) and (x2, y2) be the positions of A
and B. Given an arbitrary node C, there exist four cases with
regard to communications between A,B and C:

1) C can directly communicate with both A and B;
2) C can directly communicate with A but not B;
3) C can directly communicate with B but not A;
4) C cannot directly communicate with either A or B.
Apparently, M is the number of nodes satisfying the Case

1; P (or Q) is the number of nodes satisfying the Case 2
(or 3). Supposing the disk area is D, the probabilities that C
satisfies the i-th (i = 1, 2, 3, 4) case, termed pi, are

p1 =
1
D

∫ ∫

D

g(d1)g(d2)dxdy (17)

p2 =
1
D

∫ ∫

D

g(d1)(1− g(d2))dxdy (18)

p3 =
1
D

∫ ∫

D

(1− g(d1))g(d2)dxdy (19)

p4 =
1
D

∫ ∫

D

(1− g(d1))(1− g(d2))dxdy (20)

where d1 =
√

(x− x1)2 + (y − y1)2 and d2 =√
(x− x2)2 + (y − y2)2.
To obtain the number of one-hop neighbors of A, i.e. M+P ,

we conduct a test for each node in the network except for A
and B to decide whether it satisfies the Case 1 or 2, and
then the total number of successful tests is M + P . Due to
Assumption 3, all of the tests are independent of each other
and hence, the test process is a Bernoulli process. Then, M+P
follows a Binomial distribution with the total number of tests
n = λD−2 and the success probability p = p1+p2. Moreover,
if the limiting case of lim

n→∞
np converges, the distribution of

M + P is Poisson with expected value lim
n→∞

np.



Because of

lim
n→∞

np = lim
D→∞

[λ
∫ ∫

D

g(d1)dxdy] (21)

, we let (x1, y1) be the origin and d1 = R, and transform (21)
into the Polar coordinate system

lim
n→∞

np = lim
R→∞

[λ
∫ R

0

∫ 2π

0

g(x)xdxdθ]

= 2πλ

∫ ∞

0

x

∫ ∞

k1
σ ln x

r

e−
z2
2√

2π
dzdx (22)

When x is no less than some value, say a, k1
σ ln x

r ≥ 1 and

lim
n→∞

np = 2πλ[
∫ a

0

x

∫ ∞

k1
σ ln x

r

e−
z2
2√

2π
dzdx

+
∫ ∞

a

x

∫ ∞

k1
σ ln x

r

e−
z2
2√

2π
dzdx]

≤ 2πλ[
∫ a

0

x

∫ ∞

k1
σ ln x

r

e−
z2
2√

2π
dzdx

+
∫ ∞

a

x

∫ ∞

k1
σ ln x

r

ze−
z2
2√

2π
dzdx] (23)

It is easy to judge that the two integrals in the right hand
side of the inequality definitely converge and then lim

n→∞
np <

∞. Therefore, M + P follows a Poisson distribution. We can
obtain the same result for M+Q. Regarding M, P, Q, because
their success probabilities p1, p2 and p3 in the corresponding
Bernoulli processes are less than that of M +P , lim

n→∞
np < ∞

when p = p1, p2, p3 and thus it is straightforward that M,P
and Q follow Poisson distributions.

Corollary 1: M, P and Q are mutually independent in the
limiting case of R →∞.

Proof: Define two events M ≤ m and Q ≤ q. Then,

Pr(M ≤ m ∩Q ≤ q)

=
q∑

j=0

Pr(M ≤ m ∩Q = j)

=
q∑

j=0

[Pr(M ≤ m|Q = j)Pr(Q = j)]

=
q∑

j=0

m∑

i=0

[Pr(M = i|Q = j)Pr(Q = j)] (24)

Consider the limiting case of R → ∞ (equivalently n →
∞)

lim
n→∞

Pr(M ≤ m ∩Q ≤ q)

= lim
n→∞

q∑

j=0

m∑

i=0

[Pr(M = i|Q = j)Pr(Q = j)]

= lim
n→∞

q∑

j=0

m∑

i=0

[
((n− j) p1

1−p3
)ie−(n−j)

p1
1−p3

i!
(np3)je−np3

j!
]

(25)

According to the proof of Theorem 2, when p = p1, p2, p3,
lim

n→∞
np < ∞, and then lim

n→∞
p = 0. Hence,

lim
n→∞

Pr(M ≤ m ∩Q ≤ q)

= lim
n→∞

[
p∑

j=0

m∑

i=0

[
(np1)ie−np1

i!
× (np3)je−np3

j!
]]

= lim
n→∞

[
m∑

i=0

[
(np1)ie−np1

i!
]×

p∑

j=0

[
(np3)je−np3

j!
]]

= lim
n→∞

[
m∑

i=0

Pr(M = i)×
q∑

j=0

Pr(Q = j)]

= lim
n→∞

[Pr(M ≤ m)× Pr(Q ≤ q)] (26)

Therefore, M and Q are independent as R →∞. Similarly,
we can obtain that M, P and Q are mutually independent
through the similar approach.

In the log-normal shadowing model, Theorem 2 and Corol-
lary 1 assure us to apply Theorem 1 to arrive at the estimate
of ρ. According to [12], the number of one-hop neighbor of

a node in the log-normal shadowing model equals λπr2e
2σ2

k2
1 ,

which is in fact E(M + P ) and E(M + Q). Furthermore,
based on the proof of Theorem 2, we have

E(M) = λ

∫ ∞

0

∫ 2π

0

g(x)g(
√

x2 + d2 − 2xd cos θ)xdxdθ

(27)
And then we have

ρ =

∫∞
0

∫ 2π

0
g(x)g(

√
x2 + d2 − 2xd cos θ)xdxdθ

πr2e
2σ2

k2
1

(28)

which formalizes the functional relationship between ρ and d.
Though (28) is not closed-form, we can produce a piecewise
linear function to approximate the inverse function of (28) as
the mapping function and then estimate d from ρ̂.

IV. SIMULATIONS

Since distance estimates are available, it is feasible to local-
ize sensors by using a variety of distance-based localization al-
gorithms. In order to evaluate the proposed method in a fair en-
vironment, we shall investigate two well-known connectivity-
based localization algorithms which are also applicable with
distance measurements, i.e. DV-hop and MDS-MAP; their
distance-based versions are termed DV-distance and MDS-
MAP distance respectively. Due to the length limitation, refer
[2], [3] for more details about these localization algorithms.

To avoid the boundary effect, we actually generate sensor
networks over a large square with size of 18 × 18, but only
localize the nodes inside a small square with size of 6 × 6
and centered at the same center of the large square. However,
the nodes outside of the small square are sometimes used in
estimating distances between nodes within the small square.
Four nodes closest to the four corners of the small square and
inside of the small square are chosen as anchors.

We use a triple λ, σ and α to parameterize the configuration
of a wireless sensor network. α is known to be 4 and λ takes



4 6 8 10
0

0.5

1

1.5

λ

A
ve

ra
ge

 P
os

iti
on

 E
st

im
at

io
n 

E
rr

or
 (

r)

α=4, σ=0

 

 
DV−hop
DV−distance
MDS−MAP
MDS−MAP distance

(a)

4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

λ

A
ve

ra
ge

 P
os

iti
on

 E
st

im
at

io
n 

E
rr

or
 (

r)

α=4, σ=8

 

 

(b)

Fig. 3. Average position estimation errors.

a value in 4, 6, 8, 10. Two values of σ are taken into account:
0 and 8. According to (15), r is essentially a constant given α
and hence without loss of generality, we shall simply take r =
1 in the simulations. Consequently, d and resulting localization
errors are normalized by r.

Given a certain triple, 100 independent runs are carried out
and each run involves three steps: generating a wireless sensor
network by a homogeneous Poisson process of density λ;
estimating distances between any pair of neighboring nodes by
using the proposed method; localizing sensors by DV-hop and
MDS-MAP and the distance-based versions (with distances
coming from the second step), and computing the average po-
sition estimation error for each localization algorithm. Finally,
the average position estimation errors are averaged over the
100 independent runs corresponding to each parameter triple
and each localization algorithm.

Simulation results, plotted in Fig. 3, show that DV-distance
and MDS-MAP distance which use the distance estimates from
the proposed method produce less average position estimation
errors than the corresponding DV-hop and MDS-MAP. In
summary, our distance estimation method makes good use of
connectivity in wireless sensor networks and can dramatically
improve localization accuracies.

V. CONCLUSIONS

In this paper, we proposed a method of estimating distances
via connectivity in wireless sensor networks by dealing with

the ideal unit disk model and the more realistic log-normal
shadowing model. Simulation results showed that using the
distance estimates produced by this method significantly im-
proves localization accuracies in comparison to connectivity-
based localization algorithms. Future work will focus on
improving its practicality by relaxing some assumptions and
improving its performance by utilizing more information.
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