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Abstract— Internet of Things (IoT) is playing an increasingly
important role in Intelligent Transportation Systems (ITS) for
real-time sensing and communication. In ITS, vehicle types,
volume and speeds provide important information for road traffic
management. However, the present methods for on-road traffic
monitoring are lacking in providing cost-effective means to meet
the demands. In this paper, we propose MagMonitor, a novel
method for on-road traffic surveillance through a single small and
easy-to-install magnetic sensor. The developed magnetic sensor
system is wireless-connected, cost-effective, and environmental-
friendly. First, a magnetic model of a moving vehicle is presented.
The model employs multiple magnetic dipoles for modelling
moving vehicle and varies depending on the on-road vehicle types.
Through modelling of local magnetic field perturbations caused
by moving vehicles, we extract the characteristics of magnetic
waveforms for vehicle identification and speed estimation. The
proposed model and estimation technique are validated with real
field experimental data. Furthermore, we analyze and compare
the performance of the proposed estimation technique with other
speed estimation algorithms, which shows the superior accuracy
of the proposed technique.

Index Terms— Magnetic sensor, vehicle classification, speed
estimation, traffic surveillance, signal processing.

I. INTRODUCTION

INTELLIGENT transportation systems (ITS) developed
rapidly over the last decades. The main purpose of ITS is to

enhance the transportation system’s safety, efficiency, and cost
effectiveness [1], [2]. Traffic surveillance provides valuable
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traffic flow information for ITS through various kinds of
traffic sensors, such as LiDar, microwave sensors and magnetic
sensors [3]–[5]. The traffic surveillance information can then
be used by ITS to improve traffic management [6].

The fine-grained monitoring of vehicle speed plays an
important role in ITS. The U.S. National Highway Traffic
Safety Administration (NHTSA) reported 37,461 traffic fatal-
ities in 2016, 26% of which are speed-related [7]. Many
traffic surveillance technologies are introduced and have been
studied for traffic data collection, such as inductive loops [8],
video based image processing methods [9], etc. Particularly,
urban areas have many complex environments, traffic situation
awareness and estimation needs accurate vehicle speed data.
In this paper, we focus on the problem of accurate vehicle
speed estimation using a single on-road magnetic sensor.

Recently, magnetic sensors are considered for vehicle speed
estimation [10]. Current vehicle speed acquisition methods
using magnetic sensors often employ more than one magnetic
sensors [11], [12]. However, using two or more well separated
magnetic sensors for speed estimation, requires these magnetic
sensor units to be very well synchronized and their data to
be communicated in real-time, which significantly increases
both the energy consumption and communication overheads.
Both the energy consumption and communication overhead are
main considerations for small and energy-constrained Internet
of Things (IoT) devices. Furthermore, the use of two or more
magnetic sensor units will significantly increase the size of
the IoT device, which also prohibits its easy installation and
hence widespread use.

To this end, in this paper we consider a new approach, which
uses a single magnetic sensor to classify vehicle types and
estimate vehicle speeds. The underlying idea is to measure
the local magnetic field perturbations when vehicles passing
by the roadside magnetic sensor. Several challenges arise in the
design of the proposed approach. First, using only one sensor
to estimate the aforementioned parameters needs a thorough
understanding of a metal object’s magnetic characteristics.
Second, accurate modelling of the local magnetic field pertur-
bation caused by various types of vehicles is essential. Finally,
the magnetic sensor readings are noisy and the environment
noise needs to be considered and removed to obtain accurate
estimation.

This paper presents MagMonitor, a novel real-time traf-
fic surveillance technique that provides vehicle classification
and speed estimation using a single small magnetic sensor.
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It identifies vehicle magnetic characteristics by modelling
various types of vehicles using multiple magnetic dipoles.
For each type of vehicle, we estimate the speeds through
their separate magnetic waveforms. A filter of raw magnetic
data is employed for reducing the environmental noise, and
yield an accurate magnetic output caused by moving vehi-
cles. The magnetic sensor used in the experiment is easy to
install and cost efficient to implement on road, which is also
relatively environmental-friendly. Experiments are conducted
in Xi’an, China to establish the effectiveness of the proposed
technique.

Specifically, our key contributions are threefold:
• We propose a method of monitoring the on-road vehicle

types and obtain vehicle speeds through observations on
magnetic perturbations. The magnetic sensor used in the
experiment is tiny, cost-effective, and wireless-connected
to capture real-time traffic conditions.

• We conduct simulations on the magnetic dipole models.
Combined with vehicle dynamics, we present a motion
model which illustrates the local magnetic field perturba-
tion caused by a moving vehicle and validate the results
using the measured magnetic perturbations caused by
moving vehicles.

• We develop signal processing technique for data process-
ing, which provides filtered magnetic waveforms for
vehicle counting and speed estimation. Road experiments
are conducted to validate the effectiveness of the proposed
technique.

The rest of the paper is organized as follows: Section II
briefly reviews related works on real-time road surveillance.
Section III describes the design of multiple magnetic models
and vehicle motion characteristics. Section IV introduces the
sensor model based experimental results and discussions for
vehicle classification and speed estimation. Finally, Section V
concludes the paper and discusses our future work.

II. REVIEW OF RELATED WORK FOR REAL-TIME

ROAD SURVEILLANCE

In this section, we review current methods for vehicle speed
estimation, which is divided into two sub-sections. One is
general methods of on-road traffic information acquisition,
the other is vehicle classification and speed estimation using
magnetometers.

A. General Methods of Real-Time Road Surveillance

Many techniques are used on highways or urban roads for
speed estimation, such as inductive loops, vision based image
processing method, and Global Positioning System (GPS) on
smartphone [13].

Inductive loop detectors embedded into the road surface
are considered as intrusive methods [8]. These detectors
are required to be installed underneath the road surface,
which results in very high installation and maintenance costs.
To reduce installation and maintenance costs, vision based
traffic camera systems have been adopted [9]. However,
the resulting data transmission volume is large and the esti-
mation accuracy is weather and visibility dependent. In other

words, the accuracy of vision based system suffers in poor
weather conditions, low illumination and visibility conditions.
Radar is used to detect objects in a distance and estimate
their speed [14], but it takes more time to lock on an object.
Although LiDar can detect objects on the ground precisely, it is
very expensive. Reference [15] developed a technique using
GPS on smartphone to obtain vehicle speed. The limitation
of technique is that it suffers from urban canyon environment
and the performance of the sampling-based estimation may
also suffer in environment with a small number of samples
only.

B. Road Condition Surveillance Using Magnetometers

Recently, a number of researchers considered vehicle detec-
tion and speed estimation methods using magnetic sensors
[10], [16]–[21]. Balid [22] deployed multiple on-road sensors
for traffic surveillance. Their work can successfully detect
vehicles and estimate varying speeds of vehicles through a
set of magnetic sensors deployed along the road.

Reference [23] reported 90% of the average speed esti-
mation precision through measuring magnetic length using
a roadside node with an accelerometer and magnetic sensor.
Taghvaeeyan in [10] proposed applying four magnetic sensors
for vehicle counting and vehicle speed measurement, respec-
tively, which resulted in 95% classification accuracy and the
maximum error of the speed estimates is less than 2.5% over
the entire range of 5–27 m/s. The technique in [11] adopted
two magnetic sensors for vehicle speed estimation and a third
magnetic sensor for data fusion, which resulted in a speed esti-
mation accuracy of 80%. Studies in [24] and [25] developed
algorithms for speed estimation using two magnetometers. It
is worth noting that these methods needed to first estimate the
average speed based on the number of passing vehicles over
time, which could be difficult to acquire. Vehicle detection
and classification through an improved support vector machine
classifier was proposed in [26] using magnetic sensors. They
used magnetic signatures to distinguish different types of
vehicles, such as heavy trucks and light-wheeled vehicles.
However, the algorithm is time-consuming, which required
high processing capability to get 80% to 90% accuracy. The
work in [21] first analyzed the magnetic effect of vehicle’s
metal body and simulated a scenario to detect a vehicle using
magnetic sensors. Cheung, Ergen and Varaiya in [27] devel-
oped a feature selection model for vehicle classification by a
line of wireless sensors. There are also works on using combi-
nation of magnetic sensors for vehicle information acquisition.
Studies in [19], [24], [28]–[30] proposed vehicle classification
based on machine learning of the signal waveforms.

Obtaining the vehicle speed is becoming increasingly impor-
tant in supporting real-time traffic management. In the afore-
mentioned studies, speed was estimated using two or more
magnetic sensors. References [22] and [31] focused on vehicle
classification by multiple magnetic sensors or with the com-
bination of accelerometers.

Our work is distinct from the previous studies in that we
investigate using a single magnetic sensor approach for vehicle
classification and speed estimation in a non-intrusive way.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2020 at 11:00:48 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FENG et al.: MAGMONITOR: VEHICLE SPEED ESTIMATION AND VEHICLE CLASSIFICATION THROUGH A MAGNETIC SENSOR 3

III. METHODOLOGY

In this section, we present the design of the proposed
system, MagMonitor, which detects vehicles and estimates
vehicle speeds through measuring and modelling local mag-
netic field perturbation caused by moving vehicles. The
deployment of MagMonitor only requires a small magnetic
sensor to be placed on the roadside. We first explain the
working mechanism of a metal object’s magnetic characteris-
tics in Section A, then describe the motion process of moving
vehicles in Section B and present the models for vehicle speed
estimation. Signal processing to remove background noise
and provide vehicle moving time is illustrated in Section C .
We analyze the lateral effects in Section D and the impact
of vehicle moving directions in Section E , and apply them to
gain accurate estimates with real field experimental data. After
we gain the traffic volumns from the magnetic perturbation,
Section F explains the classification of vehicle types from the
magnetic perturbation dataset using image-based processing
methods. In summary, we start from the methodology and
experimental observation characteristics, and include consid-
eration of the issues to separate vehicle perturbation, finally
vehicle types and vehicle speed estimation will be achieved.

A. Multiple Magnetic Dipole Models

For a moving vehicle with a constant velocity, it comprises
a huge amount of ferromagnetic materials and will induce
a magnetic field. With the development of modern sensor
techniques, the electromagnetic field B can be measured
through a geomagnetic sensor.

Based on the electromagnetic theory, if the distance to the
metallic object is large enough in comparison to its character-
istic length, the moving metallic object can be modeled as a
magnetic dipole.

For a magnetic dipole located at a distance r from the origin,
its magnetic field at the origin can be expressed as [32], [33]:

B =
⎛
⎝ 3x2 − r2 3xy 3xz

3xy 3y2 − r2 3yz
3xz 3yz 3z2 − r2

⎞
⎠ • u0m

4πr5
. (1)

where m is the magnetic moment of a dipole, u0 is magnetic
permeability with a value of 4π ×10−7 H/m, r is the distance
between the measurement position at the origin and the mag-
netic dipole at coordinate (x, y, z), with r2 = x2+y2+z2. The
tensor notation of the equation in the orthogonal coordinate
system will take the following form with the expansion of
magnetic vector being m = (

mx my mz
)T

, where mx , my ,
mz are the component of the magnetic moment on the x−axis,
y − axis, z − axis, respectively, and • means dot product.
It follows from (1) that the three magnetic component along
the x − axis, y − axis, and z − axis can be written as:

Bx =
((

3x2 − r2
)

· mx + 3xy · my + 3xz · mz

)
· u0

4πr5
,

By =
(

3xy · mx +
(

3y2 − r2
)

· my + 3yz · mz

)
· u0

4πr5
,

Bz =
(

3xz · mx + 3yz · my +
(

3z2 − r2
)

· mz

)
· u0

4πr5 .

(2)

Fig. 1. Magnetic perturbation caused by a vehicle [22].

For the magnetic field value of x − axis, y − axis and
z − axis, respectively, we expand the value of r and simplify
the expression of Bx , By, Bz as follows:

Bx =
((

2x2 − y2 − z2
)

· mx + 3xy · my + 3xz · mz

)

· u0

4π
(
x2 + y2 + z2

) 5
2

,

By =
(

3xy · mx +
(

2y2 − x2 − z2
)

· my + 3yz · mz

)

· u0

4π
(
x2 + y2 + z2

) 5
2

,

Bz =
(

3xz · mx + 3yz · my +
(

2z2 − x2 − y2
)

· mz

)

· u0

4π
(
x2 + y2 + z2

) 5
2

. (3)

Considering a small vehicle with a certain speed driving on
the road along the +x − axis, it leads to perturbations of the
local magnetic fields and the small vehicle can be modelled as
a magnetic dipole [34]. Fig. 1 (in Section II) [22] illustrates
the magnetic distribution of the magnetic flux lines when the
earth’s magnetic field is temporarily changed by a car. It shows
that the magnetic fields are highly distorted at the wheels and
slightly distorted at other parts. The unit for time measurement
in this paper is second.

Furthermore, for multiple magnetic dipole case, the equation
becomes :

B(L) = ∑
i Bi (L) (4)

where i is the magnetic dipole index of the i − th dipole.
Because the magnetic moment has a direction and it has values
along x − axis, y − axis, and z − axis, we can set a default
m = (1, 1, 1) for initial simulation [32], [35]–[37] to focus on
studying the magnetic field variation.

Intuitively, the longer the vehicle is, the more number of
magnetic dipoles should be used. For heavy and long vehicles
with a certain speed, each vehicle can be modelled by two
or more magnetic dipoles in order to represent its magnetic
field perturbation accurately. The simulations of each axis
are displayed as in Figs. 2 (a) - (d) to present the effect of
the varying numbers of magnetic dipoles. The total magnetic
moment for vehicles can’t be measured directly. According
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Fig. 2. Using one, two, three and four magnetic dipoles for vehicle
simulation.

to [21], a typical U.S. automobile has a magnetic moment in
the range 100-300 A/m2(Ampere-meter2), while for a school
bus it is about 2000 A/m2. So we consider an average value
200 A/m2 in the range 100-300 A /m2 [16] for simulation of a
small car. Through the modelling from (4), we demonstrated
that the variations of magnetic waveforms provide evidence
for the length of vehicles. For SUVs and van, two magnetic
dipoles should be enough. For a small bus, three magnetic
dipoles are more appropriate. For a long bus and truck, they
should be represented by four magnetic dipoles. The intuition
are verified by the results of real experiment magnetic data.
Please see the example in Fig. 20 from Appendix.

B. Moving Vehicle Motion Models

In this part, we establish and analyze the motion model for
a driving vehicle. The discrete state space model of a moving
vehicle is illustrated as follows:

rk+1 = rk + t · vk + t2

2
· wk,

vk+1 = vk + t · wk,

mk+1 = mk . (5)

where rk means the position vector for a target vehicle, with
speed vk and acceleration wk for the k − th state, t is the time
interval between the k − th state and the k + 1 − th state,
mk is the magnetic moment. A three-dimensional Cartesian
coordinate system is set up from the view of the magnetic
sensor, which is at the origin (0, 0, 0). Consider a vehicle
driving on a straight road with a speed of vk (vk > 0) along the
x −axis, and an initial position (x0, y0, z0). Only the x −axis
has speed, so vk = vx . The initial value of x0 is negative and it
is the first position that causes the local magnetic perturbation,
the initial value of y0 is zero and the initial value of z0 is a
small and non-negative value, representing that the sensor is

placed on the roadside and hence has some distances from
the vehicle. After a period of time t (t > 0), the vehicle’s
location becomes (x0 + vx · t, y0, z0). The magnetic moments
of the vehicle, denoted by mk = (

mx my mz
)
, observed at

the sensor position become:

y = u0

4πr5
·
⎛
⎝ mx

my

mz

⎞
⎠ •

⎛
⎝ 3(x0 + vx · t)2 − r2 3(x0 + vx · t)y0 3(x0 + vx · t)z0

3(x0 + vx · t)y0 3y2
0 − r2 3y0z0

3(x0 + vx · t)z0 3y0z0 3z2
0 − r2

⎞
⎠

(6)

Then, the expansion for yx is given by:

yx = 2 (x0 + vx · t)2 · mx · u0

4π
(
(x0 + vx · t)2 + D

) 5
2

+ 3vx · t · y0 · my · u0

4π
(
(x0 + vx · t)2 + D

) 5
2

+ 3vx � t · z0 · mz · u0

4π
(
(x0 + vx · t)2 + D

) 5
2

+ C · u0

4π
(
(x0 + vx · t)2 + D

) 5
2

= A · (x0 + vx · t)2 + B · vx · t + C

(x0 + vx · t)5 + D
(7)

where A = 2 mx ·u0
4π ,

B = 3
z0 · mz · u0

4π
,

C = 3x0 · z0 · mz · u0 − z2
0 · mx · u0

4π
,

D =
(
(x0 + vx · t)2 + z2

0

) 5
2

− (x0 + vx · t)5

Since z0 can be assumed to be small, the values of B and C
are also small and can be neglected. Thus, an approximation
can be applied and yx can be rewritten as:

yx = A · (x0 + vx · t)2

(x0 + vx · t)5 + D
(8)

Let h(t) = yx , and let the reciprocal of h(t) be g(t) = 1
h(t) ,

then

g(t) = (x0 + vx · t)5 + D

A · (x0 + vx · t)2 (9)

Meanwhile, letting vx · t = x , x reflects the change of
positions with a speed vx during the time period. Because
vx > 0 and t > 0, so x > 0, so we have

g(x) = 1

A
(x0 + x)3 + D

A(x0 + x)2

= 1

A
x3 + 3x0

A
x2 + 3x0

A
x + x0

3

A
+ D

A(x0 + x)2 (10)
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Fig. 3. Simulation of x axis from 20 km/h to 50 km/h.

As the value of x (x > 0) increases, 1
A x3 + 3x0

A x2 + 3x0
A x +

x0
3

A increases, and D
A(x0+x)2 decreases. There is a turning point

that g(x) reaches its minimum value at x = 5
√−D − x0.

If x < 5
√−D−x0, the dominating term for g(x) is D

A(x0+x)2 ,

thus g(x) = D
A(x0+x)2 + ε1, where ε1 is the residual error.

If x = 5
√−D − x0, g(x) = 0.

If x > 5
√−D − x0, the dominating term for g(x) is

1
A (x0 + x)3, thus g(x) = 1

A (x0 + x)3 + ε2, where ε2 is
the residual error. Based on the above analysis, (12) can be
rewritten as:

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D

A(x0 + x)2 + ε1 x < 5
√−D − x0

0 x = 5
√−D − x0

1

A
(x0 + x)3 + ε2 x > 5

√−D − x0

(11)

Through the analysis of g(x), there are four approximations
models of f (t) given as follows:

Model 1: power form

f1(t) = atb + c + ε1 (12)

Model 2: polynomial form

f2(t) = a0 + a1t + a2t2 + a3t3 + . . . + antn + ε2 (13)

Model 3: rational form

f3(t) = p1

t3 + q1t2 + q2t + q3
+ ε3 (14)

Model 4: combination of polynomial form and rational form

f4(t) = λ1t3 + λ2t2 + λ3t + λ4 + λ5(t
(−3)) + ε4 (15)

Fig. 3 gives the magnetic waveform corresponding to dif-
ferent speed of a magnetic dipole moving along the x − axis,
which varies between 20 km/h to 50 km/h. As can be seen
from the figure, with different vehicle speeds, the time window
for the detected magnetic distortion is changing.

Here we analyze whether there is a turning point to ensure
Bx induced by a vehicle reaches its minimum. Defining Bx =
n1(t)
n2(t)

= A·(x0+vx ·t)2

(x0+vx ·t)5+D
, the derivative of Bx then can be given

by:
∂ B

∂ t
=

(
n′

1(t)n2(t) − n1(t)n′
2(t)

[n2(t)]2

)
(16)

For x , we have

n′
1(t)n2(t) − n1(t)n

′
2(t)

= [2A (x0 + vx t) · vx ][(x0 + vx t)5 + D]
− [A · (x0 + vx t)2][5vx (x0 + vx t)4]

= [2Avx (x0 + vx t)6 + D] − 5Avx (x0 + vx t)6

= −3Avx (x0 + vx t)6 + 2ADvx (x0 + vx t) (17)

Because
∂ B

∂ t
= 0 ⇒ n′

1(t)n2(t) − n1(t)n
′
2(t) = 0

it follows that

3 (x0 + vx t)5 = 2D

x0 + vx t =
√

2D

3

t =
5
√

2D
3 − x0

vx
(18)

Since it is the fifth-order polynomial, there is at least one
solution of t to make ∂ B

∂t = 0. Consequently, there is a t
resulting in Bx reaching its minimum/maximum, and in Fig. 3,
it is verified as a minima/maxima. For the derivatives of By

and Bz , they are similar to Bx .
Now the relationships between time and the magnetic

field perturbation caused by a moving vehicle are given in
equations (16) - (18). If we combine the models with time t ,
the parameters above can be calculated accordingly. There is
a value t0 resulting in Bx = 0, which is the point that allows
f (t) = 0. For different speeds, t0s are different, which reflects
the intervals between the beginning of x-axis and the time at
Bx = 0. Given different t0s, it then relates to the driving speed
of the vehicles respectively, which leads to the estimation of
vehicle speed. Note that the t0s are obtained from real-time
traffic data after filtering of environmental noise. The signal
processing technique and filter techniques are introduced in
the next section. Experimental results for the models are given
in Section IV. From the above analysis, − x0

vx
can reflect the

magnetic vibration response time for vehicles, while different
x0s depends on different types of vehicles. So for different
vehicle types, speed estimation can be achieved given the time-
varying magnetic perturbation vectors.

C. Signal Processing Model

Measurements in real road condition are full of background
noises and are affected by earth’s magnetic field [34]. It makes
the signals hard to distinguish for the passing vehicles. So a
low-pass filter is first applied [26].

The local earth’s magnetic value are Bx0, By0, Bz0, which
are relatively stable values in this paper. Moreover, the values
can be obtained from the roadside magnetic sensor when
there is no vehicle passing by.

(
Bxk, Byk, Bzk

)
are the values

recorded by the magnetic sensor when a vehicle is passing.(
Bvx, Bvy, Bvz

)
is the perturbation caused by a passing vehi-

cle, then:(
Bvx, Bvy, Bvz

) = (
Bxk − Bx0, Byk − By0, Bzk − Bz0

)
(19)
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Fig. 4. An example of the signal processing with real magnetic data of a
30 km/h vehicle. We first apply equation (20) and remove the local earth’s
magnetic value, here Bx0, By0, Bz0 = (−185, 310, 347) from (a). Then,
we apply low-pass filter to gain a pure vehicle magnetic vibration waveforms
as shown in (b).

Fig. 5. Simulation on a magnetic dipole moving from 30 km/h to 50 km/h.

Fig. 6. Filtered and normalized real-time data from 30 km/h to 50 km/h.

Fig. 4 (a) shows the waveform of
(
Bxk, Byk, Bzk

)
for a

vehicle travelling at 30 km/h speed. There are lots of noises
in real environment. Besides reducing the

(
Bx0, By0, Bz0

)
,

we apply Fast Fourier Transform (FFT) and on that basis
develop a first-order low pass filter with a cut off frequency
at 5 Hz for

(
Bvx, Bvy, Bvz

)
to remove noise effect, which

allows low frequency signals in frequency domain to pass.
So after the FFT signal processing, Fig. 4 (b) shows the
filtered and normalized waveforms by FFT for a vehicle at
a speed of 30 km/h. Fig. 5 and Fig. 6 are the simulations of
a vehicle with speed varying from 30 km/h to 50 km/h and
the corresponding filtered normalized real data of respectively.
Through signal processing, it aims to easier extraction of t0.

Fig. 7. Magnetic data combination.

D. Lateral Effect Influences on Magnetic Perturbation

What needs to be considered to count vehicles in the real
world field test is, the vehicles driving in the adjacent road can
always be calculated as wrong detection. So the combination
of three axis signals would be employed to reduce the false
vehicle detection.

Bcombinat ion =
√

(Bx)
2 + (

By
)2 + (Bz)

2 (20)

Here, we process experimental data applying the proposed
method in Figs. 7 (a) and (b) for easy understanding. There
are multiple vehicles driving on the experimental road, as seen
after the combination processing, the vehicle magnetic signa-
ture above the threshold will be counted.

For a driving vehicle, the distance between the sensor and
the vehicle is a crucial issue affecting the vibration of the
vehicle. We consider a vehicle driving along a line parallel
to the roadside. For vehicles in different lanes, the lateral
distances are changed. So we add lateral influences into
consideration, and Figs. 8 reflects how the factor has an
influence on the signal changes.

Here we want to know the effects of lateral distances
changing from a small value to a relative big value. d = 0.2 m
is chosen to represent the sensor mounted on the lane in which
a vehicle is moving, and d = 2 m is chosen to approximately
represent the vertical distance between the roadside sensor
and the center of the closest lane to the sensor. d = 4 m
is approximate the distance between the side of the adjacent
lane and the sensor, and d = 6 m is the approximate distance
between the side line of the adjacent lane to the sensor.
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Fig. 8. Lateral effects between the sensor and the vehicle.

Fig. 9. Vehicle driving in different directions.

Note that as the value of d increases, the order of magnetic
perturbation decreases, which makes it easy to separate the
perturbations. In other words, if a vehicle drives on the
adjacent lane, then its magnetic perturbation waveforms will
be flat as shown in Figs. 8 (c) - (d).

E. Vehicle Moving Direction Analysis

There is a practical interference needing to be considered:
the relative position of the magnetic sensor and the passing
vehicles. If the vehicle moving direction is not aligned with
the coordinate system, corresponding magnetic perturbation is
changed. Figs. 9 is a visual reflection for the aforementioned
problem. It shows that for a vehicle driving at a constant
speed, the direction of perturbation changes with the driving
directions.

F. Vehicle Type Classification Method

The principle of vehicle type classification is based on
image processing. After we obtain vehicle volume from the
previous section, we put the magnetic perturbation images
into the vehicle perturbation dataset. As mentioned in the
magnetic dipole models part, magnetic perturbations differ
from the various number of the magnetic dipoles and response

time of driving vehicles, which results in different signal
shapes such as the number of maxima and length of vibration.
These features can be used for vehicle type classification. For
example, when using the vehicle magnetic perturbation images
to train, the image-based classification can directly extract the
features in each types. Then, we put the test images to test
the classification rate, we can get the score of its likelihood
in each type directly, which is convenient.

Algorithm 1 is the algorithm for vehicle type classification.
The training dataset consists of magnetic signal images caused
by driving vehicles, and the testing dataset is separate from
the training dataset for vehicle information. It can output
the labels of predicted types of vehicles. Through loading
training dataset, resizing the images and extracting histogram
of oriented gradients (HOG) features, the classifier is estab-
lished for feature testing. Then loading the testing dataset,
do the same resizing and extracting features as the training
dataset. We apply the fitcecoc in Matlab to construct the
classifier, which is a function that suits multi-class models for
classifiers like support vector machines (SVM). Then we use
the classifier trained by the training dataset, and compare the
features with each label. Therefore the magnetic perturbations
caused by different categories of vehicles are classified.

Algorithm 1 The Algorithm for Vehicle Type Classification
Input : The training dataset imdsTrain;

The testing dataset imdsT est
Output : Vehicle type prediction index n

1: Load imdsTrain and imdsT est into imageDataStore
2: for images in imdsTrain
3: Image resize imresi ze in each label
4: through feature extraction extract H OG Feature
5: Feature train f eaturesTrain
6: end for
7: Use f i tcecoc to build classi f ier
8: for images in imdsT est
9: Image resize imresi ze

10: through feature test extract H OG Feature
11: Test with classi f ier
12: end for

IV. EVALUATION

In this section, we present the evaluation of our vehicle
classification and vehicle speed estimation technique, Mag-
Monitor, with real driving environments. Here we describe
the experiment setup, the results of assumption models and
evaluate vehicle speed estimation errors. Contrast experiments
for the speed estimation error with techniques in the literature.

A. Experiment Setup

We evaluate MagMonitor, in real driving environments in a
road in Xi’an, China. Fig. 10 (a) is a RM3100 magnetic sensor,
which outputs magnetic vibration along three axes. The size
of the chip is only as large as a coin and the overall size of
the sensor is tiny, which is portable for traffic surveillance.
In addition, a magnetic sensor costs as cheap as 30 dollars.
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Fig. 10. Sensor design and a sedan test.

Fig. 11. Experiment setup on the left and the display board on the right.

Also, a camera is put on roadside to record the overall driving
period. Fig.10 (b) shows an experiment setup on the road,
which is an example for the test of a sedan type vehicle from
our previous work in [38].

After the initial experiment for the sedan type vehicle,
multiple experiments are conducted. In Fig. 11, the left records
the road for vehicle magnetic signatures, and the right is the
real-time sensor’s display board recording magnetic values for
driving vehicles. The right side of Fig.11, magnetic perturba-
tion matches the theoretical analysis in Sec. III well. The real
vehicle speeds are measured by a speedometer.

Our previous work in [39] introduced the detection methods
and the experiment of the vehicle numbers. According to the
standard of [7], we classify the recorded vehicles into four
types: sedan, SUV and van, bus and truck. After the magnetic
data is preprocessed, the measured vehicles’ magnetic signals
are extracted into separate images for classification. Overall,
115 vehicle profile is randomly selected into a training dataset
of 58 vehicles and a testing dataset of 57 vehicles.

Furthermore, we have also conducted the experiments at
different locations, in different seasons and weathers. There is
no evidence that the season and weather affects much during
our experiments.

B. Experimental Results

Here we classify our experiment results into two parts:
vehicle classification and vehicle speed estimation.

For vehicle classification, as shown in Table I, the diagonal
values are the classification rates for testing dataset. Through
applying the vehicle type classification technique mentioned
in III. F, we then get the correct classification rate of 87%,

TABLE I

VEHICLE CLASSIFICATION RESULT IN FOUR TYPES

TABLE II

VEHICLE CLASSIFICATION RESULT IN THREE TYPES

initially. As shown in the table, the classification rate for sedan,
bus and truck are all more than 90%, but the classification rate
for SUV and van is much lower compared to other vehicle
types. The reason for the low classification results is that
these two types of vehicles are similar. So here we combine
the middle two types into one type. After applying that
strategy, the classification performance is shown in Table II.
For comparison, the work in [26] evaluates BPNN and KNN
classifiers for heavy tracked vehicle, light tracked vehicle, light
wheeled vehicle. For BPNN classifier, three types’ recognition
rates are 81.5%, 78.6%, 76.3% and KNN classifier 77.8%,
71.4%, 71.1% respectively. In comparison, our image-based
classification rates are 91%, 96%, 93%, which significantly
outperforms the BPNN and KNN classifiers.

To gain the estimated vehicle speeds, we separate the
speed estimation models in section III and contrast them with
real speeds. In three vehicle types, we estimate values of
each fitting models through separating the times of driving
vehicles. The parameters are calculated by Matlab R2019 on
windows 10 as follows.

(1) The vehicle speed estimation models for sedan:
For power form, f1(t) = atb + ε1. Coefficients (with 95%

confidence bounds): a = 29.54, b = −0.8788.
For polynomial form, f2(t) = a0 + a1t + a2t2 + a3t3 +

ε2. Coefficients (with 95% confidence bounds): a0 = 93.09,
a1 = −112.8, a2 = 59.26, a3 = −12.19.

For rational form, f3(t) = p1
t3+q1t2+q2t+q3

+ ε3. Coef-
ficients (with 95% confidence bounds): p1 = 16.61,
q1 = −2.415, q2 = 2.365, q3 = −0.4033.

For combination form, f (t) = λ1t3 + λ2t2 + λ3t + λ4 +
λ5(t(−3)) + ε4. Coefficients (with 95% confidence bounds):
λ1 = 293.3, λ2 = −962.8, λ3 = 1032, λ4 = −345,
λ5 = 11.58.

(2) The vehicle speed estimation models for SUVs and vans:
For power form, f1(t) = atb + c + ε1. Coefficients (with

95% confidence bounds): a = 203.3, b = −0.14, c = −165.5.
For polynomial form, f2(t) = a0 + a1t + a2t2 + a3t3 +

ε2. Coefficients (with 95% confidence bounds): a0 = 78.25,
a1 = −47.13, a2 = 4.742, a3 = 2.2181.

For rational form, f3(t) = p1
t3+q1t2+q2t+q3

+ ε3. Coef-
ficients (with 95% confidence bounds): p1 = 709.3,
q1 = 0.1174, q2 = 11.06, q3 = 6.543.
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Fig. 12. CDF of the speed estimation errors for sedans.

For combination form, f (t) = λ1t3 + λ2t2 + λ3t + λ4 +
λ5(t(−3)) + ε4. Coefficients (with 95% confidence bounds):
λ1 = 53.81, λ2 = −225.1, λ3 = 287.9, λ4 = −85.27,
λ5 = 7.508.

(3) The vehicle speed estimation models for buses and
trucks:

For power form, f1(t) = atb + ε1. Coefficients (with 95%
confidence bounds): a = 58.04, b = −0.8677.

For polynomial form, f2(t) = a0 + a1t + a2t2 + a3t3 +
ε2. Coefficients (with 95% confidence bounds): a0 = 92.92,
a1 = −46.63, a2 = 9.722, a3 = −0.8219.

For rational form, f3(t) = p1
t3+q1t2+q2t+q3

+ ε3.
Coefficients (with 95% confidence bounds): p1 =
391200, q1 = 1746, q2 = −92.31, q3 = 5483.

For combination form, f (t) = λ1t3 + λ2t2 + λ3t + λ4 +
λ5(t(−3)) + ε4. Coefficients (with 95% confidence bounds):
λ1 = −11.79, λ2 = 83.32, λ3 = −210.8, λ4 = 217.6,
λ5 = −24.64.

In addition, the vehicle estimation model is based on
the training dataset and test on the testing dataset. The
mis-classified vehicles have an impact on the speed estima-
tion accuracy. In other words, the mis-classified vehicles are
calculated using the types that they are considered as.

C. Discussion

Here we first discuss the proposed models for speed esti-
mation in sedan, because the number of sedans is larger than
other vehicle types. Fig. 12 plots the cumulative distribution
function (CDF) of the speed estimation errors (km/h) for
the proposed technique, Derivative Dynamic Time Warping
(DDTW) [40] and GPS. The results explain that we achieve
high speed estimation performance in the proposed models.
For example, 80% of estimation errors are lower than 4 km/h if
using the four proposed models, and 50% of estimation errors
are less than 2.5 km/h. In addition, only 8% of the estimated
speed errors exceeds 10 km/h. The average estimation errors
include all the vehicle types mentioned in this paper. Thus,

Fig. 13. Sedan speed experiments comparison.

Fig. 14. SUVs and vans speed experiments comparison.

Fig. 15. Buses and trucks speed experiments comparison.

the proposed fitting models are robust for vehicle speed
estimation. In the meantime, we compare the four proposed
models with DDTW and GPS. From Fig. 12, it can be seen
that the fitting models outperforms GPS in speed estimation.
Compared with DDTW, the fitting models still outperforms.
For example, 90% of DDTW’s estimation errors are less than
11 km/h. By contrast, 90% of the estimation errors for the
proposed models are lower than 7.5 km/h.

D. Vehicle Speed Estimation Error Analysis

Figs.13-15 compares the estimated speed and real speed in
each type. In addition, the histograms of our proposed models
in three types are presented to show the distribution of errors.
As in Fig 16-18, the observation of the four model’s estimation
error distributions are clearly seen. Among all the three types
of vehicles, the speed estimation in model 4 has the closest
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Fig. 16. Histograms for sedans.

Fig. 17. Histograms for SUVs and vans.

Fig. 18. Histograms for buses and trucks.

match with the theoretical analysis in (11), and it has the best
performance in all models.

V. CONCLUSION

In this paper, we addressed the problems of driving vehi-
cles classification and accurate vehicle speed estimation in

Fig. 19. For a bus with a length of 12 m, the wave perturbations in 20 km/h,
30 km/h, 40 km/h, 50 km/h speeds, respectively.

Fig. 20. The real-time magnetic perturbation caused by a bus driving
in 50 km/h.

urban environments through a magnetic sensor. In particular,
we developed a vehicle classification and speed estimation
technique, MagMonitor, which utilized vehicle magnetic char-
acteristics to classify vehicle types and through normalized and
filtered magnetic waveform characteristics to estimate vehicle
types and speeds. Also, road experiments were conducted
to validate the effectiveness of the proposed technique. The
magnetic sensor in our experiment is tiny, cost-effective, and
environmental-friendly. It is part of our future work to combine
with other sensor information to improve the performance of
the fine-grained speed estimation. We will also study vehicle
classification on multiple lanes in the future.

APPENDIX

Here, for a bus with a length of 12 m, combined with
real experiment knowledge, we assume the vehicle can be
modeled by four magnetic dipoles and we list the respective
wave patterns for the speed varying from 20 km/h to 50 km/h.
(Figs. 19 (a) - (d)).

Fig. 20 shows the magnetic perturbation caused by a bus.
It is obvious to see that using four magnetic dipoles to simulate
a long vehicle is reasonable.
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