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Abstract—In this paper, we study transmission power to secure
the connectivity of a network. Instead of requiring all nodes to
be connected, we require that only a large fraction (e.g., 95%)
be connected, which is called the giant component. We show that,
with this slightly relaxed requirement on connectivity, significant
energy savings can be achieved for a large-scale network. In
particular, we assume that a total of n nodes are randomly inde-
pendently uniformly distributed in a unit square in �2, that each
node has uniform transmission power, and that any two nodes are
directly connected if and only if the power that was received by one
node from the other node, as determined by the log-normal shad-
owing model, is larger than or equal to a given threshold. First,
we derive an upper bound on the minimum transmission power at
which the probability of having a giant component of order above
qn for any fixed q ∈ (0, 1) tends to one as n → ∞. Second,
we derive a lower bound on the minimum transmission power at
which the probability of having a connected network tends to one
as n → ∞. We then show that the ratio of the aforementioned
transmission power that was required for a giant component to
the transmission power that was required for a connected network
tends to zero as n → ∞. This result implies significant energy
savings if we require that only most nodes (e.g., 95%) be connected
rather than requiring all nodes to be connected. This result is
also applicable for any other arbitrary channel model that satisfies
certain intuitively reasonable conditions.

Index Terms—Connectivity, continuum percolation, giant com-
ponent, log-normal shadowing model, transmission power, wire-
less multihop networks.

I. INTRODUCTION

W IRELESS multihop networks, e.g., vehicular ad hoc
networks, mobile ad hoc networks, and wireless sensor
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networks, are increasingly being used in military and civilian
applications [1]. In general, a wireless multihop network con-
sists of a group of decentralized and self-organized nodes that
communicate with each other in a peer-to-peer manner over
wireless channels, and packets are collaboratively forwarded
hop by hop by the wireless nodes from the source to the desti-
nation with no need for base stations or any fixed infrastructure.

Connectivity is one of the most fundamental properties in
wireless multihop networks [2]–[7]. A wireless multihop net-
work is said to be connected if and only if (iff), for any pair
of two nodes, there is at least one path between them. Over
the past several years, the connectivity problem in wireless
multihop networks has widely been investigated, and significant
outcomes have been achieved [3]–[5], [7]–[11]. Nevertheless,
in many real applications, it is unnecessary for all nodes to
always be connected to each other [12]. Examples of such appli-
cations include a wireless sensor network for habitat monitoring
[13], [14] or environmental monitoring [15], [16] and a mobile
ad hoc network in which users can tolerate short off-service
intervals [17], [18].

In environmental monitoring, there are scenarios where the
size of the monitored phenomenon is very large (e.g., rain
clouds) or the parameters (e.g., temperature, humidity) that are
monitored slowly change both in space and in time. When the
number of nodes for monitoring the phenomenon or measuring
the parameters is very large, having a few disconnected nodes
will not cause a statistically significant change in the monitored
parameters. One example of such applications is a wireless
sensor network that was deployed underneath the Briksdals-
breen glacier in Norway to monitor the pressure, humidity, and
temperature of ice to understand glacial dynamics in response
to climate change [15].

In habitat monitoring, there are scenarios where the number
of objects (e.g., zebras and cane toads) that are monitored
is large and where these objects are randomly almost inde-
pendently distributed in the surveyed region. Having a few
nodes disconnected or lost may not significantly affect the
monitoring accuracy of the monitored parameter, e.g., the size
or the density of the population. Examples of such applications
include the experiment in [13], where a wireless acoustic sensor
network was used to monitor the population distribution of
invasive cane toads in northern Australia. In this application,
having a few nodes disconnected has little impact on the
accuracy of the estimated population distribution.

In many mobile ad hoc networks, having a number of
nodes temporarily disconnected is also not critical, as long as
users can tolerate short off-service intervals. For example, in
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Fig. 1. Simulation results. Average value of ratio r0.95/r1. r1 refers to
the transmission range that was required for a connected network, and r0.95

refers to the transmission range that was required for 95% of nodes to be
connected. The ratio is the average value, and each average value is obtained
over 2000 random topologies, in which a total of n nodes are uniformly
randomly distributed on a unit square.

a campus-wide wireless network, students and staff can share
information using wireless devices (e.g., laptops and personal
digital assistants) around the campus [17]. When a wireless
device temporarily loses connection, it can store the data and
complete the work after becoming connected later.

Simulations show that, by allowing a small percentage of
nodes to be disconnected (compared with requiring all nodes to
be connected), significant energy savings can be achieved [2],
[6]. As an example, Fig. 1 shows simulation results that com-
pare the transmission range that was required for all nodes to
be connected with the transmission range that was required for
95% of nodes to be connected in a network of n randomly in-
dependently uniformly distributed nodes in a unit square based
on a simple channel model, i.e., the unit disk communication
model, where two nodes can directly communicate with each
other iff their Euclidean distance is below a given threshold,
which is usually referred to as the transmission range1 [2], [3].
Then, comparable simulation results under the more-realistic
channel model in this paper will be provided in Section IV-A.
As shown in Fig. 1, when the number of nodes is 1000, the
transmission range that was required for 95% nodes to be con-
nected is 24% less than the transmission range that was required
for a connected network. Based on a conservative estimate that
the required transmission power increases with the square of the
required transmission range, this result yields energy savings
of at least 42%. In addition, the ratio decreases as the total
number of nodes n increases. As we will show in Section IV,
the ratio will go to zero when n → ∞. This result means that
the energy savings are even more significant in a network with
a larger number of nodes. Many real applications do not require
all nodes to be connected; thus, it is appropriate to consider
slightly relaxing the connectivity requirement, i.e., requiring
most nodes (e.g., 95%) to be connected rather than requiring
all nodes to be connected, to achieve significant savings in
power consumption. It then becomes important to investigate
the largest connected component that contains a nonvanishing
fraction of nodes, which is termed the giant component [6],
[19], [20]. A formal definition of the giant component will be
given in Section III.

1As we will later introduce in Section III, this channel model is a special case
of the more-realistic channel model in this paper.

In this paper, we analytically investigate the giant component
by employing the log-normal shadowing model [21] to see
how a weaker requirement on network connectivity can achieve
considerable reductions in the transmission power (i.e., energy
cost). In particular, we assume that a total of n nodes are
randomly independently uniformly distributed in a unit square
in �2 and that all nodes have the same transmission power.
Any two nodes are directly connected iff the power that was
received by one node from the other node, as determined by
the log-normal shadowing model, is larger than or equal to a
given threshold. In this paper, we have ignored the impact of
other more complicated factors (e.g., interference and network
traffic distribution) to focus on the main theme of this paper.
In addition, we consider only the energy that was consumed
on radio frequency transmissions [2], [6], [19], [22]. The node-
placement assumption is widely used by many researchers [2]–
[4], [7], [9], [12], [23]. The log-normal shadowing model is
chosen, because it can better capture the shadowing effects
and is more realistic than the unit disk communication model,
which has widely been used in the literature [6], [24]–[26].
The goal is to find an analytical upper bound on the minimum
transmission power that was required to have a giant component
of order above qn for any fixed q ∈ (0, 1) (see Theorem 1) and
an analytical lower bound on the minimum transmission power
that was required to have a connected network (see Theorem 2);
for both bounds, n must be large. Based on these two results, we
show that the minimum transmission power that was required
to have a giant component is vanishingly small compared with
the minimum transmission power that was required to have a
connected network as n → ∞ (Corollary 1). This result means
that significant energy savings can be achieved if we only
require most nodes (e.g., 95%) to be connected rather than
requiring all nodes to be connected, particularly in a network
with a large number of nodes. In addition, as a helpful by-
product, the interference can also be reduced by using a reduced
transmission power [27]. The results (e.g., Corollary 1) of this
paper, which were obtained under the log-normal shadowing
model, are also applicable for other channel models that satisfy
certain intuitively reasonable conditions. Details of this model
will be given in Section VII. To the best of our knowledge, our
results have not previously been reported.

The rest of this paper is organized as follows. Section II
briefly reviews related work. Section III describes the network
model and some basic concepts of graph theory that were
used in this paper. In Section IV, we present the main results
(Theorems 1 and 2 and Corollary 1) of this paper. In Section V,
we prove Theorem 1. In Section VI, we prove Theorem 2. In
Section VII, we consider extensions of the results for other
channel models. Finally, Section VIII concludes this paper and
discusses future research directions.

II. RELATED WORK

The concept of the giant component has extensively been
investigated in the literature for Bernoulli random graphs [28],
and an analytical formula that relates the giant component size
and the average node degree has been found [28], [29]. The
giant component size is defined as the ratio of the number of
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nodes in the giant component to the total number of nodes, and
the average node degree is the average number of neighbors of
an arbitrary node. However, it is well known that the Bernoulli
random graph is not suitable for modeling wireless multihop
networks; hence, it is inappropriate to directly apply the results
on the giant component from Bernoulli random graphs into
wireless multihop networks.

In contrast to the Bernoulli random graph, some more suit-
able models (e.g., geographical threshold graphs [30] and
geometric random graphs [2], [19]) were introduced and used
to study the giant component in wireless multihop networks.

In [30], Bradonjiæ et al. studied the giant component
based on the geographical threshold graph, where n nodes
are randomly uniformly distributed in a bounded area, and
the existence of a link between any two nodes is determined
by both the Euclidean distance between them and the node
weights that were assigned to them. The authors derived con-
ditions for the absence and existence of a giant component.
Németh et al. [31] empirically investigated the giant component
size by using a fractal propagation model where the probability
of having a link between two nodes is determined by their
Euclidean distance and two nonnegative constants. They found
that the giant component size can be characterized by a single
parameter, i.e., the average node degree.

Using the geometric random graph,2 Raghavan et al. [19]
proposed an empirical formula for the minimum transmission
range at which a 2-D wireless sensor network has a giant
component with a high probability and showed through sim-
ulations that the minimum transmission range is approximately
inversely proportional to

√
n. Using the same network model,

Santi et al. [2] empirically investigated the minimum trans-
mission range that ensures either a connected network or a
giant component that contains a large fraction (e.g., 90%) of
nodes with a high probability. The authors showed through
simulations that considerable reductions of the transmission
range (i.e., of the energy cost) can be achieved if we only
require a large percentage of nodes to be connected to a single
component. A similar conclusion can be found in [32]. In
[22], Rahnavard et al. applied the same network model and
proposed an energy-efficient two-phase broadcast scheme using
known results (i.e., critical node density for the occurrence
of a giant component) for the giant component in wireless
sensor networks. In the first phase, this scheme makes sure
that a giant component receives data packets, and in the sec-
ond phase, this scheme makes sure that all nodes receive the
data. The authors showed that this approach is more energy
efficient than requiring all nodes to receive the data in only one
phase.

In [6], Hekmat et al. employed a more-realistic channel
model, i.e., the log-normal shadowing model, to empirically
investigate the giant component size. The authors assumed
that a total of n nodes are randomly uniformly distributed
in a square and that a link exists between two nodes if the
power that was received at one node from the other node, as
determined by the log-normal shadowing model, is greater than

2A geometric random graph is typically formed by randomly uniformly
distributing n nodes in a bounded area (e.g., a unit square) and connecting any
two nodes iff their Euclidean distance is below a given threshold.

a given threshold. Based on the analytical results from Bernoulli
random graphs, the authors proposed an empirical formula that
relates the giant component size and the average node degree.
The authors also showed through simulations that significant
energy savings can be achieved by requiring that only a large
percentage of nodes are connected.

The results with regard to the giant component in [2], [6],
[19], and [32] are all obtained based on simulation studies.
In addition, [2], [19], and [32] study the giant component by
employing the aforementioned unit disk communication model.
The unit disk communication model is based on only the path-
loss phenomenon [21] and assumes that the received signal
strength at a receiving node from a transmitting node is only de-
termined by a deterministic function of the Euclidean distance
between the two nodes. However, in reality, the received signal
strength often shows probabilistic variations that were induced
by shadowing effects that are unavoidably caused by different
levels of clutter on the propagation path [21], [24]. To better
capture physical reality, one should consider the variations of
the received signal strength. It has been shown in [33] and
[34] that a more-accurate modeling of the physical layer is im-
portant for better understanding of wireless multihop network
characteristics. These observations motivate us to analytically
investigate the giant component by employing a more-realistic
channel model.

In this paper, we shall prove that the minimum transmission
power that was required to have a giant component of order
above qn (0 < q < 1) is vanishingly small compared with the
minimum transmission power that was required to have a con-
nected network as n → ∞ by using the log-normal shadowing
model, which is more realistic than the unit disk communication
model in [2] and [19].

III. PRELIMINARIES

A. Wireless-Channel Model

The wireless received signal strength Pr(duv) between any
two nodes u and v has popularly been modeled by a log-normal
shadowing model [21], [24], [35], i.e.,

Pr(duv) = Pt − PL0(d0) − 10α log10

duv

d0
+ Zσ (1)

where Pr(duv) is the received power at a receiving node v from
a transmitting node u (in decibel milliwatts), Pt is the trans-
mitted power of the transmitting node u (in decibel milliwatts),
duv is the Euclidean distance between nodes u and v, PL0(d0)
is the reference path loss (in decibels) at a reference distance
d0, α is the path-loss exponent that indicates the rate at which
the received signal strength decreases with distance, and Zσ is
a zero-mean Gaussian (normal) random variable (in decibels)
with standard deviation σ (also in decibels). The reference path
loss PL0(d0) is calculated using the free-space Friis equation
or is obtained through field measurements at distance d0 [21]. In
this paper, PL0(d0) and d0 are assumed to be known constants
[26], [36]. The value of α depends on the environment and
terrain structure and can vary between 2 in free space and 6 in
heavily built urban areas. The value of σ is usually larger than
zero and can be as high as 12 decibels [21].
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Fig. 2. Two channel models and resulting network topologies. r0 is the
transmission range in the absence of shadowing. (a) Unit disk communication
model. (b) Log-normal shadowing model.

In addition to the log-normal shadowing model, we will
make the following three assumptions in this paper, which are
commonly used by many researchers [6], [24], [25], [35], [37].

1) α remains constant in the network area.
2) The shadow-fading attenuations between all pairs of

nodes are independent identically distributed (i.i.d.), and
σ remains constant for all pairs of nodes.3

3) The paths are symmetric, i.e., the received power at node
v from node u is equal to the received power at node u
from node v.

For any two nodes u and v, there exists a wireless link between
them (or they are directly connected) iff the received power
Pr(duv) is not less than some given threshold Pth (also in
decibel milliwatts), i.e., Pr(duv) ≥ Pth [6], [21], [24]. Hence,
using (1), the probability that two random nodes u and v that
were separated by a known distance x are directly connected,
which is denoted as P(x), is given by

P(x) = Pr {Pr(x) ≥ Pth} =

∞∫
10α log10

x
r0

1√
2πσ

e−
z2

2σ2 dz (2)

where

r0 = d0 × 10
Pt−P L0(d0)−Pth

10α (3)

is the transmission range in the absence of shadowing (i.e.,
σ = 0). In this paper, we consider that all nodes have the
same transmission power Pt. It is clear that the shadowing-free
transmission range r0 is related to the transmission power Pt by
(3). Throughout this paper, we shall investigate the transmission
power Pt by investigating r0, given that Pth and α are fixed.

When σ = 0, there is no shadowing; the received power
Pr(duv) is then a deterministic function of the Euclidean
distance duv between u and v. The channel model reduces to
the unit disk communication model, where each node has a
circular transmission area. When σ > 0, the received power
Pr(duv) is determined by both the deterministic function of the
Euclidean distance duv between u and v and the shadowing.
The transmission area of each node is no longer a circular area.
Fig. 2 illustrates the two channel models and the corresponding

3Although field measurements in real applications seem to indicate that the
shadow fades between two links with a common node are correlated [35], this
i.i.d. assumption is generally considered appropriate for far-field transmissions
and is widely used in the literature [6], [24], [25], [35], [37].

network topologies. In this paper, our focus is on the more-
realistic log-normal shadowing model, because in real appli-
cations, σ is larger than zero.

B. Network Model

In general, a wireless multihop network can be represented
by an undirected graph G = (V,E) with a set of vertices
V = V (G) and a set of edges E = E(G). Each vertex of the
set V uniquely represents a node, each edge of the set E
uniquely represents a wireless link, and vice versa. The graph
G = (V,E) is then called the underlying graph of the network.
In the following discussion, we give a formal definition of the
underlying graph of the network. Denote this underlying graph
as G(Xn, r0, σ).

Definition 1: Let X1,X2, . . . , Xn be n points that are ran-
domly independently uniformly distributed in a unit square in
�2, and let Xn = {X1,X2, . . . , Xn}. The underlying graph
G(Xn, r0, σ) is an undirected graph with Xn as its vertex set
and an edge that connects each pair of vertices Xi and Xj in
Xn with probability P(‖Xi − Xj‖), where r0 is given by (3),
σ is the standard deviation of the shadowing in the log-normal
shadowing model, function P(·) is given by (2), and norm ‖ · ‖
refers to the Euclidean norm.

Remark: Although the network model in this paper is built
on a unit square, all results that were developed for a square of
unit size can easily be extended to a square of arbitrary size. In
fact, by a suitable space rescaling [20], [38], all the properties
in this paper can be reformulated [9], [20], [39].

C. Notation

This paragraph recalls some basic concepts from graph
theory [38], [40]. Two nodes are neighbors (or are directly
connected) iff they have a wireless link between each other. The
degree of a node u, which is denoted as d(u), is the number of
its neighbors. A node of degree zero is called an isolated node.
A graph is connected iff, for any pair of vertices, there is at least
one path between them. A component of a graph is a maximally
connected subgraph of the graph. The order of a component
is the total number of vertices in the component. The largest
component that contains a nonvanishing fraction of vertices is
called the giant component. In the following discussion, the
order of the giant component in a graph G is denoted by L(G).

Throughout this paper, we will use standard mathematical
notations [41] with regard to the following asymptotic behavior
of functions.

1) y(n) = o(g(n)) if limn→∞(y(n)/g(n)) = 0.
2) y(n) 	 g(n) or g(n) 
 y(n) if y(n) = o(g(n)).
3) y(n) ∼ g(n) if limn→∞(y(n)/g(n)) = 1.
4) An event ξn (depending on the value of n) is said to as-

ymptotically almost surely (a.a.s.) occur if its probability
tends to one as n → ∞.

Throughout this paper, let η be a constant given by η =
(log 10/10). Define an n-dependent integer set Jn as

Jn :=
{

j : j ∈ N,
⌊
n − 2n

3
4

⌋
≤ j ≤ n

}
(4)

where N represents the set of positive integers.
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IV. MAIN RESULTS

In this section, we present the main results, i.e., an asymp-
totic analytical upper bound on the minimum transmission
power for the giant component (see Theorem 1), an asymptotic
analytical lower bound on the minimum transmission power for
connectivity (see Theorem 2), and a comparison between the
minimum transmission power for giant component and the min-
imum transmission power for connectivity (see Corollary 1).
The proofs of Theorems 1 and 2 are deferred to the next two
sections, respectively. To avoid complexity in the derivation, we
will ignore the boundary effect that was caused by nodes that
are close to the boundary of the network area. In Section IV-A,
we will provide some simulation results to evaluate the impact
of the boundary effect.

Our main result for the upper bound on the minimum trans-
mission power for the giant component is given in the following
theorem.

Theorem 1: Consider G(Xn, r0, σ) in �2. Let q be any fixed
real number within (0, 1). Let c be any fixed real number. Let
f(n) be a function of n that satisfies

f(n) > 0, lim
n→∞ f(n) = ∞, lim

n→∞
f(n)
log n

= 0. (5)

Ignore the boundary effect. If πr2
0 exp((2η2σ2)/(α2)) =

((f(n) + c)/n), then

lim
n→∞Pr {L (G(Xn, r0, σ)) ≥ qn} = 1.

Theorem 1 says that, if r0 satisfies
πr2

0 exp((2η2σ2)/(α2)) = ((f(n) + c)/n), the network will
a.a.s. have a giant component of order above qn as n → ∞.
It provides an upper bound on the minimum transmission
power that was required to have a giant component of
order above qn. In [42], we have derived similar result with
regard to the upper bound in the nonshadowing case (i.e.,
σ = 0), which is πr2

0 = (f(n) + c/n). Hence, the difference
between the shadowing and the nonshadowing cases is that
there is no exponential term, i.e., exp((2η2σ2)/(α2)), in
the nonshadowing case. Notice that having a log-normal
shadowing model rather than a unit disk communication model
allows a reduction in the value of r0 for a fixed large n, i.e., the
random variation associated with the log-normal shadowing
model is helpful.

Remark: At first glance, the result in Theorem 1 appears
abnormal, because it suggests the probability of having a giant
component of order qn, because n → ∞ is independent of q.
Here, we offer the following intuitive explanation for the result.
It is well known that the width of the phase-transition region
from an almost-disconnected network to an almost-connected
network approaches zero as n → ∞ [43]. This case means
that, at large n, the probability of having a connected network
as a function of the transmission power is almost like a step
function such that, at a certain value of the transmission power
(termed the critical transmission power), a tiny variation in the
transmission power causes a large change in the probability.
The aforementioned result indicates that the same phenomenon
may also be observed for the probability of having a giant

component. Possibly, a refined set of conditions of f(n) in (5)
can allow for distinguishing the different values of q.

Our main result for the lower bound on the minimum
transmission power for connectivity is given in the following
theorem.

Theorem 2: Let Pd(Xn, r0, σ) denote the probability that
the graph G(Xn, r0, σ) in �2 is disconnected. Let c be
any fixed real number. Ignore the boundary effect. If
πr2

0 exp((2η2σ2)/(α2)) = ((log n + c)/n), then

lim inf
n→∞ Pd(Xn, r0, σ) ≥ 1 − exp(−e−c).

Observe that c < ∞, i.e., the lower bound given in the
aforementioned inequality is always positive, which implies
a nonzero probability of having a disconnected network
as n → ∞. Hence, to a.a.s. have a connected network,
r0 must at least satisfy the condition in Theorem 2, i.e.,
πr2

0 exp((2η2σ2)/(α2))=((log n+c)/n). Indeed, Theorem 2
provides a lower bound on the minimum transmission power
that was required to have a connected network. Theorem 2 turns
out to have a similar form to the widely cited result in [3] for
the nonshadowing case, i.e., πr2

0 = ((log n + c)/n). Note that
Theorem 2 has indirectly been derived in [24], [37], and [44]
for nodes that were distributed according to a homogeneous
Poisson point process.

Based on Theorems 1 and 2, we can obtain the following
important result.

Corollary 1: Let q be any fixed real number within (0, 1). Let
Rq be the critical value of r0 that was required to a.a.s. have a
giant component of order above qn and let R1 be the critical
value of r0 required to a.a.s. have a connected network. Ignore
the boundary effect. Then

lim
n→∞

Rq

R1
= 0.

Proof: Theorem 1 provides an upper bound on Rq, and
Theorem 2 provides a lower bound on R1. Hence, we have

lim
n→∞

Rq

R1
≤ lim

n→∞

√
f(n)+c

nπ exp
(

2η2σ2

α2

)
√

log n+c′

nπ exp
(

2η2σ2

α2

) = lim
n→∞

√
f(n) + c

log n + c′
= 0

where c and c′ are any fixed real numbers. �
The implication of the aforementioned result is that, when

n → ∞, the transmission power that was required to have
a giant component is vanishingly small compared with the
transmission power that was required to have a connected
network. Therefore, in a large-scale network, significant energy
savings can be achieved by requiring most nodes, instead of all
nodes, to be connected. Furthermore, in a network where almost
(but not) all nodes are connected, a large leap in transmission
power may be required to connect the remaining few nodes,
and the transmission power that was required for a large-scale
network to be connected is dominated by these few nodes, i.e.,
rare events. In many real applications, it is not worthwhile
to substantially increase the transmission power to connect
the remaining few nodes [2], and by only requiring a giant
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component, we can achieve significant energy savings and a
much longer lifetime of the network.

Remark: As mentioned in Section III-B, the results, i.e.,
Theorems 1 and 2 and Corollary 1, can easily be reformu-
lated by using the space-rescaling technique [20, Th. 9.17]. In
particular, Corollary 1 will still hold for a network that was
deployed on a square of arbitrary size without any change
in formation. According to [20, Th. 9.17], a network with n
randomly uniformly distributed nodes on a square of size

√
A ×√

A and with a shadowing-free transmission range R0 =
√

Ar0

has the same statistical connectivity property as a network with
n randomly uniformly distributed nodes on a unit square and
with a shadowing-free transmission range r0, i.e., the network
in this paper. The requirements on r0 can therefore be translated
into the requirements on R0 by the formula R0 =

√
Ar0. In

particular, in the network that was distributed on a square of
size

√
A ×√

A, the ratio between Rq and R1 (with the same
meaning as Rq and R1, respectively) is given by

Rq

R1
=

√
ARq√
AR1

=
Rq

R1
→ 0, as n → ∞.

A. Simulation Study

In this paper, we have ignored the boundary effect to avoid
complexity in the derivation. To evaluate the impact of the
boundary effect, we conducted a simulation study, considering
the boundary effect, to check the validity of Corollary 1,
which is the central contribution of this paper. In the following
discussion, we report the simulation results (with the boundary
effect), which compare r0.95 with r1 under the log-normal
shadowing model, where r0.95 is the minimum value of r0

that was required for 95% of nodes to be connected, and r1

is the minimum value of r0 that was required for all nodes
to be connected. We also compare these simulation results
with the result in Section I (see Fig. 1) under the unit disk
communication model.

Fig. 3(a) shows the average value of the ratio between
r0.95 and r1 when α = 2 and σ = 0, 1, and 3, where σ = 0
represents the unit disk communication model. As shown in
Fig. 3(a), the ratio is always smaller than one, and for fixed α
and σ, the ratio decreases as the total number of nodes n in-
creases in the presence of the boundary effect. There are several
further observations in Fig. 3(a). As explained in Section I, if
the path-loss exponent α increases, the energy savings will be
much greater. We can see that, for fixed α and n, the ratio for
a lower value of σ is larger than that for a higher value of σ,
which means that more reduction in transmission power (i.e.,
more energy savings) can be achieved for a higher value of σ.
The figure also indicates that, for fixed α and n, the variation of
the ratio with σ is not linear. This result should be expected. As
Theorems 1 and 2 show, for fixed n, r0 does not linearly depend
on σ but in proportion to exp((2η2σ2)/(α2)).

To further investigate the validity of Corollary 1, we also
present simulation results (with the boundary effect) obtained
with different shapes of the network area (e.g., rectangle and
circle). Fig. 3(b) shows the average value of the ratio between
r0.95 and r1 when α = 2 and σ = 3 for three different shapes of

Fig. 3. Simulation results with the Boundary effect. Average value of ratio
r0.95/r1. r0.95 refers to the minimum value of r0 that was required for 95%
of nodes to be connected. r1 refers to the minimum value of r0 that was
required for all nodes to be connected. The ratio is the average value, and each
average value is obtained over 2000 random topologies, in which a total of n
nodes are uniformly randomly distributed on a unit square, unit-area rectangle
2 × (1/2), or unit-area disc. (a) With boundary effects; unit square. α = 2.
(b) With boundary effects. σ = 3, and α = 2.

network area: 1) unit square; 2) unit-area rectangle 2 × (1/2);
and 3) unit-area disc. We can see that the difference between
them is marginal and can be ignored for n = 40 ∼ 6000.

Based on Fig. 3(a) and (b) and the aforementioned discus-
sion, we conjecture that Corollary 1 is also valid when taking
the boundary effect into account. In other words, the boundary
effect may only affect the convergence rate of Corollary 1 but
may not affect the conclusion of Corollary 1, i.e., (Rq/R1) → 0
as n → ∞.

V. PROOF OF THEOREM 1

In this section, we shall prove Theorem 1, which provides
an asymptotic analytical upper bound on the minimum trans-
mission power at which the probability of having a giant
component of order above qn tends to one as n → ∞, where
q is any fixed real number in (0, 1).

To derive the results, we will use Poissonization and de-
Poissonization techniques, considering that “Poissonization is
a key technique in geometric probability” [20, p. 18]. Let
{X1,X2,X3, . . .} be an infinite series of points that are ran-
domly independently uniformly distributed in a unit square in
�2. Given λ > 0, let Nλ be a Poisson random variable with
mean λ, independent of {X1,X2,X3, . . .}, and let

Pλ := {X1,X2, . . . , XNλ
} . (6)

Then, Pλ is the restriction to a unit square of a Poisson
point process with intensity λ in �2 [20]. The point process Pλ

has a spatial independence property; thus, it is easier to work
with the graph G(Pλ, r0, σ) rather than with G(Xn, r0, σ) [20],
where the graph G(Pλ, r0, σ) is obtained in the same way as
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in G(Xn, r0, σ), except that the vertex set is Pλ instead of Xn.
With Pλ and Xn being related, we shall start by proving results
about Pλ and then deduce results about Xn from these findings.
The first instance of this result occurs in Lemma 6.

We will frequently use the following lemmas in later
derivations.

Lemma 1 [3]: For any x ∈ [0, 1], we have

(1 − x) ≤ e−x.

Lemma 2: Suppose that Mn is a Poisson random variable
with an expected value E(Mn) = �n − n3/4�. Then

lim
n→∞Pr

{⌊
n − 2n

3
4

⌋
≤ Mn ≤ n

}
= 1.

Proof: Mn is a Poisson random variable with mean
E(Mn) = �n − n3/4�; thus, its variance, denoted as D2(Mn),
is also �n − n3/4�. By Chebyshev’s inequality, for any ε > 0,
we have

Pr {|Mn − E(Mn)| ≥ ε} ≤ D2(Mn)
ε2

.

Based on the aforementioned equation, we can obtain that

Pr {E(Mn) − ε ≤ Mn ≤ E(Mn) + ε} ≥ 1 − D2(Mn)
ε2

.

(7)

Now, let ε = �n3/4�. Substituting the value of E(Mn),
D2(Mn) and ε into (7), we have

Pr
{⌊

n − n
3
4

⌋
−
⌊
n

3
4

⌋
≤ Mn ≤

⌊
n − n

3
4

⌋
+
⌊
n

3
4

⌋}

≥ 1 −
⌊
n − n

3
4

⌋
⌊
n

3
4

⌋2 ∼ 1 − o(1), as n → ∞. (8)

For any two positive real numbers a and b, it is clear that

�a − b� ≤ �a� − �b�, �a� + �b� ≤ a + b.

Hence, we have⌊
n − 2n

3
4

⌋
=
⌊(

n − n
3
4

)
− n

3
4

⌋
≤
⌊
n − n

3
4

⌋
−
⌊
n

3
4

⌋
⌊
n − n

3
4

⌋
+
⌊
n

3
4

⌋
≤n − n

3
4 + n

3
4 =n.

Thus, we have

Pr
{⌊

n − n
3
4

⌋
−
⌊
n

3
4

⌋
≤ Mn ≤

⌊
n − n

3
4

⌋
+
⌊
n

3
4

⌋}
≤ Pr

{⌊
n − 2n

3
4

⌋
≤ Mn ≤ n

}
. (9)

By (8) and (9), the result follows. �
To prove Theorem 1, Lemmas 3−6 are needed. Lemma 6 is

used to prove Theorem 1, Lemma 3 is used to prove Lemma 4,
and Lemmas 4 and 5 are used to prove Lemma 6.

Lemma 3: Let P(Xn, r0, σ) be the probability that two
randomly selected nodes in G(Xn, r0, σ) in �2 are directly
connected. Assume that r0 	 1. Then

P(Xn, r0, σ) ∼ πr2
0 exp

(
2η2σ2

α2

)

where η = (log 10/10).
Proof: Let X be the random variable that represents the

Euclidean distance between any two randomly selected nodes
in G(Xn, r0, σ). Nodes are uniformly independently distributed
in a unit square; thus, the probability density function of X is
given by [45], [46]

pX(x) =

⎧⎨
⎩

2πx − 8x2 + 2x3, 0 ≤ x ≤ 1
2
√

x2 − 1 − x2+2
2

+ sin−1
(

1
x

)− cos−1
(

1
x

)
, 1 < x ≤ √

2.

Hence, based on (1) and (3), we have,

P(Xn, r0, σ)

= Pr
{

Zσ ≥ 10α log10

X

r0

}

=

∞∫
−∞

Pr
{

X ≤ r0 exp
(ηz

α

)} 1√
2πσ

e−
z2

2σ2 dz

=

∞∫
−∞

⎡
⎢⎣

min{1,r0 exp( ηz
α )}∫

0

pX(x)dx

⎤
⎥⎦ 1√

2πσ
e−

z2

2σ2 dz

+

∞∫
−∞

⎡
⎢⎢⎣

min{√2,r0 exp( ηz
α )}∫

min{1,r0 exp( ηz
α )}

pX(x)dx

⎤
⎥⎥⎦ 1√

2πσ
e−

z2

2σ2 dz.

Because r0 	 1, we have min{1, r0 exp(ηz/α)} =
r0 exp(ηz/α) and min{√2, r0 exp(ηz/α)} = r0(ηz/α) for
all sufficiently small r0. Therefore, we have

P(Xn, r0, σ)

∼
∞∫

−∞

⎡
⎢⎣

r0e
ηz
α∫

0

(2πx − 8x2 + 2x3)dx

⎤
⎥⎦ 1√

2πσ
e−

z2

2σ2 dz

= πr2
0 exp

(
2η2σ2

α2

)
− 8

3
r3
0 exp

(
9η2σ2

2α2

)

+
1
2
r4
0 exp

(
8η2σ2

α2

)

= πr2
0 exp

(
2η2σ2

α2

)
(1 + o(1)) .

The result follows. �
Lemma 4: Let j be any integer that satisfies �n − 2n3/4� ≤

j ≤ n. Let I(j, r0, σ) be the number of isolated vertices in
graph G(Xj , r0, σ) in �2. Let q be any fixed real number
within (0, 1), and let c be any fixed real number. Let f(n) be
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a function of n that satisfies (5). Ignore the boundary effect. If
πr2

0 exp((2η2σ2)/(α2)) = ((f(n) + c)/n), then

lim
n→∞Pr {I(j, r0, σ) ≥ j − qn + 1} = 0.

Proof: In this paper, we assume that links between nodes
are independent of each other [3], [24], [37] (see earlier as-
sumptions in Section III-A). Therefore, ignoring the boundary
effect and using Lemma 3, the probability that an arbitrary
node in G(Xj , r0, σ) is isolated, which is denoted by Piso(j), is
given by

Piso(j) ∼ [1 − P(Xj , r0, σ)]j−1

∼
[
1 − πr2

0 exp
(

2η2σ2

α2

)]j−1

.

Let E(I(j, r0, σ)) denote the expected value of I(j, r0, σ).
By the Palm theory [20, Th. 1.6], we have

E (I(j, r0, σ)) = j × Piso(j)

= j ×
[
1 − πr2

0 exp
(

2η2σ2

α2

)]j−1

.

By Lemma 1, we have

E (I(j, r0, σ))≤j×e
−(j−1)πr2

0 exp

(
2η2σ2

α2

)
=j×

(
e−c

ef(n)

)j−1
n

.

Because �n − 2n3/4� ≤ j ≤ n, we have (j − 1/n) → 1 and
(j/j − qn + 1) → (1/1 − q) as n → ∞ and (j − qn + 1) > 0
for all sufficiently large n. Hence, by the Markov inequality, it
follows that

Pr {I(j, r0, σ) ≥ j − qn + 1} ≤ E (I(j, r0, σ))
j − qn + 1

≤ j

j − qn + 1

(
e−c

ef(n)

) j−1
n

= o(1), as n → ∞.

Therefore, the result immediately follows. �
The previous lemmas applied to graphs that were associated

with uniform distribution of nodes. Now, we obtain two results
that apply when there is Poisson distribution.

Lemma 5: Consider G(Pm(n), r0, σ) in �2, where m(n) =
�n − n3/4�. Let K(Pm(n), r0, σ) be the number of vertices
in all components, which are neither isolated vertices nor the
largest component. Let f(n) be a function of n that satisfies
(5). If πr2

0 exp((2η2σ2)/(α2)) = ((f(n) + c)/n), then

lim
n→∞Pr

{
K(Pm(n), r0, σ) > 0

}
= 0.

Proof: To prove the result, we make use of some results
that were derived for the Poisson random-connection model
in continuum percolation [38]. Let Hλ denote a homogeneous
Poisson point process of intensity λ > 0 in �2. For s > 0,
define B(s) to be a square of size s × s that was centered at
the origin, i.e., B(s) := [−s/2, s/2]2, and define Hλ,s to be the
restriction of the homogeneous Poisson point process Hλ to the

square B(s), i.e., Hλ,s := Hλ ∩ B(s). It is also assumed that
there is always a point at the origin.4 In �2, the Poisson random-
connection model, which is denoted as G(Hλ,s, g), is a random
graph with vertex set Hλ,s and connection function g. The con-
nection function g is a function mapping from the positive reals
into [0, 1], and any two vertices x1 and x2 of the point process
Hλ,s are directly connected with probability g(‖x1 − x2‖),
where ‖ · ‖ denotes the Euclidean distance. The connection
function g also has to satisfy the following conditions:⎧⎨

⎩
g(x) = g(y) whenever x = y
g(x) ≤ g(y) whenever x ≥ y
0 <

∫
�2 g(x)dx < ∞.

(10)

The first restriction indicates that the propagation path is
symmetric, the second restriction indicates that g(x) must
be a nonincreasing function of the distance x, and the third
restriction avoids two trivial cases, i.e.,

∫
�2 g(x)dx = 0 and ∞.

The two cases are not interesting, because in the first case, all
nodes are isolated, and in the second case, all nodes are directly
connected to each other [37], [38], [48], [49].

It has been proven that G(Hλ,s, g) has at most one infinite-
order component for each λ ≥ 0 [38, Th. 6.3]. In addition,
when g satisfies (10), as λ → ∞, a.a.s., the origin in the graph
G(Hλ,s, g) either belongs to an infinite-order component or is
isolated [38, Th. 6.4]. The implication of the aforementioned
results is that, as λ → ∞, the graph G(Hλ,s, g) a.a.s. only
consists of a unique infinite-order component and a number of
isolated vertices.

Let s = (1/r0), λ = m(n)r2
0 , and let

g(x) =

∞∫
10α log10(x)

1√
2πσ

e−
z2

2σ2 dz.

It is clear that the graph G(Hm(n)r2
0 ,(1/r0), g) is a Poisson

random-connection model with vertex set Hm(n)r2
0 ,(1/r0) and

connection function g(x). In addition, g(x) satisfies the condi-
tions in (10). Because m(n) = �n − n3/4�, (�n − n3/4�/n) →
1 as n → ∞. Therefore

λ = m(n)r2
0 ∼ f(n) + c

π exp
(

2η2σ2

α2

) → ∞ as n → ∞.

Hence, as n → ∞, the graph G(Hm(n)r2
0 ,(1/r0), g) a.a.s. only

consists of isolated vertices and an infinite-order component.
By space rescaling under the mapping x �→ (1/r0)x [20,

Th. 9.17], it can be shown that the graph G(Hm(n)r2
0 ,(1/r0),

g(x)) is similar to G(Hm(n),1, g(x/r0)), which means
that they have the same statistical connectivity property.
Therefore, the result (e.g., Pd(Pm(n), r0, σ)) for the graph
G(Hm(n)r2

0 ,(1/r0), g(x)) also applies for G(Hm(n),1, g(x/r0)).
P(x) = g(x/r0), and Pm(n) = Hm(n),1; thus, the graph
G(Pm(n), r0, σ) is the same as G(Hm(n),1, g(x/r0)) by

4Note that the distribution of points in a Poisson process does not depend
on the assumption of the existence of a point at the origin (see Slivnyak’s
theorem [47]).
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definition. Hence, as n → ∞, the graph G(Pm(n), r0, σ) a.a.s.
only consists of isolated vertices and an infinite-order compo-
nent. Hence, Pr{K(Pm(n), r0, σ) > 0} → 0 as n → ∞. �

Lemma 6: Consider G(Pm(n), r0, σ) in �2, where m(n) =
�n − n3/4�. Let q be any fixed real number within (0,
1). Let c be any fixed real number. Let f(n) be a func-
tion of n that satisfies (5). Ignore the boundary effect. If
πr2

0 exp((2η2σ2)/(α2)) = ((f(n) + c)/n), then

lim
n→∞Pr

{
L
(
G
(Pm(n), r0, σ

)) ≥ qn
}

= 1.

Proof: Let Nm(n) be the number of points of Pm(n). Let
K(Pm(n), r0, σ) denote the number of vertices in all com-
ponents, which are neither isolated vertices nor the largest
component in G(Pm(n), r0, σ). Let I(Pm(n), r0, σ) denote
the number of isolated vertices in G(Pm(n), r0, σ). It is
clear that Nm(n) = L(G(Pm(n), r0, σ)) + I(Pm(n), r0, σ) +
K(Pm(n), r0, σ). Hence, by Lemma 5, we have

Pr
{
L
(
G
(Pm(n), r0, σ

))
<qn

}
= Pr

{
Nm(n)−I

(Pm(n), r0, σ
)−K

(Pm(n), r0, σ
)
<qn

}
= Pr

{
I
(Pm(n), r0, σ

)
>Nm(n)−qn

}
+o(1)

as n → ∞. (11)

Define I(j, r0, σ) as the number of isolated vertices in
G(Xj , r0, σ), with j ≥ 0. Then, we relate the uniform and
Poisson distribution models in the next calculation. By (11) and
Lemma 2, it can be obtained that as n → ∞

Pr
{
L
(
G
(Pm(n), r0, σ

))
< qn

}
= Pr

{
I
(Pm(n), r0, σ

)
> Nm(n) − qn

}
+ o(1)

=
∞∑

j=0

(m(n))j

j!
e−m(n) Pr {I(j, r0, σ) > j − qn} + o(1)

=
∑
j∈Jn

(m(n))j

j!
e−m(n) Pr {I(j, r0, σ) > j − qn} + o(1)

(12)

where Jn is an integer set that was defined by (4).
By Lemma 4, it can be shown that, for any integer j that

satisfies j ∈ Jn

Pr {I(j, r0, σ) > j − qn} = o(1), as n → ∞. (13)

Substituting (13) into (12), we have

Pr
{
L
(
G
(Pm(n), r0, σ

))
< qn

}
= o(1), as n → ∞.

Hence, the result immediately follows. �
Now, we can prove Theorem 1 by de-Poissonizing Lemma 6.

Proof of Theorem 1: Let m(n) = �n − n3/4�. Define
Y (Pm(n), r0, σ) and Y (Xn, r0, σ) as

Y (Pm(n), r0, σ) := Pr
{
L
(
G
(Pm(n), r0, σ

))
< qn

}
Y (Xn, r0, σ) := Pr {L (G(Xn, r0, σ)) < qn} .

Because m(n) = �n − n3/4�, we have Y (Pm(n), r0, σ) → 0
as n → ∞ by Lemma 6. Evidently, we need to show that
Y (Xn, r0, σ) → 0 as n → ∞.

By Lemma 2, we have

Y
(Pm(n), r0, σ

)

=
∞∑

j=0

(m(n))j

j!
e−m(n)Y (Xj , r0, σ)

=
∑
j∈Jn

(m(n))j

j!
e−m(n)Y (Xj , r0, σ)+o(1), as n→∞.

(14)

Let E(Xn,Xj) denote the event that all nodes in (Xn \ Xj)
are isolated in G(Xn, r0, σ). Then, for fixed r0, σ, α, any fixed
q ∈ (0, 1), and any j ∈ Jn, it can be obtained that

Y (Xn, r0, σ)

≤ Pr {E(Xn,Xj)} + Y (Xj , r0, σ)

∼
[[

1 − πr2
0 exp

(
2η2σ2

α2

)]n−1
]n−j

+ Y (Xj , r0, σ)

≤
(

e−c

ef(n)

)n−j

+ Y (Xj , r0, σ)

= o(1) + Y (Xj , r0, σ), as n → ∞. (15)

In the aforementioned derivation, Lemma 3 is used from the
second to the third lines, and Lemma 1 is used from the third
to the fourth lines. Substituting (15) into (14), it can be ob-
tained that

Y
(Pm(n), r0, σ

)

≥
∑
j∈Jn

(m(n))j

j!
e−m(n) (Y (Xn, r0, σ) − o(1)) + o(1)

= Y (Xn, r0, σ)
∑
j∈Jn

(m(n))j

j!
e−m(n) + o(1)

= Y (Xn, r0, σ) + o(1), as n → ∞. (16)

Because Y (Pm(n), r0, σ) = o(1) as n → ∞ by Lemma 6,
according to (16), we have

o(1) ≥ Y (Xn, r0, σ) + o(1), as n → ∞

which yields

Pr {L (G(Xn, r0, σ)) ≥ qn} = 1 − Y (Xn, r0, σ)

= 1 − o(1), as n → ∞.

The results immediately follow. �
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VI. PROOF OF THEOREM 2

In this section, we will prove Theorem 2, which provides
an asymptotic analytical lower bound on the minimum trans-
mission power at which the probability of having a connected
network asymptotically tends to one as n → ∞. We first present
Lemma 7, which will be used to prove Theorem 2.

Lemma 7: Let Piso(Xn, r0, σ) denote the probability that
an arbitrary node in G(Xn, r0, σ) in �2 is isolated. Let c
be any fixed real number. Ignore the boundary effect. If
πr2

0 exp((2η2σ2)/(α2)) = (log n + c/n), then

Piso(Xn, r0, σ) ∼ e−c

n
, as n → ∞.

Proof: As shown in the proof of Lemma 4, ignoring the
boundary effect and using Lemma 3, we have

Piso(Xn, r0, σ) ∼ [1 − P(Xn, r0, σ)]n−1

∼
[
1 − πr2

0 exp
(

2η2σ2

α2

)]n−1

.

Because πr2
0 exp((2η2σ2) / (α2)) = ((log n + c)/n) =

((log n + c)/n) → 0 as n → ∞, it can be obtained that

PisoXn, r0, σ) ∼
[
1 − log n + c

n

]n−1

∼ e−(log n+c) =
e−c

n
, as n → ∞.

�
Now, we can prove Theorem 2 based on Lemma 7.

Proof of Theorem 2: Let I(Xn, r0, σ) denote the number
of isolated nodes in G(Xn, r0, σ). It is clear that the probability
that the network is disconnected is larger than or equal to the
probability that the network has at least one isolated node, i.e.,

Pd(Xn, r0, σ) ≥ Pr {I(Xn, r0, σ) ≥ 1}
= 1 − Pr {I(Xn, r0, σ) = 0} . (17)

Because n 
 1 and r0 	 1, the event that a randomly se-
lected node has i neighbors can be regarded almost indepen-
dent of the event that another randomly selected node has j
neighbors [5], [7], [9], [24], [37], [48], [50]. This independence
assumption is based on the Palm theory [20, Th. 1.6], which
captures a form of spatial ergodicity property that relates the
probabilities that a given node has a certain degree. It has
also been shown in [7], [24], and [50] that this independence
assumption has provided a satisfactory level of approximation
with large-enough n. Hence, ignoring the boundary effect and
using Lemma 7, we have

Pr {I(Xn, r0, σ) = 0} = (1 − Piso(Xn, r0, σ))n

∼
(

1 − e−c

n

)n

∼ exp(−e−c), as n → ∞. (18)

By (17) and (18), the result follows. �

VII. ARBITRARY CHANNEL MODELS

All our results in this paper are derived under the log-normal
shadowing model. In addition to this wireless channel model
and the unit disk communication model (obtainable by setting
σ = 0 in the log-normal shadowing model), there also are other
wireless channel models in the literature [21]. The derivation
and analysis in this paper provide an efficient roadmap for
extending these results to other channel models. In this section,
we will explain this roadmap and how we can extend the results
in this paper for other channel models.

We assume that the node distribution is the same (i.e., the
vertex set is still Xn) but that the wireless channel model is re-
placed by another channel model. Assume that h(x) is the con-
nection function that is associated with the new channel model,
where h(x) is a function of x mapping from positive reals into
[0, 1], and x is the Euclidean distance between two nodes.
Hence, any two nodes that were separated by a known distance
x are directly connected with probability h(x). In addition, as-
sume that H is the probability that two randomly selected nodes
in the network are directly connected. It is clear that H can be
derived based on h(x) and the node distribution. Different chan-
nel models will lead to different h(x) and H . As an example,
for the log-normal shadowing model, h(x) is given by (2), and
H is given by Lemma 3. If h(x) satisfies the conditions given
by (10), we can then obtain similar results comparable with the
results (i.e., Theorems 1 and 2 and Corollary 1) in this paper in
the same way as shown in Sections V and VI. The following dis-
cussion shows an example that is comparable with Theorem 1.

Example 1: Let L(Xn, h) denote the order of the largest
component in the graph G(Xn, h), where h = h(x) is the con-
nection function that satisfies (10). Let H denote the probability
that two randomly selected nodes in the graph G(Xn, h) are
directly connected. Let q be any fixed real number within (0, 1).
Let c be any fixed real number. Let f(n) be a function of n
that satisfies (5). Ignore the boundary effect. If H = ((f(n) +
c)/n), then

lim
n→∞Pr {L (G(Xn, h)) ≥ qn} = 1.

Based on the aforementioned analysis, we can obtain the
following conclusion with regard to the ratio of the minimum
transmission power that was required to have a giant component
of order above qn (q ∈ (0, 1)) to the minimum transmission
power that was required to have a connected network; different
channel models may result in different quantitative changes
in the ratio but do not change the qualitative nature of the
ratio, i.e., the ratio will tend to zero as n → ∞, although
the speed of the decrease may slightly change under different
channel models. In other words, the transmission power that
was required to have a giant component of order above qn
is vanishingly small compared with the transmission power
that was required to have a connected network for all channel
models that satisfy the conditions given by (10).

Remark: The key ingredient for such an extension is that
the connection function h(x) associated with the new channel
model must satisfy the rotational symmetry, monotonicity, and
integral boundedness conditions given by (10).
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VIII. CONCLUSION

In this paper, we have investigated the giant component in
2-D wireless multihop networks by employing the log-normal
shadowing channel model, which is more realistic than the unit
disk communication model that was used in previous papers.
We have derived an asymptotic analytical upper bound on the
minimum transmission power to have a giant component of
order above qn (see Theorem 1) and have also derived an
asymptotic analytical lower bound on the minimum transmis-
sion power to have a connected network (see Theorem 2).
Based on these two results, we have further shown that the
minimum transmission power that was required to have a giant
component of order above qn is vanishingly small compared
with the minimum transmission power that was required to have
a connected network (see Corollary 1). This result means that
significant energy savings can be achieved if we require only
most nodes (e.g., 95%) to be connected to the giant component
rather than requiring all nodes to be connected, particularly for
a large-scale network. We have also provided a roadmap for
extending our results, which we have obtained under the log-
normal shadowing model, to other wireless channel models.

There are several directions for future work. First, we will
investigate the giant component problem by taking into account
the boundary effect, which has been ignored in this paper to
avoid complexity in the analysis. Second, our results are derived
for asymptotically infinite n, and one will also be interested in
the results for small values of n for practical purposes; thus, it
is also important to investigate this problem for small values of
n. Last, all the results are derived for static networks; it will
also be of interest and is important to analyze the problems for
mobile networks.
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