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Abstract—Compared with the conventional hexagonal cellular
network structure, Poisson-Voronoi tessellated (PVT) random
cellular network models can better capture the topology of real
cellular networks. However, the random cellular network models
are often complicated to analyze. To overcome this gap, in this
paper we propose to analyze the performance of PVT random
cellular networks using Markov chains. Using this technique,
the blocking probability and the area spectral efficiency (ASE)
models are obtained. Numerical results are demonstrated which
show that our proposed techniques are effective approaches to
evaluate the performance of random cellular networks.

Index Terms—Markov chains; random cellular networks;
blocking probability; spectrum efficiency

I. INTRODUCTION

In the last decades, one-dimensional linear model and
two-dimensional lattice model including square lattices and
triangular lattices have been widely used for cellular network
modeling and performance analysis [1]. However, the capacity
demand is dynamically changing in different cell network
areas. For example, residential and office areas need to be
equipped more base stations (BSs) to provide high trans-
mission capacity in cellular networks. Therefore, the regular
deployment assumption in cellular network cannot capture the
reality in BSs deployment. Ignoring these structural fluctua-
tions of the BS deployments may cause significant bias on the
evaluation of key system characteristics. As a consequence,
the random cellular model is proposed to model the spatial
structural fluctuations in real cellular networks [2]. Moreover,
in many real scenarios, only a statistical description of the
BS location is available which makes random cellular models
suitable for describing these BSs deployment [3].

Win et al. investigated the aggregated interference distribu-
tion in cellular networks where interferers are scattered accord-
ing to a spatial Poisson process [3]. Moreover, some critical
factors, such as wireless propagation, transmission technology
and spatial density of interfering nodes are analyzed assuming
random interference models. Based on the assumption of
Poisson BS deployments, modeling and performance analysis
of heterogeneous cellular networks were studied in [4], [5].
Mukherjee calculated the probability of the user being able to

camp on a macrocell and an open-access femtocell in a three-
tier network [4]. The probability was validated to be dependent
on the relative densities and transmit powers of macrocell and
femtocell, on the fraction of femtocell operating in open-access
vs. closed subscriber group model and on wireless channel
models. Based on a downlink heterogeneous cellular network
consisting of K tiers of randomly located BSs, Dhillon et al.
derived an expression for the probability of coverage over the
entire network under both open and closed access schemes
and obtained the average rate achieved by a typical mobile
user [5]. The achievable transmission capacity of wireless
backhaul mesh networks was explored in a two-tier network,
where the spatial distribution of transmitters of the primary
network is approximated by a Poisson point process and the
node distribution of secondary network is relatively stationary
[6]. Generally, it is complex to analyze the performance of
cellular networks based on random cellular models.

On the other hand, the Markov chain model is a simple
and efficient approach to describe wireless networks [7]–[12].
The most classical discrete channel model used for wireless
networks is the Gilbert-Elliott channel model, where the state
of the channel is marked as good or bad [7], [8]. Based on
the Gilbert-Elliott channel model, the throughput and delay
were analyzed for regular wireless networks [9], [10]. Based
on a three-dimensional Markov chain, a pico-cellular airport
traffic model was presented to evaluate the traffic congestion
and call congestion for different types of traffic streams in
[11]. A survey of the generalized finite-state Markov channel
modeling of fading channels with its applications in wireless
communication systems was presented in [12]. Nevertheless,
there is little study on random cellular networks using Markov
chain.

To overcome aforementioned gaps of Markov chain theory
and random cellular theory in cellular network modeling, we
try to combine the above two theories and build a new random
cellular network model based on Markov chain. In this paper,
we investigate the throughput and spectrum efficiency based on
Markov chain for a Poisson-Voronoi tessellated (PVT) random
cellular network. The main contributions of this paper are
summarized as follows.
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1) A random cellular network with Poissonly distributed
BSs and PVT cell coverage is analyzed based on Markov
chains.

2) Using the Markov chain model, the blocking probability
and the area spectral efficiency (ASE) of the PVT
cellular networks are analyzed.

3) The blocking probability and the ASE of PVT cellular
networks are evaluated extensively using numerical sim-
ulations and on that basis some interesting observations
are obtained.

The remainder of this paper is outlined as follows. Section II
describes the system model. In Section III, a Markov chain
model is proposed for modeling channel allocation in PVT
random cellular networks. Based on the proposed Markov
chain model, the blocking probability and the ASE are derived
for PVT random cellular networks in Section IV. Moreover,
the performance of the proposed models is analyzed by
numerical simulations. Finally, Section V concludes this paper.

II. SYSTEM MODEL
Assume that both mobile users (MUs) and BSs are located

randomly in the infinite plane R2. Locations of MUs and BSs
are assumed to be governed by two independent Poisson point
processes, which are denoted as ΘU = {xi : i = 0, 1, 2, . . .}
and ΘB = {yj , j = 0, 1, 2, . . .}, where xi and yj is the
location of the ith MU MUi and the jth BS BSj , respectively.
The intensities of the two Poisson point processes are λU and
λB , respectively.

A. Wireless Propagation Environments

The channel gain, defined as the ratio between the received
power Pr xi at the MU xi and the corresponding transmission
power Pyj from its associated BS yj is

Lyj (xi) =
Pr xi

Pyj

=
K · Syj (xi)

L (∥yj − xi∥)
=

K · Syj (xi)

∥yj − xi∥b
, (1)

where K is is a constant depending on antenna gains; the
term Syj (xi) accounts for the fading and shadowing effects in
wireless signal propagation environments; L (∥yj − xi∥) is the
path loss between the receiving MU and the transmitting BS,
which can be expressed as the function of distance ∥yj − xi∥b
with path loss exponent b [13].

B. User Association Scheme

In this paper, a MU xi is assumed to associate with the
closest BS y∗j , which typically suffers the least path loss during
wireless transmission. Therefore, the following requirement is
satisfied

y∗j = arg max
yj∈ΘB

∥yj − xi∥−b
. (2)

Considering that the locations of MUs and BSs are governed
by two independent Poisson point processes, the distance
between two BSs is a random variable. As a consequence,
the coverage of BS yj is defined by

Cyj =
{
y ∈ R2 : ∥y − yj∥ 6 ∥y − yl∥ , ∀yl ∈ ΘB and yl ̸= yj

}
.

(3)

Mobile User Base Station

Fig. 1. Topology of PVT cellular network with λU = 0.2 (km)−2

and λB = 0.03 (km)−2.

Based on (3), the topology of random cellular network is
illustrated in Fig. 1. In Fig. 1, the polygons rounding by
red dash lines are denoted as cells and the blue star points
represent mobile users in cellular networks. This type of
random cellular network is well known as the PVT cellular
network. Based on the Palm theory and the Slivnyaks theorem
[14], [15], the geometric characteristics of any cell coincide
with that of a typical PVT cell where the BS is located at a
fixed position. This feature implies that the analytical results
for a typical PVT cell, such as the traffic load and the outage
probability can be used to measure the performance of the
whole PVT cellular network.

C. Channel Allocation Scheme

A centralized channel allocation scheme is adopted in this
paper. The MU is assumed to have all channel state informa-
tion (CSI) in its cell. Considering the interference transmitted
from adjacent cells, the signal-to-interference-and-noise ratio
(SINR) is adopted to evaluate whether a channel is suitable for
a MU with the specified QoS. A MU first measures all signal
power over all unoccupied channels. If the value of SINR on a
channel is large than or equal to a given threshold, this channel
can be allocated for a MU and is marked as 1 in the channel
table. If the value of SINR on a channel is less than a given
threshold, this channel can not be allocated for a MU and is
marked as 0 in the channel table. Furthermore, the MU submits
the information of channel table to the associated BS. The BS
collects all information of channel tables and forwards this
information to the management center, which will coordinate
channel allocation in adjacent cells to reduce interference on
occupied channels. For example, when a MU xi plans to
occupy a channel c in the associated BS, the management
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center will ensure that the SINR values of occupied channels
with the same frequency band c in adjacent cells are large
than or equal to the given threshold even if the new MU is
added into cellular networks. In this way, we can avoid the
situation that the currently occupied channels are interrupted
by the new MU.

III. MARKOV CHAIN MODEL AND OUTAGE PROBABILITY

A. Channel Allocation Markov Chain Model

Without loss of generality, a typical cell Cori in the PVT
cellular network is selected for Markov Chain modeling and
performance analysis in this paper. In the typical cell Cori,
the call arriving to the system is assumed to follow a Poisson
distribution with mean λ. The cell service time TS and the cell
dwell time TD are assumed to be governed by exponential
distributions with mean µ and 1/TD, respectively. The call
holding time TH is defined as TH = min (TS , TD). Using the
property of exponential distribution, the call holding time TH
follows an exponential distribution with rate η = µ+1/TD. In
this paper, the continuous Gilbert-Elliott channel model is used
to model the transition between the available channels and the
unavailable channels. The transition rate from the unavailable
channel to the available channel is denoted as α. The transition
rate from the available channel to the unavailable channel is
denoted as β.

The total number of channels in the cell Cori is denoted as
C. The channel state is related to the SINR value. Only when
the SINR value of the channel is large than a given threshold
γ0, this channel can be allocated to a MU. Considering
the interference from adjacent cells, SINR values of some
channels are less than the given threshold γ0 in the cell
Cori. Therefore, the maximum number of channels that can
be allocated for MUs is usually less than the total number of
channels in the cell Cori.

Let (m,n) be the system state vector, where m is the
number of channels available to be allocated for MUs in the
cell Cori, and n is the number of occupied channels in the cell
Cori. Obviously, m is large than or equal to n. When the total
number of channels in the cell Cori is assumed to be 5, the
corresponding Markov Chain transition diagram is illustrated
in Fig. 2.

The Markov Chain state transition in Fig. 2 is described as
follows:

1) (m,n) → (m+ 1, n): When the instantaneous SINR
value of an unavailable channel becomes large than or
equal to the given threshold due to the time-varying
interference caused by MU activities, the number of
available channels is increased by 1.

2) (m,n) → (m− 1, n): When the instantaneous SINR
value of an available channel becomes less than the giv-
en threshold due to the time-varying interference caused
by MU activities, the number of available channels is
decreased by 1.

3) (m,n) → (m,n+ 1): When a new call arrives, the
number of occupied channels is increased by 1 if the
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Fig. 2. Markov chain transition diagram with C = 5.

number of occupied channels is less than the number of
available channels.

4) (m,n) → (m,n− 1): When a call has been successfully
serviced, the number of occupied channels is decreased
by 1 if this occupied channel is released.

Based on the Markov chain transition diagram in Fig. 2, the
transition rate from the state Sh to the state Sk, denoted by
Λ (Sh, Sk), satisfies the following equality

Λ (S1, S2) · Λ (S2, S3) · . . . · Λ (Su−1, Su) · Λ (Su, S1)

= Λ (S1, Su) · Λ (Su, Su−1) · . . . · Λ (S3, S2) · Λ (S2, S1)
.

(4)
Based on the Kolmogorovs criteria [16], Markov chain in
Fig. 2 is reversible and the associated stationary state distribu-
tion exists. Thus, the global equilibrium equations are derived
in (5). Based on (5), stationary state probabilities are expressed
as π(m,n) = χ · π (m) · π (n), where χ is a normalization
factor, π (m) and π (n) are probabilities related to m and n,
respectively. In detail, stationary state probabilities are derived
as follows

π(m,n) =


1

χ

(
λ

η

)n
1

n!

(
C

m

)(
α

β

)m

χ =
∑

n6m6C

(
λ

η

)n
1

n!

(
C

m

)(
α

β

)m , (6)

B. α/β Ratio

The ratio between α and β needs to be calculated in (6).
Let α

β = 1−ε
ε and it is easy to derive ε by

ε =
β

α+ β
. (7)

The probability of the unavailable channel is defined as β
α+β

in Gilbert-Elliott channel models. Referring to the definition of
the unavailable channel in Gilbert-Elliott channel models, ε is
also the probability of the unavailable channel. In this paper,
the channel is unavailable when the SINR value of channel
is less than the given threshold. In this case, the probability
of unavailable channel is equal to the outage probability.
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Cαπ(0, 0) = βπ(1, 0)

[mβ + λ+ (C −m)α]π(m, 0) = (C −m+ 1)απ(m− 1, 0) + ηπ(m, 1) + (m+ 1)βπ(m+ 1, 0) for 0 < m < C

[Cβ + λ]π(C, 0) = απ(C − 1, 0) + ηπ(C, 0)

[Cβ + λ+ nη]π(C, j) = απ(C − 1, n) + (n+ 1)ηπ(C, n+ 1) + λπ(C, n− 1) for 0 < n < C

Cηπ(C,C) = λπ(C,C − 1)

[(C −m)α+ iη]π(m,m) = λπ(m,m− 1) + (i+ 1)βπ(m+ 1, j) for 0 < n = m < C

[mβ + (C −m)α+ λ+ nη]π(m,n) = (C + 1−m)απ(m− 1, n) + (m+ 1)βπ(m+ 1, n) + (m+ 1)ηπ(m,n+ 1)

+λπ(m,n− 1) for 0 < n < m < C

. (5)

Considering that infinite interference transmitters are scatted
in an infinite plane, the outage probability ε is expressed as

ε = pout = P
(
SINRyj (xi) < γ0

∣∣xi ∈ Cori
)
, (8a)

with

SINRyj (xi) = S
W+I

=
Pyl

·K·Syj
(xi){L(∥yj−xi∥)}−1

σ2+Ixi

, (8b)

Ixi =
∑

yl∈ΘB\{yj}

Pyl
·K · Syl

(xi){L (∥yl − xi∥)}−1
, (8c)

where Ixi is the aggregated interference received by a mobile
user located at xi, σ2 is the constant Gaussian additive noise
power.

The success probability was derived for a randomly located
mobile user where signals experience a fading distribution
[17]. The user is assumed to be associated with the closest BS
and Syj (xi) is assumed to follow a Rayleigh distribution. To
simplify the derivation, we assume Syj (xi) ∼ exp (1). Based
on results in [17], we derive a user success probability where
desired signals and interference are governed by a Rayleigh
distribution, which is expressed by

psuc = πλB

∫ +∞

0

e−πλBs(1+κ)−γ0σ
2sb/2/Pyj

·Kds, (9a)

with

κ = γ
2/b
0

∫ +∞

γ
−2/b
0

1

1 + vb/2
dv. (9b)

The outage probability is derived by

pout = 1− psuc

= 1− πλB

∫ +∞
0

e−πλBs(1+κ)−γ0σ
2sb/2/Pyj

·Kds
.

(10)

IV. PERFORMANCE ANALYSIS AND NUMERICAL RESULTS

A. Performance Analysis

In the proposed system model, a call will be blocked if the
number of active mobile users exceeds that of available chan-
nels in a cell. Obviously, the number of available channels is
time-varying due to interference. Since no buffer is considered

in our proposed system model, the call blocking probability is
defined as

pb =
∑

m=n6C

π(m,n)

=
∑

m=n6C

1
χ

(
λ
η

)m
1
m!

(
C
n

)(
α
β

)n . (11)

Based on (11), the blocking probability is determined by the
limited availability of channel or spectrum resource as well as
time-varying characteristic of channel itself.

The bandwidth of a typical cell Cori is assumed to be B.
According to the Shannon channel capacity, the throughput of
a typical cell is derived by

Tthroughput = (1− pb)B · E
[
log2

(
1 + SINRyj (xi)

)]
·

∑
06m6n6C

m · π(m,n) .

(12)
In (12), the link capacity between a single mobile user and an
associated BS is

E
[
log2

(
1 + SINRyj (xi)

)]
=

∫ +∞

0

P
(
log2

(
1 + SINRyj (xi)

)
> t

)
dt

=

∫ +∞

0

P
(
SINRyj (xi) > 2t − 1

)
dt

= πλB

∫ +∞

0

∫ +∞

0

e−πλBs(1+κ′)−(2t−1)σ2sb/2/Pyj
·Kdsdt

,

(13a)
with

κ′ =
(
2t − 1

)2/b ∫ +∞

(2t−1)−2/b

1

1 + vb/2
dv. (13b)

(13a) is derived based on the relationship between the ex-
pectation and cumulative distribution function (CDF) of a
random variable. A simple proof is given as follows. For a
random variable x with continuous probability distribution
function (PDF), its expectation is expressed by E (x) =∫ +∞
−∞ xf(x)dx =

∫ 0

−∞ xf(x)dx +
∫ +∞
0

xf(x)dx. The first
and second terms of the expression are rewritten below.∫ 0

−∞ xf(x)dx = −
∫ 0

−∞

(∫ 0

x
dy

)
f(x)dx

= −
∫ 0

−∞
∫ y

−∞ f(x)dxdy

= −
∫ 0

−∞ F (y)dy

, (14a)
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Fig. 3. Blocking probability with respect to the SINR threshold
considering different channel numbers in the cell Cori.

∫ +∞
0

xf(x)dx =
∫ +∞
0

(∫ x

0
dy

)
f(x)dx

=
∫ +∞
0

∫ +∞
y

f(x)dxdy

=
∫ +∞
0

[1− F (y)] dy

, (14b)

where F (·) is CDF. As we all know, SINRyj (xi) > 0.
Thus, the integration of (14a) is zero and (13a) is obtained.
Using the Palm theory and the Slivnyaks theorem, the spatial
characteristics of any PVT cells is coincided with that of the
typical PVT cell Cori.

Furthermore, the ASE of the entire system is defined by
[18]

ASE = λB · Tthroughput. (15)

B. Numerical Results

To analyze the performance of our proposed models, some
default parameters are listed in Table I for numerical simula-
tions.

TABLE I
PARAMETER VALUES USED IN NUMERICAL SECTION

Parameter Value
λB 0.2(km)−2

C 20
B 0.1MHz
λ 1min−1

µ 0.05min−1

TD 20min
Pyj 30dBm
σ2 0dBm
b 4
K 31.54dB

Fig. 3 shows the call blocking probability with respect to
the SINR threshold which varies from 1 to 50 considering
different channel numbers C in the cell Cori. When the channel
number is fixed in the cell Cori, it is observed that the
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Fig. 4. Blocking probability with respect to the SINR threshold
considering different path loss exponents in the cell Cori.

call blocking probability increases with the increasing SINR
threshold, but the growth rate decreases. The reason is that the
successful receiving signal is decreased at terminals when the
SINR threshold is larger. When the SINR threshold is fixed,
the call blocking probability increases with the decreasing
channel number in the cell Cori.

Fig. 4 illustrates the call blocking probability versus the
SINR threshold for different path loss b in the cell Cori.
When the SINR threshold is fixed, the call blocking probability
decreases with the increase of path loss exponents. We know
that the path loss coefficient affects both desired signal and
interference signals. However, these curves imply that path
loss coefficient has a more significant impact on the aggregated
interference.

The ASE with respect to the SINR threshold considering
different BS intensities is plotted in Fig. 5. The ASE decreases
with the increasing SINR threshold when the BS intensity is
a fixed value. This is because spectrum resources can not be
fully utilized due to the high blocking probability when the
SINR threshold is large. When we fix the SINR threshold, the
ASE increases with the increasing of BS intensity. Higher BS
intensity means smaller cell size and shorter signal propagation
distance. Thus, a conclusion is drawn that the reduction of the
cell size will increase the ASE.

Fig. 6 compares the ASE with respect to the SINR threshold
considering different call arrival rates in the cell Cori. When
we fix the SINR threshold, ASE decreases with the increasing
of call arrival rate.

V. CONCLUSION

Based on Markov chains, a new PVT random cellular
network model is proposed. The blocking probability and
the ASE are derived to evaluate the PVT random cellular
networks. To achieve these models, a Markov chain model
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Fig. 5. ASE with respect to the SINR threshold considering different
BS intensities in the cell Cori.
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Fig. 6. ASE with respect to the SINR threshold considering different
call arrival rates in the cell Cori.

is presented for the PVT random cellular networks. Moreover,
performance of PVT random cellular networks is analyzed
using numerical results. By combining the PVT random theory
and Markov chain theory, we find a new approach to model the
cellular networks. Our results provide insights into the radio
resource (e.g., wireless channels) optimization in PVT cellular
networks
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