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Abstract—To meet massive wireless traffic demand in the
future fifth generation (5G) cellular networks, small cell
networks are emerging as an attractive solution for 5G network
deployments. The cellular coverage characteristic is a key
issue for the deployment of small cell networks. Considering
the anisotropic path loss in wireless channels of real cellular
scenarios, in this paper the fractal coverage characteristic is
first used to evaluate the performance of small cell networks.
Moreover, the coverage probability, average achievable rate
and the area spectral efficiency are derived for fractal small
cell networks. Compared with the average achievable rate
and area spectral efficiency with isotropic path loss models,
the average achievable rate and area spectral efficiency with
anisotropic path loss models has been underestimated in fractal
small cell networks. Considering the impact of the anisotropic
path loss on wireless channels, most of performances of
wireless cellular networks need to be re-evaluated. This paper
provides a tractable method to investigate the performance of
small cell networks with fractal coverage characteristics.

Index Terms—Small cell, wireless fractal coverage model,
coverage probability, area spectral efficiency, anisotropic path
loss.

I. INTRODUCTION

MOTIVATED by new applications, e.g., virtual reali-
ty and augmented reality applications, the wireless

traffic will increase more than 1000 times for 5G cellular
networks in the next decade [1], [2]. As one of the potential
solutions, the idea of providing small cell deployments has
proven to be an attractive solution to meet the 1000 times
capacity crunch [3]–[5], while bringing additional energy
efficiency (EE) to the system as well. Different from macro
cells, small cells with lower transmission power are mostly
deployed in high traffic demand areas, e.g., urban scenarios.
However, due to the irregularly distributed buildings, non-
uniformly distributed vegetation and changing weather in

The authors would like to acknowledge the support from the Hubei Provincial
Science and Technology Department under Grant 2016AHB006, the China Interna-
tional Joint Research Center of Green Communications and Networking under Grant
2015B01008 and the National Natural Science Foundation of China under Grant
61471180. This research is partially supported by the EU FP7-PEOPLE-IRSES, the
project acronym CROWN under Grant 610524, the project acronym EXCITING under
Grant 723227. (Corresponding author: T. Han.)

X. Ge, X. Tian, Y. Qiu and T. Han are with the School of Electronic In-
formation and Communications, Huazhong University of Science and Technolo-
gy, Wuhan 430074, Hubei, China (email: {xhge, xiaotong tian, yehong qiu, han-
tao}@mail.hust.edu.cn).

G. Mao is with University of Technology Sydney and National ICT Australia,
Sydney, Australia (email: g.mao@ieee.org).

those areas, the wireless propagation environment is quite
changeable and complex, which results in the irregular wire-
less coverage of small cell and influences the performance
of small cell networks. The measurement results in [6]
indicated that the irregular cellular coverage boundary in ac-
tual wireless communication environments has the statistical
fractal characteristic in angular scales. Hence, to optimize
the deployment of small cell networks, the complexity of
wireless propagation environments and wireless coverage
characteristics need to be considered for performance e-
valuation of small cell networks. However, considering the
complexity of wireless propagation environment, it is a
great challenge to investigate the performance of small cell
networks with wireless fractal coverage characteristics.

A. Related Work

Most of existing studies involving with small cell net-
works have been based on the assumption of seamless
coverage scenarios, such as the regular hexagon cellular
coverage model and Poisson-Voronoi tessellation (PVT)
cellular networks [7]–[12]. In conventional performance
analysis of cellular networks, the regular hexagon cellular
coverage model has been widely adopted in [7], [8]. Based
on the regular hexagon cellular coverage model, a pilot reuse
scheme was proposed to analyze the lower bound of uplinks
in a massive MIMO wireless communication system [7].
Utilizing the fractional frequency reuse scheme, the regular
hexagon cellular coverage region was divided into the center
region and the edge region to investigate the coverage
probability and the available rate for cellular networks [8].
Although the regular hexagon cellular coverage model can
easily build a cellular network for realizing the seamless
and non-overlap coverage [9], the impact of the density of
base stations (BSs) on the performance cellular networks is
ignored. However, the locations of BSs usually are random
and the coverage areas of BSs are often irregular in real
cellular scenarios [10]. To overcome these shortcomings,
the locations of BSs have been assumed to be governed by
Poisson point processes and cellular coverage regions have
been partitioned by a Delaunay triangulation method to es-
tablish seamless random cellular networks [11], [12]. Based
on Poisson-Voronoi tessellation (PVT) cellular networks, a
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tractable approach was proposed to analyze the coverage
probability and available rates in random cellular networks
[11]. Considering the user traffic load in cellular regions,
a Markov chain based wireless channel access model was
used to evaluate the spatial spectral and energy efficiency
of PVT random cellular networks [12]. In general, the
two cellular coverage models mentioned above are used
for seamless networks and both define the cell coverage
boundary by geometric partitioning. But irregular distribu-
tion buildings and shelters in actual wireless communication
environments result in the complex attenuation of wireless
signals and the irregular cell coverage boundary, which
make some users not) associate with the cellular networks
successfully. Hence, the “leakage cover” phenomenon is
inevitable in wireless cellular networks.

The path loss is one of the key components for complex
wireless transmission channels. Most of the existing studies
involving small cell networks have been based on the as-
sumptions of conventional path loss models [13], [14]. The
conventional path loss fading models imply that the wireless
signal power decays like a power-law over the propagation
distance and the decay rates called path loss coefficients
are the same in different propagation directions, which is
called isotropic path loss model in this paper. Utilizing a
non-uniform deployment scheme with isotropic path loss
model, the downlink coverage and throughput performance
of small cell networks were investigated in [14]. When
small cells are ultra-densely deployed in urban regions, the
non-line-of-sight (NLoS) and line-of-sight (LoS) wireless
transmissions have been simultaneously existed in small cell
networks. In these cases, conventional path loss models,
i.e., isotropic path loss models, have been indicated to
be not suitable for small cell networks [15]. A stochastic
path loss model incorporating both LoS and NLoS wireless
transmissions was introduced to investigate their impact
on the performance of dense small cell networks [16]. A
stochastic geometry framework was proposed to study the
coverage probability, the spectral efficiency and the area
spectral efficiency of dense small cell networks where the
path loss model includes both LoS and NLoS components
[17]. Multi-slope path loss models, where different distance
ranges are subject to different path loss exponents, were
proposed to analyze the throughput and the coverage prob-
ability of cellular networks [18].

In above studies, the differentiation of path loss coeffi-
cients has been limited in different distance ranges. How-
ever, buildings and obstacles are distributed irregularly in
urban environments and electromagnetic waves in different
directions experience different path loss considering differ-
ent diffraction and scattering effects in different propagation
directions, which conduce to the non-seamless coverage and
irregular coverage boundary in real cellular scenarios. The
path loss models, i.e., the path loss coefficients are different

not only in different propagation distance ranges, but also in
different propagation directions even with the same distance
range in real cellular scenarios. Therefore, the path loss
models are anisotropic in real cellular scenarios. Small cells
are mainly deployed in urban environment to offload the
wireless traffic from macro cell BSs [19], since it is an
inevitable challenge to investigate the impact of anisotropic
path loss on the performance of small cell networks.

B. Contributions and Organizations
Based on our measurement results in [6] and related

research work mentioned above, in this paper, the fractal
characteristic of cellular coverage and anisotropic path loss
model are first utilized to investigate the performance of
small cell networks. The main contributions of this paper
are summarized as follows:

1) Compared with conventional seamless coverage sce-
narios, a stochastic geometry small cell scenario with
irregular wireless fractal coverage is proposed to ana-
lyze the coverage probability, the average achievable
rate and area spectral efficiency in small cell networks.
The wireless fractal coverage characteristic is able
to capture the anisotropy of path loss in realistic
propagation environments in small cell networks.

2) Based on the wireless fractal coverage characteristic,
the coverage probability, the average achievable rate
and the area spectral efficiency are derived for the per-
formance analysis of small cell networks. Moreover,
the lower bound of average achievable rate is derived
for a typical user in fractal small cell networks.

The main observations of this paper are list as follows:
1) Compared with the coverage probability with isotrop-

ic path loss models in small cell networks, analytical
and Monto-Carlo simulation results indicate that the
coverage probability with anisotropic path loss models
has been overestimated in low signal-to-interference
ratio (SIR) regimes and has been underestimated in
high SIR regimes.

2) Compared with the average achievable rate and area
spectral efficiency with isotropic path loss models, the
average achievable rate and area spectral efficiency
with anisotropic path loss models have been underes-
timated in fractal small cell networks.

The rest of the paper is organized as follows. Section II
describes the system model. In Section III, the coverage
probability, the average achievable rate and the area spectral
efficiency have been derived for small cell networks based
on wireless fractal coverage characteristics. Furthermore,
the performance analysis of fractal coverage small cell
networks with anisotropic path loss has been simulated
and compared with the performance of fractal small cell
networks with isotropic path loss in Section IV. Finally,
Section V concludes this paper.
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II. SYSTEM MODEL

A. Fractal Foundation

Fractals are complex geometric features exhibiting self-
similar properties in that small details of its structure
viewed at any scale repeat elements of the overall pattern.
As mathematical equations, fractals are usually nowhere
differentiable. An infinite fractal curve can be conceived
of as winding through space differently from an ordinary
line, still being a 1-dimensional line yet having a fractal
dimension indicating it also resembles a surface [20]. A
fractal dimension is an index for characterizing fractal
patterns or sets by quantifying their complexity as a ratio
of the change in detail to the change in scale. The quan-
tization of a fractal dimension is typically estimated by
the value of the Hurst parameter. Three typical statistical
estimators, that is, the periodogram method, the rescaled
adjusted range statistic (R/S) method, and the variance-time
analysis method, are utilized to estimate the value of the
Hurst parameter for real worlds [21]. Our measured results
indicated that the irregular cellular coverage boundary in
actual wireless communication environments has the fractal
characteristic in statistics [6].

B. Network Model

In this paper our studies focus on downlinks of small cell
networks. Assume that small cell BSs (SBSs) are located
randomly in an infinite plane. We consider that the locations
of user/SBS are modeled as a Poisson cluster process (PCP),
with the parent point process, i.e., the locations of SBSs
modeled as a Poisson point process (PPP) denoted by
ΦB having density λB , and the daughter point processes
are independent and identically distributed (i.i.d.), i.e., the
locations of users modeled as an independent Bernoulli
process Φu with density λu. Every SBS is assumed to be
equipped with Nt transmission antennas and have the same
transmission power pt(W). Every small cell is associated
with one SBS. Without loss of generality, a fractal small
cell C0, where the SBS SBS0 is associated, is selected
to evaluate the performance of small cell networks. Every
user is equipped with single receive antenna. The number
of users served by each SBS in a given resource block is
Nr and Nr ≤ Nt.

Based on our measured results [6], the coverage boundary
of cellular scenario has the fractal characteristic, i.e., the
distance distribution between the SBS and the coverage
boundary that presents the fractal characteristic in the angle
domain, which is defined as fractal small cells in this paper
and the fractal characteristic is caused by the anisotropic
of path loss in real propagation environments. The system
model is illustrated in Fig. 1, where the SBS SBS0 is
marked as blue and the blue real line is the coverage
boundary of fractal small cells.

 Small cell base station(SBS)

Possible interfering SBS

Fractal small cell coverage boundary

R2

Distance between  user and  SBS

Mobile user Distance between  boundary and  SBS

Fig. 1. System model

The orthogonal frequency division multiplexing (OFDM)
technique with frequency reuse factor δ is assumed to be
adopted for the access process in small cell networks and
every subcarrier frequency is only serviced for one user
in a time slot. Hence, there is no intra-cell interference
in a fractal small cell. Active users are interfered by the
interference from adjacent fractal small cells using the same
transmission frequency.

Obviously, different from the traditional hexagonal and
PVT cellular networks which split the two-dimensional
plane into multiple regular triangles, squares, or regular
hexagons that seamlessly cover the service region without
overlaps, the fractal small cell network proposed in this
paper is a seam cover network, which means that a user
located outside the coverage boundary is omitted in cellular
networks.

C. Path Loss Model

Without loss of generality, the traditional path loss model
is denoted by l = r−β , where β is the path loss coefficient
and assumed to be the same in all propagation directions,
i.e., the isotropic path loss model. However, the propagation
of electromagnetic waves in objects is complicated and is
affected by various factors including the carrier frequency,
the height of antennas, the nature of the terrain, the urban-
ization, changes in atmospheric and weather environment,
the speed of mobile users, changes in foliage conditions, the
surrounding buildings, obstacle distributions, scatterers, and
so on [22]. Especially, surrounding buildings and scatterers
are distributed irregularly in urban environments which is
showed in Fig. 1. As a consequence, the path loss of wireless
signals is different not only in different propagation distance
ranges, but also obviously in different propagation directions
because many of those factors are random in natural urban
environments. However, the traditional path loss i.e., the
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isotropic path loss model in a cellular coverage has been
assumed to be same in different directions without consid-
ering the anisotropic of path loss in urban environments.

The distance between the small cell BS and the coverage
boundary is denoted as Rmax, the transmission power of
small cell BS is configured as pt, the farthest locations of the
cell coverage area are denoted as the wireless cellular cov-
erage boundary points, where the average received wireless
signal power is equal to the minimum threshold Pmin(W).
Based on the results in [18], the path loss coefficient is
derived as

β= −
log Pmin

pt

logRmax
, (1)

Moreover, measured results in [6] imply that the shadow-
ing effect has few impact on the fractal coverage character-
istics in cellular scenarios. As a consequence, the Rayleigh
fading model is considered in this paper, but the shadowing
effect is ignored in wireless channels [18], [19], [23].

D. Coverage Boundary Model
In this paper, the cell coverage area in a cellular system

is configured as the expected percentage of area within
a cell that has received power above a given minimum
threshold [9]. Based on results in [6], the coverage boundary
of cellular scenario has the fractal characteristic, i.e., the
distance distribution between the SBS and the coverage
boundary presents the fractal characteristic in the angle
domain. Hence, the fractal small cell defined as the cov-
erage boundary presents the fractal characteristic in the
angle domain, i.e., Hurst effect. In [24], an alpha-stable
distribution with the heavy-tail characteristic is applied to
fit the distance from the cellular coverage boundary to the
base station, which further confirms the heavy-tail effect
and fractal characteristics of the cellular boundary in angle
domain. However, most of alpha-stable distributions have
not closed forms. It is difficult to derive and analyze the
performance of fractal cellular regions, e.g., the coverage
probability, based on the alpha-stable distributions. Pareto
distributions have the heavy-tail and fractal characteristics
in mathematics and can be expressed by a closed form.
Hence, Pareto distributions are widely used to analyze the
performance of wireless networks with heavy-tail and frac-
tal characteristics [25]. To overcome the problem without
closed forms in alpha-stable distributions, in this paper the
Pareto distribution has been used to model the distances
between the SBS and the coverage boundary of fractal small
cell, whose probability density function (PDF) is expressed
by [26]

fRmax(Rmax) =

{
ε

ν−ε−ψ−εRmax
−(ε+1), v ≤ Rmax ≤ ψ

0, otherwise
,

(2)

where ε ∈ (1, 2] is the fractal parameter and reflects the
heaviness of the distribution tail. When the value of fractal
parameter ε is closer to 1, the distribution tail of Rmax

becomes heavier. To estimate the fractal parameter ε in
practice, the Hurst parameter H , which is widely used for
evaluating the fractal characteristic in practice [27], is used
to derive the fractal parameter ε as follows [28]

ε = 3− 2H. (3)

Moreover, the Hurst parameter H can be estimated in
practice by the Periodogram Method, the Rescaled Adjusted
Range Statistic (R/S) Method and the Variance-Time Analy-
sis Method [29]. For example, the value of Hurst parameter
in urban area is estimated as 0.9 from the measured data in
[6]. Based on (2), the fractal parameter ε can be configured
as 1.2 for (1). This result implies slower decaying in the tail
of PDF curve and more burstiness in the defined distances
between the coverage boundary and the BS. Moreover, if
the value of ε is smaller, then the fractal characteristic is
stronger in Pareto distributions. ν represents the distance
between the nearest coverage boundary location and the BS,
i.e., the minimum of Rmax, and ψ represents the farthest
coverage boundary location and the BS, i.e., the maximum
of Rmax, respectively.
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Fig. 2. PDF of the distance Rmax considering different
values of ε .

Fig. 2 shows the PDF of Rmax with respect to the distance
variable considering different fractal parameters ε. When
the fractal parameter ε is fixed, the PDF of Rmax decreases
with increasing values of Rmax. When the distance variable
Rmax is less than 90 meters, the PDF of Rmax increases
with the increase of the fractal parameter ε. When distance
variable Rmax is larger than or equal to 90 meters, the PDF
of Rmax decreases with the increase of the fractal parameter.
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III. WIRELESS FRACTAL SMALL CELL NETWORK
MODELS

Based on the fractal coverage characteristic of small cells,
the coverage probability, the average achievable rate of a
typical user and the area spectral efficiency are derived for
small cell networks in the following section.

A. Coverage Probability

We assume that the channel power for the direct link from
the serving BS SBS0 to the typical user US0 is denoted
by h0,0, the direct link is denoted by gk,0. In this paper, we
assume perfect CSI and focus on zero-forcing precoding,
under which for Rayleigh fading it can be argued that the
channel power distributions of both direct and the interfering
links follow the Gamma distribution. It can therefore be
shown that for zero forcing h0,0 ∼ Gamma(∆, 1), gk,0 ∼
Gamma(Nr, 1), where ∆ = Nt − Nr + 1 [30]. Then the
receive signal model of a typical user US0 is expressed by

y0=pth0,0r0
−β +

∑
SBSk∈ΦI/C0

ptgk,0rk
−β , (4)

where β= −
log

Pmin
pt

logD , ΦI/C0 is the set of interfering S-
BSs corresponding to the fractal small cell. Considering
the OFDM and frequency reuse techniques in small cell
networks, there are only 1/δth of SBSs using the same
transmission frequency which interferes with the specified
user.Based on the results of [31], the co-channel interfering
signals can be assumed to be statistically independent in this
paper. Hence, the density of interfering SBSs is denoted by
λI = λB

δ and the set of interfering SBSs is denoted by
ΦI(ΦI ⊂ ΦB).

Since users are uniformly distributed in the coverage of
fractal small cells, the distance between the typical user US0

and SBS0 is denoted by r0, and the PDF of r0 is:

fr0(r) =

{ 2r
R2

max
, 0 < r ≤ Rmax

0, r > Rmax
, (5)

where r0 = ηRmax, and η(0 < η ≤ 1), is the distribution
coefficient. When η = 1, typical user is located at the
coverage boundary of fractal small cells. Based on results
in [32], the PDF of η is derived by

fη(η) =
dP ( r

Rmax
<η)

dη

=
d

(
ηRmax∫

0

2r
R

max2
dr

)
dη = 2η , 0 < η ≤ 1 .

. (6)

Considering the interference-limited scenarios in this pa-
per, the maximum-ratio transmission/maximum-ratio com-
bining (MRT/MRC) scheme is adopted in small cell net-

works. The SIR of the user US0 is expressed by

SIR0=
pth0,0r0

−β∑
SBSk∈ΦI/C0

ptgk,0rk−β
, (7)

Iagg =
∑

SBSk∈ΦI/C0

ptgk,0rk
−β , (8)

where Iagg is the interference aggregated at the user US0.

In this paper, the coverage probability for a typical user
US0 associated with SBS0 is configured with the condition
that the SIR of the user US0 is larger than a given threshold
T . Therefore, the probability of user US0 coveraged by
SBS0 is expressed by

PSBScov (T ) = P (SIR0 > T ), (9)

Substitute (7) into (9), the probability P (SIR0 > T ) is
extended as

PSBScov (T ) =
pth0,0r0

−β∑
SBSk∈ΦI/C0

ptgk,0rk−β
> T, (10)

The distribution of h0,0 is

fh0,0(h) =

{
h∆−1e−h

(∆−1)! , h > 0

0, h ≤ 0
, (11)

where ∆ = Nt −Nr + 1.

Substitute (8) and (11) into (10), the probability
P (SIR0 > T ) is further derived by

PSBScov (T ) = P (SIR0 > T )

= P (
pth0,0r0

−β

Iagg
> T )

= P (h0,0 > p−1
t Tr0

βIagg)

= Er0 [P (g0 > p−1
t Tr0

βIagg|r0)]

, (12)

with

P (h0,0 > p−1
t Tr0

βIagg|r0)

=EIagg

{
∆−1∑
n=0

[TIaggr0
βp−1

t ]
n

n! e−Tr0
βp−1

t Iagg

}
=EIagg

{
∆−1∑
n=0

[Tr0
βp−1

t ]
n

n! (Iagg)
n
e−Tr0

βp−1
t Iagg

}
=

∆−1∑
n=0

[−Tr0βp−1
t ]

n

n! L(n)
Iagg

(Tr0
βp−1
t )

, (13)

where L(n)
Iagg

(Tr0
βp−1
t ) is the n order derivative of the

Laplace transform over the aggregated interference Iagg .

Theorem 1: Based on the definition of the Laplace trans-
form, the Laplace transform over the aggregated interference
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Iagg is derived by

LIagg (s)= exp

[
−s

2
β (pt)

2
β λI

2π
β

Nr∑
m=1

(
Nr
m

)
·B1
a(Nr −m+ 2

β ,m− 2
β )
] , (14)

where a = 1
1+s

pt
Nt
r0−β , and B1

a(x, y) is the upper in-

complete beta function, i.e., B1
a(Nr − m + 2

β ,m − 2
β ) =∫ 1

a
tNr−m+ 2

β−1(1− t)
m− 2

β−1
dt.

Proof : Theorem 1 is proved by Appendix A.

Substitute (14) and s = Trβ0 p
−1
t into (13), based on the

anisotropic path loss model, the coverage probability for
the typical user US0 in the service area of SBS0 is further
derived by

PSBScov,lA
(T ) = P (SIR0 > T )

=Er0
[
∆−1∑
n=0

[−Tr0βp−1
t ]

n

n! L(n)
Iagg

(Tr0
βp−1
t )

]
(a)
= ERmaxEη

[
∆−1∑
n=0

[−T (ηRmax)
βp−1

t ]
n

n!

·L(n)
Iagg

[T (ηRmax)
β
p−1
t ]|η,Rmax

]
=

∆−1∑
n=0

∫ ψ
ν

ε
Rmaxε+1 (ν−ε−ψ−ε)

·
∫ 1

0
2η[−T (ηRmax)

βp−1
t ]

n

n!

·L(n)
Iagg

[
T (ηRmax)

β
p−1
t

]
dηdRmax

, (15)

where (a) is the substitution operation r0 = ηRmax,
L(n)
Iagg

(s) is the n order derivative of the Laplace transform
over the aggregated interference. Based on the lemma 3 in
[33], L(n)

Iagg
(s) is expressed as

L(n)
Iagg

(s) = dn

dsnLIagg (s)

= exp [∆(s)] ·
∑
m̄∈M

C(m̄)
n∏
i=1

[∆(i)(s)]
mi , (16)

with

C(m̄) =
n!

Πk(mk!(k!)
mk)

, k = 1, 2, · · · , n, (17)

∆(s) = −s
2
β pt

2
β λI

2π

β

Nr∑
m=1

(
Nr
m

)
B1
a(Nr −m+

2

β
,m− 2

β
),

(18)

∆(n)(s) =
2πλI
β

(−1)n
(Nr + n− 1)!

(Nr − 1)!
s

2
β
−n
B1
a(Nr+

2

β
, n− 2

β
),

(19)

a =
1

1 + sptr
−β
0

, (20)

where
n∑
i=1

i ·mi = n, i = 1, 2...n, m̄ = (m1,m2, · · ·mn).

When the path loss model is configured as the isotropic
path loss model, the coverage probability for the typical user

in the service area of SBS0 is simplified as

PSBScov,lI
(T ) =

∆−1∑
n=0

φ∫
v

1∫
0

2η
ε[−T (ηRmax)

αp−1
t ]

n

Rmax
ε+1(ν−ε−ψ−ε)n!

· L(n)
Iagg

[T (ηRmax)
αp−1

t ]dηdRmax

, (21)

where α is the path loss coefficient used for the isotropic
path loss model and is a constant as α = 4. The results for
this isotropic path loss model are briefly presented here for
the purpose of comparison in analytical simulations.

B. Average Achievable Rate

Based on the coverage probability of a typical user, the
average achievable rate of a typical user can easily be
expressed by

Λ = E[log(1 + SIR0)], (22)

Substitute (7) into (22), the average achievable rate of a
typical user is derived by

Λ =

ERmax,η

[
Eh,ΦI

[
log(1 +

h0,0r
−β
0∑

SBSk∈ΦI/C0

gk,0rk
−β )|Rmax, η

]]
,

(23)
Based on the result of Lemma 1 in [34], we have the

following result:

Eh,g,ΦI

log(1 +
h0,0r

−β
0∑

SBSk∈ΦI/C0

gk,0rk−β
) |r0


=

∞∫
0

1− Eh0,0

[
e−zh0,0

]
z

Egk,0,ΦI

e−z ∑
SBSk∈ΦI/C0

gk,0rk
−βr

β
0


(a)
=

∞∫
0

1− (1 + z)−∆

z
EΦI

 ∏
SBSk∈ΦI/C0

1

(1 + zrk−βr
β
0 )
Nr

 dz

(b)
=

∞∫
0

1− (1 + z)−∆

z
e

−2πλI
∫∞
r0

1− 1

(1+zy−βr
β
0 )

Nr

ydy
dz

(c)
=

∞∫
0

1− (1 + z)−∆

z
e

−πλIz
2
β r20

∫∞

z
− 2

β

1− 1

(1+w
− β

2 )

Nr

dw
dz

,

(24)
where (a) is the operation based on the result of Lemma 1 in
[34], (b) is the operation based on the probability generating
functional (PGFL) of Poisson point processes, (c) is the
variable substitution, i.e., w− β

2 = zy−βrβ0 .
Let 1− (1 + w− β

2 )−1 = t, (24) is denoted by

Eh,g,ΦI

[
log(1 +

h0,0r
−β
0∑

SBSk∈ΦI/C0

gk,0rk−β )|r0

]
=

∫∞
0

1−(1+z)−∆

z exp
[
−πλr20z

2
β

·
∫ z

1+z

0 (1− (1− t)
Nr )(1− t)

2
β−1

t−
2
β−1dt

]
dz

, (25)
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Let Θ = z
2
β 2
β

∫ z
1+z

0 (1− (1− t)
Nr )(1− t)

2
β−1

t−
2
β−1dt,

we derive the following result:

Θ = z
2
β 2
β

∫ z
1+z

0 (1− t)
2
β−1 · t−

2
β−1dt

−z
2
β 2
β

∫ z
1+z

0 (1− t)
Nr+

2
β−1 · t−

2
β−1dt

= z
2
β t−

2
β

[
(1− t)

Nr+
2
β−1 − (1− t)

2
β

]∣∣∣ z
1+z

0

+z
2
β (Nr +

2
β − 1)

∫ z
1+z

0 t−
2
β (1− t)Nr+

2
β−2dt

= −1 + (1 + z)−Nr+1 + z
2
β (Nr +

2
β − 1)

·Bb0(1− 2
β , Nr +

2
β − 1)

(d)
= −1 + (1 + z)−Nr+1 + z

2
βNrB

b
0(1− 2

β , Nr +
2
β )

,

(26)
where (d) is the operation based on the beta function,
i.e., B(x, y + 1) = B(x, y) · y

x+y , Bb0(x, y) is the lower
incomplete beta function, b = z

1+z , Bb0(1 − 2
β , Nr +

2
β ) =∫ b

0
t−

2
β (1− t)

Nr+
2
β−1

dt.

Substitute (26) into (25), we obtain the following result:

Eh,g,ΦI

[
log(1 +

h0,0r
−β
0∑

SBSk∈ΦI/C0

gk,0rk−β )|r0

]
=

∫∞
0

1−(1+z)−∆

z exp[−πλIr20Θ]dz

, (27)

Substitute r0 = ηRmax into (23), the average achievable
rate of a typical user is derived by

Λ

= ERmaxEη
[∫∞

0
1−(1+z)−∆

z exp[−πλI(ηRmax)
2
Θ]dz

]
=

[∫ φ
v

ε
Rmaxε+1 (ν−ε−ψ−ε)

∫∞
0

1−(1+z)−∆

z

·
∫ 1

0
2η exp[−πλIR2

maxΘη
2]
]
dηdzdRmax

=
{∫∞

0
[1−(1+z)−∆]ε

z(ν−ε−ψ−ε)λIΘπ
·
[
v−ε−2−ψ−ε−2

ε+2

+
(πλIΘ)

ε+2
2 [Γ[− ε+2

2 ,πλIΘψ
2]−Γ[− ε+2

2 ,πλIΘv
2]]

2

]}
dz

,

(28)
with

Θ = (1 + z)−∆+1 + z
2
βNrB

b
0(1−

2

β
,Nr +

2

β
)− 1, (29)

Bb0(1−
2

β
,Nr +

2

β
) =

∫ z
1+z

0

t−
2
β (1− t)Nr+

2
β−1dt

b =
z

1 + z

,

(30)

Γ(−y, x) =
∞∫
x

e
−t −

n∑
i=0

(−1)
i ti

i!

ty+1

dt, [n = ⌊Re y⌋] ,

(31)
where Bb0(x, y) is the lower incomplete beta function, Re y
is the real part of the complex number y, and ⌊x⌋ is the
integral part of the real number x.

Theorem 2: Considering the interference-limited scenar-
ios, the lower bound of the average achievable rate of a
typical user is derived by

Λ =

{∫∞
0

(1−e−z ∆−1
∆ )ε

z(ν−ε−ψ−ε)λIΞπ
·
[
v−ε−2−ψ−ε−2

ε+2

+
(πλIΞ)

ε+2
2 [Γ(− ε+2

2 ,πλIΞψ
2)−Γ(− ε+2

2 ,πλIΞv
2)]

2

]}
dz

,

(32)
with

Ξ = −1 + e−z + z
2
β γ(1− 2

β
, z), (33)

Γ(−y, x) =
∞∫
x

e
−t −

n∑
i=0

(−1)
i ti

i!

ty+1

dt, [n = ⌊Re y⌋] ,

(34)
where γ(y, x) =

∫ x
0
ty−1e−tdt is the lower incomplete

gamma function.

Proof : Theorem 2 is proved in Appendix B.

C. Area Spectral Efficiency

In conventional cellular network models, e.g., assuming
with regular hexagon cellular coverage models and PVT
random cellular coverage models, users are assumed to be
seamlessly covered. However, in real propagation scenarios
the coverage boundary of SBSs is irregular and some edge
areas of adjacent SBSs are unavoidably omitted in cellular
networks. Considering the fractal characteristic of coverage
boundary, in this paper the small cell network is modeled as
a type of non-seamless coverage cellular network in urban
environments.

In this paper, the average received wireless signal power
at the cell coverage boundary in a cellular system is equal
to the minimum power threshold Pmin(dBm). Hence, we
define the average probability that a typical user can not
associate with small cell networks as

Pno Ass
= E[P ((ptR−β

1 < Pmin) ∩ · · · (ptR−β
n < Pmin) ∩ · · · )] ,

(35)
where Rn is the distance from the typical user to the
n − th closest SBS in PPP small cell networks, ptR−β

n

is the average received wireless signal power of the typical
user from the n− th closest SBS, and Pmin is the average
received wireless signal power at the small cell coverage
boundary.

Based on the definition of small cell coverage boundary,
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we can convert equation (35) to

E[P ((ptR−β
1 < Pmin) ∩ · · · (ptR−β

n < Pmin) ∩ · · · )]
= EβERmax [P ((ptR

−β
1 < ptR

−β
max)∩

· · · (ptR−β
n < ptR

−β
max) ∩ · · · ) |β,Rmax ]

= EβERmax [P ((R1 > Rmax)∩
(R2 > Rmax) ∩ · · · (Rn > Rmax) ∩ · · · ) |Rmax ]

,

(36)

In PPP small cell networks, R1 < R2 < · · · < Rn < · · · ,
(36) can be further convert to

Pno Ass = ERmax [P (R1 > Rmax) |Rmax ], (37)

For a 2-D plane deployed by a homogeneous PPP small cell
network with density λB , the probability that there is no
SBS located inside an area with the radius Rmax is denoted
as exp(−λBπR2

max). Hence, R1 > Rmax represents that
there is no SBS located inside the circle area with the radius
Rmax. Furthermore, the average probability that a typical
user can not associate with small cell networks is derived
by

Pno Ass = ERmax [e
−λBπR

2
max |Rmax ], (38)

Without loss of generality, the average probability that a
typical user can associate with fractal small cell networks
is expressed as

PAss = 1− Pno Ass

= 1− EβERmax [e
−λBπR

2
max |Rmax ]

= 1−
∫ ψ

v

e−λBπR
2
max

ε

ν−ε−ψ−εR
−(ε+1)
max dRmax

= 1−
ε(λBπ)

ε
2
[
Γ(− ε

2 , λBπv
2)− Γ(− ε

2 , λBπψ
2)
]

2(ν−ε−ψ−ε)

,

(39)

Hence, in area A the number of users which can associate
with the fractal small cell networks is calculated as

NAss
user = PAssλuA, (40)

Moreover, the number of SBSs in area A is denoted as
NSBS = λBA and the average coverage area of a typical
fractal small cell is expressed as

ASBS = ERmax

[∫ 2π

0

∫ Rmax

0

1

2
r · rdθdr

]
= ERmax [πR

2
max]

=
ε
[
ψ−ε+2 − ν−ε+2

]
π

(2− ε) [ν−ε−ψ−ε]

, (41)

The area spectral efficiency is one of metrics reflecting the
network capacity, which is defined as the average throughput
per Hz per unit area [35]–[37]. Therefore, the area spectral
efficiency (bits/s/Hz/m2) of 5G fractal small cell net-

works is expressed as

Ω =
NAss
user · Λ

NSBS · ASBS
=
PAssλuΛ

λBASBS
, (42)

where Λ is the average achievable rate of a typical user in
(28).

IV. SIMULATION RESULTS AND DISCUSSIONS

To analyze the performance of small cell networks with
fractal coverage characteristics, the coverage probability,
the average achievable rate and the area spectral efficiency
are simulated in this section. The analytical simulation is
adopted as the default simulation method for this paper.
Moreover, the Monto-Carlo (MC) simulation results are
used to compare with the analytical results in Fig. 5, Fig.
6, Fig. 10 and Fig. 11. The simulation default parameters
are listed in Table I.

A. Coverage Probability Performance
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Fig. 3. Coverage probabilities with respect to the SIR
threshold considering the fractal and PVT small cells.

Fig. 3 compares the coverage probabilities with respect
to the SIR threshold considering the fractal and PVT small
cells. When the SIR threshold is less than -18 dB, the
coverage probability of PVT small cell is larger than the
coverage probability of fractal small cell. When the SIR
threshold is larger than or equal to -18 dB, the coverage
probability of PVT small cell is less than or equal to the
coverage probability of fractal small cell.

Fig. 4 illustrates the coverage probability of fractal small
cell networks with respect to the SIR threshold considering
different number of SBS antennas and users in a given
resource block. For the sake of simplicity, the number of
antennas at SBSs is configured to be same as the number
of users in a given resource block. When the number of
antennas is fixed, the coverage probability decreases with
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TABLE I
SIMULATION DEFAULT PARAMETERS OF 5G SMALL CELL NETWORKS

Parameters Description Default value
λB Density of SBSs λB = 1

π1002 (1/m
2)

λu Users density 5λB
δ Frequency reuse factor 2
λI Density of interfering SBSs λI =

λB

δ
Nt Number of SBSs transmission antennas 2
Nr Number of users served by each BS in a given resource block 2
pt Transmission power of small cell 30dBm(1W)

Pmin Received power at coverage boundary -110dBm
ε Shape parameter of fractal coverage boundary 1.2
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Fig. 4. Coverage probability of 5G fractal small cell
networks with respect to the SIR threshold considering
different number of SBS transmission antennas.

the increase of the SIR threshold. When the SIR threshold
is fixed, the coverage probability decreases with the increase
in the number of antennas.
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Fig. 5. Coverage probability with anisotropic and
isotropic path loss models with respect to the fractal
parameter.
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Fig. 6. Coverage probability of 5G fractal small cell
networks with respect to the SIR threshold.
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Fig. 7. Average achievable rate with respect to the frac-
tal parameter ε considering different path loss models.

To validate the proposed coverage probability, the MC
simulation is performed to compare with the analytical
results in Fig. 5, in which “Analy” labels the analytical
results and “MC” represents the MC simulation results.
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Fig. 5 depicts the coverage probability with anisotropic
and isotropic path loss models with respect to the fractal
parameter ε. When the SIR threshold of fractal small cell
networks is fixed at 0 dBm, the coverage probability with
anisotropic and isotropic path loss models increases with the
increase of the fractal parameter. When the fractal parameter
ε is fixed, the coverage probability with anisotropic path loss
model is larger than the coverage probability with isotropic
path loss model.

Fig. 6 illustrates the coverage probability with respect
to the SIR threshold considering anisotropic and isotropic
path loss models in fractal small cell networks. When the
SIR threshold is less than -10 dB, the coverage probability
with isotropic path loss models is larger than the coverage
probability with anisotropic path loss models. When the SIR
threshold is larger than or equal to -10 dB, the coverage
probability with isotropic path loss models is less than or
equal to the coverage probability with anisotropic path loss
models.

B. Average Achievable Rate Performance

Fig. 7 evaluates the average achievable rate with respect
to the fractal parameter ε considering different path loss
models. When the path loss model is fixed, The average
achievable rate increases with the increase of fractal pa-
rameter ε. When the fractal parameter is fixed, the average
achievable rate with the anisotropic path loss model is larger
than the average achievable rate with the isotropic path loss
model.
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Fig. 8. Average achievable rate with respect to SBS
density λB considering anisotropic and isotropic path
loss models.

Fig. 8 evaluates the average achievable rate with respect
to SBS density λB considering different path loss models.
When the path loss model is fixed, the average achievable
rate decreases with the increase of SBS density λB . When
the SBS density is fixed, the average achievable rate with

anisotropic path loss model is larger than the average achiev-
able with isotropic path loss model. Moreover, the lower
bound of the average achievable rate with the anisotropic
path loss model is larger than the lower bound of the average
achievable rate with the isotropic path loss model.

C. Area Spectral Efficiency Performance

Fig. 9 depicts the average association probability with
respect to the SBS density λB considering different fractal
parameters. When the fractal parameter is fixed, the average
association probability increases with the increase of SBS
density λB . When the SBS density λB is fixed, the average
association probability increases with the decrease of the
fractal parameter.
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Fig. 9. Average association probability with respect to
SBS density λB considering different fractal parame-
ters.
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Fig. 10. Area spectral efficiency with respect to the
fractal parameter considering anisotropic and isotropic
path loss models.
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Fig. 10 compares the area spectral efficiency with respect
to the fractal parameter considering anisotropic and isotropic
path loss models. When the path loss model is fixed, the
area spectral efficiency increases with the increase of the
fractal parameters in fractal small cell networks. When the
fractal parameter is fixed, the area spectral efficiency with
anisotropic path loss model is larger than the area spectral
efficiency with isotropic path loss model.
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Fig. 11. Area spectral efficiency with respect to SBS
density λB considering anisotropic and isotropic path
loss models.

Fig. 11 shows the area spectral efficiency with respect to
the SBS density λB considering anisotropic and isotropic
path loss models. When the anisotropic path loss model is
adopted, the area spectral efficiency firstly increases with
the increase of SBS density λB and then decreases with the
increase of the SBS density λB when the SBS density is
larger than a given threshold. When the isotropic path loss
model is adopted, the area spectral efficiency decreases with
the increase of the SBS density λB . When the SBS density
λB is fixed, the area spectral efficiency with anisotropic path
loss model is larger than the area spectral efficiency with
isotropic path loss model in fractal small cell networks.

V. CONCLUSIONS

Considering the anisotropic path loss in wireless channels
of realistic cellular scenarios, small cell networks with
wireless fractal coverage characteristics are investigated in
this paper. Moreover, the coverage probability, the average
achievable rate and the area spectral efficiency are derived
to analyze the performance of fractal small cell networks.
Furthermore, the lower bound of average achievable rate
is derived by an analytical form. Analytical and MC sim-
ulation results indicate that the coverage probability with
anisotropic path loss models has been overestimated in
low SIR regimes and has been underestimated in high
SIR regimes compared with the coverage probability with

isotropic path loss models in fractal small cell networks.
Moreover, the average achievable rate and area spectral
efficiency with anisotropic path loss models have been
underestimated compared with the average achievable rate
and area spectral efficiency with isotropic path loss models
in fractal small cell networks. Considering the impact of
the anisotropic path loss on realistic cellular scenarios, most
of performances, e.g., the coverage probability, the average
achievable rate and area spectral efficiency have to be re-
evaluated for wireless cellular networks. Our results provide
a tractable method to analyze the impact of anisotropic path
loss on the performance of small cell networks with wireless
fractal coverage characteristics.

APPENDIX A
Based on the definition of the Laplace transform, the

derivation process of the aggregated interference is extended
as follows:

LIagg (s) = [e−sIagg ]

= EΦB,g

{ ∏
SBSk∈ΦI/C0

exp(−sptrk−βgk,0)

}
(a)

= exp
[
−
∫
r g

[
1− exp(−sptrk−βgk)

]
2πλIrdr

]
= exp

[
−
∫
r

(∫∞
0

gNr−1

Γ(Nr)
e−g(1− e−sptr

−βg)dg
)

· 2πλIrdr]
= exp

[
−
∫
r>r0

(
1− 1

(1+sptr−β)Nr

)
λId(πr

2)
]

,

(43)
where (a) follows PGFL in Poisson point processes.

Based on the Binomial theory, (43) is further derived by

LIagg (s)

= exp

− ∫
r>r0

Nr∑
m=1

 Nr
m

(sptr−β)
m

(1+sptr−β)Nr


= exp

[
−

Nr∑
m=1

(
Nr
m

) ∫
r>r0

(
sptr

−β)m
·
(
1 + sptr

−β)Nr
λId

(
πr2

)]
, (44)

When (1 + sptr
−β)−1 is substituted by t and a =

1
1+sptr0−β , the Laplace transform of the aggregated inter-
ference is further derived by

LIagg (s) = exp
[
−s

2
β (pt)

2
β λI

2π
β

∑Nr

m=1

(
Nr
m

)
·
∫ 1

1

1+sptr0
−β

tNr−m+ 2
β−1(1− t)

m− 2
β−1

dt

]
= exp

[
−s

2
β (pt)

2
β λI

2π
β

∑Nr

m=1

(
Nr
m

)
·B1
a(Nr −m+ 2

β ,m− 2
β )
]

,

(45)
Hence, the Theorem 1 is proved.
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APPENDIX B

The average achievable rate of a typical user is extended
by

Λ = ERmax,η

[
EΦI/C0,h,g [log(1 + SIR0)|Rmax, η]]

= Eβ,Rmax,η

[
EΦI/C0,h,glog(1 + 1∑

SBSk∈ΦI/C0

gk,0
h0,0

r−β
k rβ0

)|Rmax, η

 ,

(46)

Based on the Jensen’s inequality,

EΦI/C0,h,g

log(1+ 1∑
SBSk∈ΦI/C0

gk,0
h0,0

r−β
k rβ0

)|Rmax, η

 is

derived by

EΦI/C0,h,g

log
1 + 1∑

SBSk∈ΦI/C0

gk,0
h0,0

r−β
k rβ0

 |r0


≥ EΦI/C0

log
 1+Eh,g

[ ∑
SBSk∈ΦI/C0

gk,0
h0,0

r−β
k rβ0

]

Eh,g

[ ∑
SBSk∈ΦI/C0

gk,0
h0,0

r−β
k rβ0

]
 |r0


,

(47)

Considering that g0 and gk are independent of
each other and have the identically distribution,

we can derive Eh,g

[ ∑
SBSk∈ΦI/C0

gk,0

h0,0
r−βk r

β
0

]
=

E
[

1
h0,0

] ∑
SBSk∈ΦI/C0

E[gk,0]r−βk rβ0 . Based on the properties

of Gamma distribution, i.e., h0,0 ∼ Gamma(∆, 1) and
gk,0 ∼ Gamma(Nr, 1), we have E[gk] = Nr and
1
g0

is governed by an inverse Gamma distribution,
i.e., 1

g0
∼ IGamma(∆, 1). Due to the property of

inverse Gamma distribution, E
[

1
g0

]
= 1

∆−1 is derived.

We can further derive Eg

[ ∑
SBSk∈ΦI/C0

gk,0

h0,0
r−βk r

β
0

]
=

E
[

1
h0,0

] ∑
SBSk∈ΦI/C0

E[gk,0]r−βk r
β
0 =

∆
∆−1

∑
SBSk∈ΦI/C0

r−βk r
β
0 . As a consequent, (47) is derived

by

EΦI/C0,h,g

log
1 + 1∑

SBSk∈ΦI/C0

gk,0
h0,0

r−β
k rβ0

 |β, r0


≥ EΦI/C0

log
1 +

∆−1
∆∑

SBSk∈ΦI/C0

r−β
k rβ0

 ,

(48)

Based on the result in [34], (48) is further derived by

EΦI/C0

log
1 +

∆−1
∆∑

SBSk∈ΦI/C0

r−βk rβ0




(a)
=

∫ ∞

0

1− e−z
∆−1
∆

z
E

[
e
−z

∑
SBSk∈ΦI/C0

r−β
k rβ0

]
dz

(b)
=

∫ ∞

0

1− e−z
∆−1
∆

z
·e

−2λIπ
∫
r0

(
1−e−zy−βr

β
0

)
ydy

dz

(c)
=

∫ ∞

0

1− e−z
∆−1
∆

z
·e−λIπr

2
0z

2
β
∫
z−2/β (1−e−u

− β
2
)dudz

,

(49)
where (a) is the operation based on the lemma 1 in [34],
(b) is the PGFL in Poisson point processes and (c) is the
substitution operation with u−

β
2 = zy−βrβ0 . Substitute (49)

and (48) into (46), the lower bound of average achievable
rate of a fractal small cell is derived by

Λ = ERmax,η

[∫∞
0

1−e−z ∆−1
∆

z

·e−λIπ(ηRmax)
2z

2
β
∫
z−2/β (1−e−u

− β
2
)dudz

]
(d)
= ERmax,η

[∫∞
0

1−e−z ∆−1
∆

z

·e−λIπ(ηRmax)
2(−1+e−z+z

2
β γ(1− 2

β ,z))dz

]
=

∫∞
0

(1−e−z ∆−1
∆ )ε

z(ν−ε−ψ−ε)λI(−1+e−z+z
2
β γ(1− 2

β ,z))

·
∫ ψ
ν

1−e−λIπR2
max(−1+e−z+z

2
β γ(1− 2

β
,z))

Rε+3
max

dRmaxdz

=

{∫∞
0

(1−e−z ∆−1
∆ )ε

z(ν−ε−ψ−ε)λIΞπ
·
[
v−ε−2−ψ−ε−2

ε+2

+
(πλIΞ)

ε+2
2 [Γ(− ε+2

2 ,πλIΞψ
2)−Γ(− ε+2

2 ,πλIΞv
2)]

2

]}
dz

,

(50)
with (51) and (52)

Ξ = −1 + e−z + z
2
β γ(1− 2

β
, z), (51)

Γ(−y, x) =
∞∫
x

e
−t −

n∑
i=0

(−1)
i ti

i!

ty+1

dt, [n = ⌊Re y⌋] ,

(52)
where γ(y, x) =

∫ x
0
ty−1e−tdt is the lower incomplete

Gamma function, (d) is the substitution operation with
γ(y + 1, x) = yγ(y, x) − xye−x based on the property of
lower incomplete function. Hence, the Theorem 2 is proved.
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