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Abstract—Passive WiFi localization refers to determining the
location of WiFi enabled mobile devices by deploying dedicated
WiFi access points to sniff WiFi packets transmitted by these
mobile devices and measure the corresponding Received Signal
Strengths (RSSs) for use in localization. However, most existing
studies fail to consider the effect of multiple channels where
WiFi packets are transmitted and sniffed. The problem is
further exacerbated by device heterogeneity occurring cross
various mobile devices. In this paper, we present a unified
Deep Neural Network (DNN)-based solution, termed DHCLoc,
to address these two challenges. To be specific, a Cramer-
Rao Lower Bound (CRLB)-based analysis reveals that utilizing
multi-channel information will benefit localization, motivating
us to include channel information into DHCLoc. Moreover, a
novel Maximum Likelihood Estimation (MLE)-based localization
framework is introduced by incorporating a new variable to
characterize the RSS measurement offsets caused by device
heterogeneity, inspiring us to apply adversarial training to adopt
such offsets against device heterogeneity. Extensive experiments
using two real-world datasets are conducted, and show that, in
comparison with several existing methods, DHCLoc can improve
the localization accuracy by at least 25.2% and 25.8% respectively.

Index Terms—WiFi Localization, RSS, channel, device hetero-
geneity, deep learning.

I. INTRODUCTION

NOWADAYS, there is an increasing demand on Location
Based Services (LBSs) [2], and various solutions, such

as bluetooth [3], WiFi fingerprinting [4] and Channel State
Information (CSI) [5] etc., have been developed. Therein, WiFi
fingerprinting is one of the most popular solutions due to its
wide availability and low costs.

The basic process of WiFi fingerprinting involves two stages
[6], i.e., offline training and online matching. In the offline
stage, Received Signal Strength (RSS) measurements from
different WiFi access points (APs) are collected at different
reference points (RPs), producing an RSS fingerprint database
(FD). In the online stage, the RSS measurement vector ob-
tained at an unknown position is matched across the FD, such
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that one optimal RP is selected. As to fingerprint matching
algorithms, various methods like k-Nearest Neighbors (KNN)
[7], weighted KNN (WKNN) [8] and support vector machines
(SVM) [9] have been proposed. However, these methods suffer
from their limited ability of learning complex features from
training samples. Recent works focused on using deep learning
models [10]–[14] due to their powerful learning ability [15].

There are two WiFi positioning modes, i.e., active mode
and passive mode [16]. In the active mode, mobile devices
collect RSS measurements from nearby APs through WiFi
active scans, which is suitable for the cases where smart-
phones proactively trigger localization. Conversely, in the
passive mode, the WiFi sniffing technique is employed to
collect WiFi packets sent by nearby mobile devices, such
that the corresponding RSS measurements can be utilized
for localization [4], which is suitable for the cases where
localization is triggered and used by server-side systems.
Specifically, multiple WiFi modules can be installed in one
WiFi AP to simultaneously monitor more than one WiFi
channel, with the result that the influences of packet colli-
sions and channel interferences can be mitigated. But signals
transmitted with the same power in different channels (i.e.
with different frequencies) will incur different path losses,
thus producing different RSS measurements at a fixed receiver
and consequently degrading localization performance, which
is even worse when both 2.4𝐺 and 5𝐺 bands are involved
[17]. However, existing studies fail to address this issue.

Furthermore, mobile devices used for constructing an FD
are often different from those in the online stage, which is
dubbed the problem of device heterogeneity. Consequently,
RSS measurements obtained by heterogeneous devices at
the same location usually have different mean values [18],
and might be translated into different physical locations by
WiFi fingerprinting localization methods [19]–[21]. Previous
researches focused on developing new localization algorithms
or constructing new types of FD. However, with the emergence
of various brands and models of mobile devices, this issue
would become more pronounced, and it is imperative to
develop robust localization methods.

To tackle the above challenges, we present a Deep Neural
Network (DNN)-based passive WiFi fingerprinting localization
algorithm, termed DHCLoc, which takes into account channel
information associated with each RSS measurement and the
offsets in RSS measurements from heterogeneous devices. To
be specific, we investigate the effect of channel frequencies
on RSS measurements from both theoretical and experimental
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perspectives, and confirm the superiority of utilizing multi-
channel RSS measurements for localization. Moreover, we
propose an optimal offset estimation (OOE) method based
on Maximum Likelihood Estimation (MLE) to infer different
offsets incurred by various mobile devices, and further apply
the adversarial training to combat device heterogeneity. On
these grounds, a DNN-based localization model is designed.
Extensive experiments conducted in two scenarios demonstrate
the effectiveness of multi-channel RSS utilization and OOE,
and indicate that DHCLoc can significantly outperform several
baseline algorithms by at least 25.2% and 25.8% with the two
datasets, respectively. The main contributions of this work can
be summarized as follows:

• We propose to exploit the channel information to improve
the performance of passive WiFi fingerprinting localiza-
tion, which was omitted by previous studies. In addition,
a theoretical analysis is provided.

• Unlike existing methods explicitly defining new finger-
prints, we present an innovative method to combat device
heterogeneity, which can be easily embedded into existing
localization algorithms.

• Field experiments are conducted for validation, and two
datasets are shared on GitHub1.

The rest of this paper is organized as follows. Next section
introduces related works. In Sections III, IV and V, the
theoretical analysis of localization with multi-channel RSS
measurements, OOE and DNN-based localization model are
described, respectively. Our work is validated in Section VI
through extensive experiments. The final section summarizes
the paper and sheds lights on future works.

II. RELATED WORK

In this section, we briefly review the literatures related to
our study.

A. WiFi Fingerprinting Localization

Since RADAR [22] opened up the field of WiFi
fingerprinting-based localization, various techniques have been
reported [7], [8], [23]. Recently, some works based on machine
learning approaches, including SVM [9], factor graphs [24],
kernel estimation [25], extreme learning machine (ELM) [20],
[26] and etc., have attracted attentions due to their fast learn-
ing and easy implementation. The state-of-the-art researches
mainly focus on the following two directions.

1) Improving the Expression of Fingerprints (or FDs): To
enhance the WiFi fingerprinting approaches, various studies
seek robust RSS fingerprints [23]. GIFT [27] instead intro-
duced binary differential RSS measurements as fingerprints;
ViVi [28] and ViViPlus [29] explored the gradient of selected
multiple neighboring fingerprints to deal with spatial ambigui-
ties. Another line of works focused on improving the efficiency
of FD. For instance, in [4], an adaptive weighted fusion
algorithm based on fingerprint recognition and trilateration
was proposed; Huang et al. proposed an online radio map

1The datasets have been submitted to GitHub: https://github.com/vtcm800/
MultiChannelHeterogeneityDNNExperiments

update scheme [30] by adopting extended Gaussian Process
Regression (GPR) to alleviate the model inaccuracy due
to noisy location labels. Though these works have attained
successes to a certain extent, researchers are still interested
in developing advanced localization algorithms in order to
achieve superior performance.

2) Deep Learning based Localization: Some recent works
adopted deep learning models to enhance fingerprint matching.
For instance, WiDeep [10] integrates a stacked auto-encoders
model with a probabilistic framework to handle noises and
capture complex relationships among WiFi signals; Belay
et al. constructed a database including RSS measurements
and corresponding AP identifiers, applied linear discriminant
analysis to extract features, and utilized a DNN model to
predict locations [11]; Xiong et al. devised an artificial multi-
layer neural network using channel impulse responses as
fingerprints [12]. In addition, as a variant of DNN, the CNN-
based WiFi fingerprinting localization was presented to pursue
better performance [13], [14]. These deep learning based
methods, though can effectively improve localization accuracy,
still suffer from high training costs and model transferring.

B. Device Heterogeneity Mitigation

To handle the device heterogeneity issue, different schemes
have been reported [19], [20], [31]–[34].

One effective but time-consuming solution is to manually
adjust RSS measurements for distinct testing devices via a
linear transformation method [31], [32]. Its main drawback
lies in requiring the knowledge of all heterogeneous devices
in advance. Some calibration-free methods were proposed in
[33], [34] to avert the tedious manual calibration efforts for
each testing device. Nevertheless, these methods rely on time-
consuming online processing.

Another solution is to define alternative location finger-
prints. Signal strength difference (SSD) defines the difference
between RSS measurements as a location fingerprint [19], but
suffers from the effect of shadowing variation and information
loss caused by reducing the dimensionality of fingerprints.
In [20], standardized fingerprints were introduced based on
Procrustes Analysis (PA), but since only the information
involved in one fingerprint is utilized for standardizing itself
and the characteristics cross the whole FD are ignored, the
resulting performance is quite limited.

However, different from these existing approaches, we do
not assume to know all mobile devices in advance and aim to
explore as much information in a FD as possible to combat
device heterogeneity.

III. MULTI-CHANNEL INFORMATION UTILIZATION

In this section, we investigate the influence of different
channel frequencies on RSS measurements, and then conduct
a comprehensive analysis with multi-channel RSS measure-
ments based on Cramer-Rao Lower Bound (CRLB).

A. Influence of Channel Frequencies on RSS Measurements

In the literature, various theoretical models have been es-
tablished to characterize the propagation of wireless signals.
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Fig. 1. Mean RSS measurements from 6 different WiFi channels in five
random positions of the OFFICE dataset.

Specifically, both the Friis free space model and the more
realistic log-normal path loss model indicates that RSS is
relevant to carrier frequency [35], [36], namely that the higher
is carrier frequency, the larger is path loss, and thus the smaller
is the resulting RSS.

The above theoretical analysis is also confirmed by our
experimental studies. In Fig. 1, the mean RSS measurements
between the same pair of transmitter and receiver in different
WiFi channels are plotted. It can be seen that, the mean RSS
measurement generally decreases with the frequency increas-
ing, especially when the channel rises from 11(2451𝑀𝐻𝑧)
to 42(5210𝑀𝐻𝑧) since there exists a huge change in the
frequency.

In summary, it is noticeable that the carrier frequency has
significant influences on RSS measurements, inspiring us to
pay attention to such valuable information.

B. Theoretical Analysis of Localization Errors with Multi-
Channel Measurements

Suppose that there are 𝑐 channels, and in each channel, 𝑚
APs obtain 𝑚 RSS measurements from one mobile device.
According to the usage of multi-channel RSS measurements,
we can formulate two CRLBs as follows.

In the first case, the fingerprint obtained from a mobile
device at an arbitrary position l = [𝑙1, 𝑙2]𝑇 is formulated
as r = [𝑟11, 𝑟12, ..., 𝑟𝑖 𝑗 , ..., 𝑟𝑐𝑚]𝑇 . By adopting the similar
assumption as in [17], [37], r is assumed to be independent
and identically distributed (i.i.d.), i.e.

r ∼ 𝑁 (m(l), 𝜎2I𝑐𝑚), (1)

where m(l) = [𝑚11 (l), 𝑚12 (l), ..., 𝑚𝑐𝑚(l)]𝑇 is the vector
function containing mean functions of RSS measurements in
relation to different APs and channels, and I𝑐𝑚 is a 𝑐 × 𝑚

identity matrix.
When using MLE to infer this unknown position l, the

corresponding 𝑙𝑜𝑔 likelihood function is defined as

𝐿 (r; l) = log 𝑝(r|l), (2)

and thus, the Fisher information matrix (FIM) in the multi-
channel case, denoted F𝑚𝑐 (l), is

F𝑚𝑐 (l) = −𝐸
(
𝜕2𝐿 (r; l)
𝜕l𝜕l𝑇

)
=

1
𝜎2 g𝑇 g, (3)

where g = [g𝑇11, g
𝑇
12, ..., g

𝑇
𝑐𝑚]𝑇 , and g𝑖 𝑗 =

𝜕𝑚𝑖 𝑗

𝜕l = [𝑔𝑖 𝑗1 , 𝑔
𝑖 𝑗

2 ]
denotes the gradient representing the changing degrees of the
mean RSS in the 𝑖th channel from the 𝑗 th AP.

Thus, the CRLB is calculated as

F−1
𝑚𝑐 (l) = 𝜎2
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(4)

Finally, the mean squared error (MSE), i.e. the trace of
CRLB, is derived as follows

Tr(F−1
mc (l)) =
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(5)
where 𝜃

𝑝𝑞

𝑖 𝑗
is the angle subtended by g𝑖 𝑗 and g𝑝𝑞 ,

ℎ
𝑝𝑞

𝑖 𝑗
= ‖g𝑝𝑞 ‖𝑠𝑖𝑛𝜃 𝑝𝑞𝑖 𝑗 , (6)

ℎ
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1
𝑐𝑚

𝑐∑︁
𝑝=1

𝑚∑︁
𝑞=1

(ℎ𝑝𝑞

𝑖 𝑗
)2, (7)
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. (8)

It is clear that (ℎ𝑚𝑐

𝑤 )2 in (8) and (ℎ𝑚𝑐

𝑖 𝑗 )2 in (7) respectively
denote a weighted average and an average, reflecting that
(ℎ𝑚𝑐

𝑤 )2 generally does not scale with 𝑐. Therefore, it can be
concluded that the MSE is inversely proportional to 𝑐 and 𝑚.
In particular, when 𝑐 = 1, it is equivalent to the original case
in [17], i.e. localization with single channel measurements.

In the second case, the multi-channel information is ignored
by averaging the multi-channel RSS measurements from one
AP to form one element of a fingerprint, as the traditional
method does. The average RSS measurement, denoted r𝑚𝑖𝑥

will satisfy the following Gaussian distribution

r𝑚𝑖𝑥 ∼ 𝑁 (m𝑚𝑖𝑥 (l), 𝜎
2

𝑐
I𝑚), (9)

where m𝑚𝑖𝑥 (l) = [∑𝑐
𝑖=1 𝑚𝑖1 (l),

∑𝑐
𝑖=1 𝑚𝑖2 (l), ...,

∑𝑐
𝑖=1 𝑚𝑖𝑚 (l)].
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By letting 𝜃
𝑞

𝑗
be the angle subtended by g 𝑗 and g𝑞 with

g 𝑗 =

∑𝑐
𝑖=1 g𝑖 𝑗
𝑐

, (10)

the MSE can be similarly obtained as

Tr(F−1
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with
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𝑗
. (14)

It can be found that the only difference between Tr(F−1
mc (l))

and Tr(F−1
mix (l)) is the weighted average squared distance

among gradients, namely ℎ
𝑚𝑖𝑥

𝑤 and ℎ
𝑚𝑐

𝑤 .
Because the relative positions between the mobile device

and the 𝑗 th, 𝑞th APs are fixed, the angles are equal for both
the single channel RSS measurements and the mixed channel
RSS measurements, i.e.
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𝑗
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where the equality holds if and only if 𝑐 = 1. Therefore, given
𝑖 = 1, ..., 𝑐 and 𝑗 = 1, ..., 𝑚, the following inequality holds
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(18)

In lieu of the above analysis, we can obtain that, if 𝑐 > 1,

Tr(F−1
mc (l)) < Tr(F−1

mix (l)), (19)

which reveals that the localization error in the first case is less
than that in the second case, implying that correctly utilizing
multi-channel RSS measurements will benefit localization.

C. A Practical Issue

The above analysis assumes that, during online localization,
𝑐 RSS measurements are respectively obtained from 𝑐 chan-
nels by every AP, which is hard to be satisfied in practice:
1) neither commercial nor customized APs used in this paper
are able to simultaneously sniff all the WiFi channels. 2) there
exist collisions during packets transmissions, especially in the
popular Channel 1, 6 and 11, such that some Probe request
packets might be missed by APs. Therefore, straightforwardly
extending the size of a fingerprint by 𝑐 is not feasible. To
address this issue, we adopt the following two solutions.

Firstly, we introduce channel sets to extend a traditional
fingerprint, namely that several neighboring channels are com-
bined into one channel set, such that the mean RSS measure-
ment cross the channels in each channel set is evaluated in
the new fingerprint. As a result, the fingerprint is extended by
less than 𝑐 times (assume 𝑛𝑐 channel sets in total, 𝑛𝑐 < 𝑐),
but it also follows from the above theoretical analysis that the
resulting localization error should still be mitigated.

Secondly, the usage of channel sets does not often result in
sufficient RSS measurements for online localization [38], and
as such, we adopt a sliding time window with a duration of
Δ𝑡, so as to collect as many RSS measurements as possible.
As a result, we can obtain the following measurement vector

r𝚫t =
[
𝑟Δ𝑡11 , 𝑟

Δ𝑡
12 , ..., 𝑟

Δ𝑡
1𝑚, 𝑟

Δ𝑡
21 , ..., 𝑟

Δ𝑡
𝑖 𝑗 , ..., 𝑟

Δ𝑡
𝑛𝑐𝑚

]
, (20)

where 𝑟Δ𝑡
𝑖 𝑗

denotes the mean RSS measurement in the 𝑖th
channel set at the 𝑗 th AP within Δ𝑡.

By taking into account RSS measurements from multiple
channel sets, more useful features are leveraged to differentiate
one position from another. Besides, this treatment can be
directly applied in either existing localization methods or
future ones, including the DHCLoc proposed in this paper.

IV. OPTIMAL OFFSET ESTIMATION FOR HETEROGENEOUS
DEVICES

This section introduces the offset variable to combat device
heterogeneity that severely degrades localization performance.

To ease the presentation, we reformulate the online RSS
measurement vector rΔ𝑡 in (20) into r = [𝑟1, ..., 𝑟𝑖 , ..., 𝑟𝑛],
where 𝑛 = 𝑛𝑐 · 𝑚. The mean and standard deviation of
fingerprints, which is obtained by using a RD, at the 𝑗 th
RP are denoted by R 𝑗 = [𝑅1 𝑗 , ..., 𝑅𝑖 𝑗 , ..., 𝑅𝑛 𝑗 ] and 𝚺 𝑗 =

[𝜎1 𝑗 , ..., 𝜎𝑖 𝑗 , ..., 𝜎𝑛 𝑗 ], respectively.
Given a target area A, the unknown position l in A can be

estimated by using MLE, i.e.

l̂ = arg max
l∈A

log
𝑛∏
𝑖=1

𝑝(𝑟𝑖 |l). (21)

It should be noted that, device heterogeneity comes from the
usage of different chips, antennas and etc., and mainly leads
to different transmission powers or receiver gains. As a result,
there exists an offset between the RSS measurements from
two heterogeneous devices at the same position, as observed
in [20]. We intend to find out such an offset between any
given device and the RD. To this end, we have to address
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the following two issues: 1) the offset varies from device to
device; 2) we do not have prior information on the device
being used, so that we do not know the corresponding offset.

Define an individual offset for a specific device and intro-
duce this variable into the MLE-based localization framework
in (21). As such, the localization problem becomes finding the
fingerprint most similar to the online RSS measurement vector
calibrated by the offset, namely

l̂ = arg max
l∈A,𝑎 𝑗

log
𝑛∏
𝑖=1

𝑝(𝑟𝑖 |l, 𝑎 𝑗 )

= arg max
𝑗 ,𝑎 𝑗

log
𝑛∏
𝑖=1

𝑝(𝑅𝑖 𝑗 = 𝑟𝑖 − 𝑎 𝑗 |𝑙 𝑗 ),
(22)

where 𝑎 𝑗 denotes the unknown offset. According to the
Gaussian assumption on the fingerprint, we can have

l̂ = arg max
𝑗

arg max
𝑎 𝑗

𝑛∑︁
𝑖=1

{
− 1

2𝜎2
𝑖 𝑗

[𝑎2
𝑗 + 2(𝑅𝑖 𝑗 − 𝑟𝑖)𝑎 𝑗 + (𝑅𝑖 𝑗 − 𝑟𝑖)2 ] − log 𝜎𝑖 𝑗

}
.

(23)

It can be clearly seen that, given a fixed 𝑗 , the cost function
(23) is quadratic with one unknown variable 𝑎 𝑗 , so that the
solution, i.e., OOE, can be deduced by

𝑎
𝑜𝑝𝑡

𝑗
= −

∑
𝑖
𝑅𝑖 𝑗−𝑟𝑖
𝜎2
𝑖 𝑗

2
∑

𝑖
1

2𝜎2
𝑖 𝑗

. (24)

Thus, (23) can be simplified as follows

l̂ = arg max
l∈A

log
𝑛∏
𝑖=1

𝑝(𝑟𝑖 − 𝑎
𝑜𝑝𝑡

𝑗
|l)

= arg max
𝑗

4
(∑

𝑖
1

2𝜎2
𝑖 𝑗

) ∑
𝑖

(
(𝑅𝑖 𝑗−𝑟𝑖)2

2𝜎2
𝑖 𝑗

+ log𝜎𝑖 𝑗
)
−

(∑
𝑖
𝑅𝑖 𝑗−𝑟𝑖
𝜎2
𝑖 𝑗

)2

4
∑
𝑖

1
2𝜎2

𝑖 𝑗

.

(25)

According to the above formulas, 𝑎𝑜𝑝𝑡
𝑗

associated with each
device can be directly calculated using the existing FD in the
online stage, then the original RSS measurement vector can
be calibrated by subtracting 𝑎

𝑜𝑝𝑡

𝑗
to cater for heterogeneity,

and finally the RP with the highest probability is selected.
Specifically, OOE can be used in most existing localization

algorithm after simple adjustments.
• For deterministic approaches using KNN, the calibrated

fingerprint r′ = {[𝑟𝑖 − 𝑎𝑜𝑝𝑡 ] |𝑖 ∈ {1, ..., 𝑛}} instead of the
original one is used at each RP to calculate the Euclidean
distance 𝑑𝑖𝑠 =

∑𝑛
𝑖=1 (𝑅𝑖 𝑗 − 𝑟 ′

𝑖
)2.

• For probabilistic approaches using WKNN, (25) can be
directly used to calculate probabilities (weights).

• For supervised machine learning methods including
DHCLoc, adversarial training [39] is adopted to generate
robust models for accurately localizing heterogeneous
devices, which will be described in the following section.

V. PROPOSED DHCLOC ALGORITHM

In this section, after presenting the DNN-based localization
model, we summarize the whole process of DHCLoc.

A. DNN-based Localization Model

The DNN-based localization problem can be formulated as
finding the optimal function, denoted 𝑓 ∗ (rΔ𝑡 ), mapping a given
RSS measurement matrix to a position, i.e.

l̂ = 𝑓 ∗ (rΔ𝑡 ),
𝑓 ∗ ∈ F ={ 𝑓 (rΔ𝑡 ; 𝜃) |𝜃 ∈ R𝐷},

(26)

where F is the set of possible mapping functions, 𝜃 is the
hyper-parameters and 𝐷 is the number of hyper-parameters.
From the perspective of machine learning, utilizing RSS mea-
surements from multiple channel sets is equivalent to extend-
ing the features of inputting RSS measurements. Therefore,
we design the following DNN-based localization model.

1) Basic Architecture: The architecture of the DNN model
is shown in Fig. 2, and its details are listed as follows.

INPUT 

LAYER

(nc×m)

HIDDEN 

LAYERS

(r×s,SELU)

OUTPUT 

LAYER

(2)

FULLY 

CONNECTED

WEIGHT

(orthogonal 

initialization)

+1

+1

+1

Fig. 2. The basic architecture of the proposed DNN model (thicknesses of
connections reflect different weights).

• Input Layer: Take each 𝑛𝑐×𝑚 multi-channel RSS vector
r𝚫t as input to the corresponding input layer of DNN.

• Architecture: 𝑟 layers and 𝑠 units in each layer are
specified as the fully connected hidden layers to extract
features and predict positions.

• Parameter Initialization: The orthogonal initialization
technology [40] is adopted to initialize the weights be-
tween each node pair in different layers to avoid gradient
disappearance or explosion at the beginning of training.

• Output Layer: Because classification returns only a
limited number of discrete outputs and often leads to
large coordinate estimation errors, we adopt the multi-
objective regression with 2 outputs corresponding to a
pair of position coordinates.

• Activation Function: As for the activation function
of each node, we employ the recently reported scaled
exponential linear unit (SELU) [41], i.e.

𝑠𝑒𝑙𝑢(𝑥) = 𝜆

{
𝑥, 𝑖 𝑓 𝑥 > 0,
𝛼𝑒𝑥 − 𝛼, 𝑖 𝑓 𝑥 ≤ 0, (27)

where 𝜆 ≈ 1.0507 and 𝛼 ≈ 1.6733.
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• Loss Function: We adopt the MSE as the overall loss
function E(rΔ𝑡 ,l) of the proposed DNN model, namely

E(rΔ𝑡 ,l) = 𝑀𝑆𝐸 (l) = 1
|D|

|D |∑︁
𝑖=1

(l𝑖 − l̂𝑖)2, (28)

where |D| is the number of training samples, and l𝑖 and
l̂𝑖 are the real and predicted positions of the 𝑖th training
sample.

• Optimizer: The newer adaptive momentum method for
stochastic optimization [42] is used as the optimizer.

• Early Stop: To avoid overfitting as well as speed up the
training process, early stop strategy [43] is adopted.

Obviously, according to the rationale of DNN model, we
can easily obtain the time complexity of our model’s online
predicting process: 𝑂 (𝑛𝑐 ·𝑚·𝑠+(𝑟−1)·𝑠2+2·𝑠+𝑟 ·𝑠) = 𝑂 (𝑛3) (let
𝑛 = max(𝑛𝑐 ·𝑚, 𝑟, 𝑠)), and thus the time complexity of offline
training process: 𝑂 (𝑛3 · 𝑁) (where 𝑁 denotes the iteration
number of training). Therefore, once the limited application
context is fixed, the overhead of the proposed model would
stay the same magnitude with existing methods.

2) Data Augmentation for Multi-channel RSS: In order
to 1) provide sufficient data to train DNN and 2) balance
the uneven training samples cross different RSS channel
sets, we leverage GPR [30] to generate a certain amount of
training samples at each RP for every channel set and every
AP. Assuming 𝑟Δ𝑡

𝑖 𝑗
∼ 𝑁 (𝑅𝑖 𝑗 , 𝜎

2
𝑖 𝑗
), and then re-sample each

𝑟Δ𝑡
𝑖 𝑗
(𝑖 = 1, 2, ..., 𝑛𝑐; 𝑗 = 1, 2, ..., 𝑚) according to its probability

density function (PDF) to construct r𝚫t as one item of the
training samples.

3) Adversarial Training for Combating Device Heterogene-
ity: Given a fixed reference device, since the offset varies
cross different devices in a bounded range, we assume that
the optimal offset follows the following uniform distribution

𝑎𝑜𝑝𝑡 ∼ 𝑈 (𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥). (29)

Due to the fact that there is no a prior information about all
heterogeneous devices, it is hard to accurately determine the
parameters of the uniform distribution. Hence, we consider to
use the range of a small number of unlabeled test devices’
OOE statistics to approximate. The subtle difference between
the approximate and actual distribution can be further tolerated
by adversarial training, which can be extended to arbitrary en-
vironments with trivial costs. Finally, the process of adversarial
training is summarized as follows

min
𝜃
E(rΔ𝑡+𝑎𝑜𝑝𝑡 In ,l) ∼ D

[
𝐿 ( 𝑓𝜃 (rΔ𝑡 + 𝑎𝑜𝑝𝑡In), l)

]
, (30)

where rΔ𝑡 is the original measurement vector, 𝑓𝜃 is the model
function and 𝐿 is the loss for a single adversarial sample. To
be applicable in practice, the following steps are considered:
1) obtain the (multi-channel) RSS measurement vectors; 2)
determine the limited number of test devices’ positions by
(25), and then select the nearest RPs and apply (24) to calcu-
late the posteriori OOEs; 3) construct the uniform distribution
(29) of 𝑎𝑜𝑝𝑡 using all OOEs; 4) generate adversarial samples
with rΔ𝑡 + 𝑎𝑜𝑝𝑡In; 5) train the model with all adversarial
samples. With the newly generated adversarial samples, the

optimization procedure of (30) will confuse the model as much
as possible to enhance the tolerance of heterogeneous devices.

B. DHCLoc Algorithm

In summary, the offline training algorithm and online lo-
calization algorithm of the proposed DHCLoc are listed in
Algorithm 1 and Algorithm 2. Based on the traditional local-
ization framework, the algorithms incorporate multi-channel
information (Section III), leverage adversarial training to com-
bat device heterogeneity (Section IV), and then use the DNN
model (Section V-A) to capture the features of multi-channel
and adversarial samples.

Algorithm 1 Offline training algorithm of DHCLoc
1: Original Data Collecting: place the RD at each RP to

collect original training data for a certain period (e.g., 1
min), and record [AP No., RP No., channel No., RSS
measurement];

2: FD Generating: for each RP, select the RSS measure-
ments at 𝑖th channel set and 𝑗 th AP, calculate the means
𝑟𝑘𝑖 𝑗 and standard deviation 𝜎𝑘

𝑖 𝑗
, and obtain the fingerprint

matrix of 𝑘th RP rk and 𝜎k. All the fingerprint matrices
with its position coordinates are combined into the FD;

3: Training Data Generating: for each RP in FD, use GPR
to re-sampling a certain amount of rk as training data,
such the size of training data is multiple times of FD;

4: Adversarial Samples Constructing: use statistics on
𝑎𝑜𝑝𝑡 of several unlabeled test devices to determine 𝑎𝑚𝑎𝑥

and 𝑎𝑚𝑖𝑛, and then add noises to each training item by
(r + 𝑎𝑜𝑝𝑡In) with 𝑎𝑜𝑝𝑡 ∼ 𝑈 (𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥) and coordinates
due to inaccurate position calibration when collecting
original data [21];

5: DNN Training: use the preprocessed training data to train
the proposed DNN model with max iteration 𝑁 and early-
stopping parameter 𝜅;

6: Hyperparameters Adjusting and Model Saving: try the
positioning effects of different hyperparameters (𝑟 and 𝑠)
on the verification data (partitioning from training data),
and save the best model on the hard disk.

Algorithm 2 Online localization algorithm of DHCLoc
1: Model Loading: load the DNN model into the RAM of

localization server;
2: Time Window Data Partitioning: intercept the real-

time positioning data stream (or cut the testing data) with
sliding time window of length Δ𝑡 and step 𝛿;

3: Location Fingerprint Generating: transform the inter-
cepted data into location fingerprint r𝚫t (analogy to rk);

4: Localizing: take r𝚫t as an input of the DNN model, and
use the output l̂ = (𝑥, 𝑦̂) as a location estimate.

VI. EXPERIMENTS

In order to validate our work, we carry out extensive
experiments with two different datasets which were collected
during several weeks using heterogeneous devices.
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A. Setup

1) Testbeds: The experiments were conducted in two typ-
ical environments, termed OFFICE and LAB respectively.
Their layouts are shown in Fig. 3 and the details are listed
in Table I. The OFFICE testbed is a common indoor office
scenario with the area of around 350𝑚2, whereas the LAB
testbed is a rectangular space with the area of 81𝑚2. In
each testbed, 6 and 4 customized WiFi APs (i.e. sniffers)
were respectively installed, and each AP can simultaneously
monitor 9 channels in both 2.4𝐺 and 5𝐺 bands [44]; 6
different mobile devices were used, as listed in Table I(b).

WiFi Access Points

Reference Points

Test Points

Corridor

AP 1

AP 3

AP 2

AP 4

AP5

AP6

(a) OFFICE Testbed

AP 4

AP 2

AP 1
AP 3

WiFi Access Points Reference Points Test Points

(b) LAB Testbed

Fig. 3. The physical layouts of two testbeds.

2) Data Collection: The built-in program in each AP
is able to periodically upload sniffing data, including RSS
measurements, channel number, MAC address, timestamps,
etc., to a server through UDP.

3) Channel Sets: As mentioned in Section III, RSS mea-
surements from multiple channels are grouped by channel sets
instead of single channel, so that four different schemes are
considered as listed in Table II. Specifically, regarding the 5𝐺
band, RSS measurements are collected in only 4 channels, and
considering the large bandwidth spanned, we only combine
them into at most 2 channel sets.

4) Training and Testing Samples: In the OFFICE (LAB)
testbed, 122 (112) grid points with the grid size of around 2𝑚
(0.8𝑚) are assigned as RPs as shown in Fig. 3, and 100 RSS
measurements were generated regarding each channel set and
one AP. As for the testing data, 7 (13) positions were randomly
assigned as testing points (TPs), and a suitable positioning
interval 𝛿 = 1𝑠 and time window Δ𝑡 = 5𝑠 were adopted.
Consequently, the RSS measurements between one TP and
one AP within each interval are averaged for localization with
respect to each channel set, i.e. r𝚫t.

5) Minimum Detected APs Number (MDAN): In practice,
due to packet collisions and limited transmission coverage, the
number of APs detecting an identical mobile device during
a short period of time can vary from 1 to the number of
total APs. As such, we impose a precondition of localization,
namely that only if one mobile device is detected by no less
than MDAN APs in every channel set, it will be considered
for localization. The effect of MDAN on localization shall
be investigated. In the experiments, we let MDAN be 3, and
provided that a mobile device is not detected by one AP in
a channel set, the corresonding RSS measurement is defautly
set to be −100 dBm.

6) Baseline Methods for Comparison: The deterministic
approach based on KNN, probabilistic approach based on
WKNN, and the pure DNN model are employed as baseline
methods. Given an online RSS measurement vector r𝚫t, KNN
selects 𝑘 RPs with the least Euclidean distances between
their fingerprints and r𝚫t, and calculates the average of the
coordinates of the 𝑘 RPs as the final location estimate; WKNN
selects 𝑘 RPs at which r𝚫t attains the largest probabilities by
assuming a Gaussian joint distribution for each fingerprint,
and calculates the weighted average of the corresponding
𝑘 pairs’ of coordinates according to their probabilities. The
existing popular device heterogeneity handling methods, i.e.
SSD [19] and PA-based fingerprint standardization [20], are
also implemented. DHCLoc and DNN are constructed using
the Keras frame [45] in PyCharm, and the other methods are
programmed with MATLAB R2017b.

B. Validating the Effectiveness of Using Multi-channel RSSs

Three baseline methods are implemented with respect to
the four different channel set schemes. Both the experiments
in [19], [20], [46] and our pilot studies indicate that KNN
performs well with small 𝑘 and WKNN with large 𝑘 , and thus
𝑘 = 15 for KNN and 𝑘 = 30 for WKNN. The maximal iteration
number of DNN is 1000 with the patience parameter of early-
stopping being 5. Given different channel set schemes, the
DNN model performs well in our fine-tuning studies when the
layer number 𝑟 and node number 𝑠 lie in 3 ∼ 6 and 16 ∼ 128,
respectively, suggesting that we should assign such values to
the corresponding parameters. Consequently, the Cumulative
Distribution Function (CDF) of resulting localization errors for
each method is plotted in Fig. 4 with the 𝑅𝑀𝑆𝐸 evaluated as
follows

𝑅𝑀𝑆𝐸 ( 𝑓 ∗ (RSSΔ𝑡 )) =
∑

(RSSΔ𝑡 ,l) ∈D′ ‖ 𝑓 ∗ (RSSΔ𝑡 ) − l‖
|D ′ | , (31)

where |D ′ | is the number of testing samples, 𝑓 ∗ (RSSΔ𝑡 ) is
localization result and l is the corresponding real position.
Moreover, due to slight fluctuations caused by random func-
tions in DNN, the 𝑅𝑀𝑆𝐸 of DNN is evaluated by averaging
over 10 times, which is a more fair comparison way compared
to evaluating by the minimum 𝑅𝑀𝑆𝐸 .

As can be seen, regarding the KNN-based method and DNN
model, using multi-channel RSS measurements always bene-
fits localization accuracy, whereas the WKNN-based method
shows worse performance in few cases (e.g., 4CS for OFFICE
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TABLE I
THE DETAILS OF TWO TESTBEDS

(a) The parameters of two testbeds

Dataset Size Shape RP TP Devices
OFFICE Medium (18𝑚 × 10𝑚 + 10𝑚 × 17𝑚) irregular 122 7 6 smartphones

LAB Small (13.5𝑚 × 6𝑚) rectangle 112 13 2 laptops&3 smartphones&1 tablet

(b) The details of mobile devices being used

Dataset Model Short Name 2.4𝐺 Band 5𝐺 Band Reference Device Test Device

OFFICE

iPhone 7 iPhone X X × X
Huawei Honor 8X 8X X X X X

Smartisan T2 T2 X X × X
Huawei Mate9 Mate9-1 X X × X
Huawei Mate9 Mate9-2 X X × X

Huawei P8 P8 X × X X

LAB

Xiaomi M6 Mi6-1 X X X X
Xiaomi M6 Mi6-2 X X X X
Dell Laptop Dell PC X × × X
Sansung S9+ S9+ X X × X

Macbook Pro Laptop Macbook X X × X
iPad Pro Tablet iPad X X × X

TABLE II
FOUR DIFFERENT CHANNEL SETS

Scheme Name Short Name Channel Merging Used in
non–channel splitting NCS {1, 2, 3, 6, 8, 9, 11, 13, 42, 58, 155, 165} Section VI-B,VI-C,VI-D

2 channel sets 2CS {1, 2, 3, 6, 8, 9, 11, 13}, {42, 58, 155, 165} Section VI-B,VI-D
4 channel sets 4CS {1, 2, 3, 6}, {8, 9, 11, 13}, {42, 58}, {155, 165} Section VI-B,VI-D
6 channel sets 6CS {1, 2, 3}, {6}, {8,9}, {11, 13}, {42, 58}, {155, 165} Section VI-B
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Fig. 4. The CDF of localization errors with respect to four different channel set schemes.
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TABLE III
THE 𝑅𝑀𝑆𝐸S OF HETEROGENOUS DEVICES EVALUATED BY THREE BASELINES WITH DIFFERENT HETEROGENEITY HANDLING APPROACHES

(a) Results on the OFFICE dataset

Methods Devices Average
𝑘 = 15, 𝑤𝑘 = 30 iPhone 8X (RD) T2 Mate9-1 Mate9-2 P8 (RD)

KNN 2.2 2.761 2.299 2.46 3.079 2.278 2.513
SSD-KNN 2.173 2.615 2.583 1.471 2.826 2.71 2.396
PA-KNN 2.368 2.757 2.715 2.092 2.773 2.785 2.582

OOE-KNN 2.151 2.611 2.573 1.751 2.804 2.337 2.371
WKNN 3.938 3.192 2.465 2.138 4.153 1.94 2.971

SSD-WKNN 3.14 3.531 3.511 2.585 3.042 3.649 3.243
PA-WKNN 2.603 2.959 3.149 2.789 2.777 2.877 2.859

OOE-WKNN 2.473 3.151 3.005 1.61 3.015 2.682 2.656
DNN 2.42 2.664 1.929 1.747 2.88 2.354 2.332

SSD-DNN 2.098 2.531 2.327 1.298 2.518 2.42 2.199
PA-DNN 1.963 2.32 2.329 1.408 2.401 2.34 2.126

OOE-DNN 1.951 2.227 1.983 1.491 2.408 2.185 2.041

(b) Results on the LAB dataset

Methods Devices Average
𝑘 = 15, 𝑤𝑘 = 30 Mi6-1 (RD) Mi6-2 (RD) Dell PC S9+ Macbook iPad

KNN 1.506 1.532 1.975 2.871 1.746 2.392 2.004
SSD-KNN 1.673 1.611 2.021 3.181 1.828 2.277 2.099
PA-KNN 1.749 1.56 2.073 2.782 1.722 2.147 2.006

OOE-KNN 1.495 1.528 1.903 2.061 1.664 2.225 1.813
WKNN 1.749 1.623 1.955 2.016 1.845 2.417 1.934

SSD-WKNN 1.933 2.002 2.328 2.83 2.145 2.541 2.297
PA-WKNN 1.816 1.698 2.134 2.745 1.663 2.256 2.052

OOE-WKNN 1.738 1.716 2.029 2.306 1.72 2.323 1.972
DNN 1.842 1.629 1.931 2.262 1.783 2.288 1.956

SSD-DNN 1.784 1.607 1.875 2.328 1.774 2.288 1.943
PA-DNN 1.724 1.608 1.863 2.578 1.667 2.138 1.93

OOE-DNN 1.78 1.585 1.824 2.277 1.729 2.241 1.906

and 6CS for LAB). Meanwhile, DNN always outperforms
other alternatives, which confirms the powerful learning ability
of the deep learning technique. However, localization accuracy
does not always rise as increasing the number of channel sets,
which is attributable to the fact that having more channel sets
risks the lack of RSS measurements in more channel sets and
consequently degrades localization accuracy.

C. Validating the Effectiveness of OOE

Three baseline methods with and without using OOE, SSD
and PA are compared. Regarding the DNN model, adversarial
training is adopted to fuse OOE as described in Section V-A3.
We designedly remove the location labels of all test devices
so as to avoid using apriori information. By calculating the
OOEs at TPs for OFFICE and LAB with NCS as depicted
in Fig. 5, we can obtain 𝑎

𝑜𝑝𝑡

𝑂𝐹𝐹𝐼𝐶𝐸
∼ 𝑈 (−12, 3) and

𝑎
𝑜𝑝𝑡

𝐿𝐴𝐵
∼ 𝑈 (−9, 15), which are added into the original training

data. Besides, all the other settings including parameters are
the same as above.

The 𝑅𝑀𝑆𝐸s are listed in Table III, and it can be concluded
that: 1) due to the complexity and randomness of the real-
world data, in few cases the 𝑅𝑀𝑆𝐸s of the methods dealing
with device heterogeneity can be slightly larger than those
of traditional KNN, WKNN and DNN, but the methods
based on OOE lead to the smallest average 𝑅𝑀𝑆𝐸s, which
validates the effectiveness of OOE; 2) as we have mentioned
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Fig. 5. The results of OOE with the NCS scheme.
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Fig. 6. The 𝑅𝑀𝑆𝐸s of DHCLoc and baseline methods.

in Section II-B, the methods based on SSD and PA cannot
achieve ideal performance in the situation with a relative
small number of APs, whereas the methods based on OOE
demonstrate evident superiority in both stability and accuracy.

D. Validating the Overall Performance of DHCLoc

According to the results in Section VI-B, DHCLoc
adopts the 2CS scheme for OFFICE and the 4CS
scheme for LAB, respectively. In addition, we can obtain
𝑎
𝑜𝑝𝑡

𝑂𝐹𝐹𝐼𝐶𝐸 (2𝑐𝑠) ∼ 𝑈 (−5, 9) and 𝑎
𝑜𝑝𝑡

𝐿𝐴𝐵 (4𝑐𝑠) ∼ 𝑈 (−8, 8).
The 𝑅𝑀𝑆𝐸s of four methods, and corresponding reduction
percentages achieved by DHCLoc are plotted in Fig. 6. As
can be seen, DHCLoc attains the best localization accuracy,
and particularly, outperforms the baseline methods by at least
25.2% on OFFICE and 25.8% on LAB, respectively.

Furthermore, to investigate the effect of MDAN, the re-
duction percentages of localization times and the improved
percentages of localization accuracies compared to the case
with MDAN= 1, are plotted in Fig. 7. It can be seen that, with
the MDAN in one channel set increasing, both the accuracy
and the reduction of localization time will accordingly increase
in a similar degree, but the difference slowly declines. This
result inspires us that, we should reasonably select MDAN
so as to balance the localization accuracy and frequency. In
addition, it can be found that, under the strictest conditions,
i.e. MDAN= 6 for OFFICE and MDAN= 4 for LAB, both
of the 𝑅𝑀𝑆𝐸s on two datasets achieved by DHCLoc are less
than 1.4𝑚, which shows a great potential on more fine-grained
WiFi fingerprinting localization.

VII. CONCLUSION

In this paper, we proposed a DNN-based WiFi localiza-
tion method, namely DHCLoc, for passive WiFi localization.
Specifically, channel set splitting and adversarial training are
employed to conquer the two challenges arising from multi-
channel RSS measurements and device heterogeneity, which
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Fig. 7. The 𝑅𝑀𝑆𝐸 of DHCLoc with different MDANs in each channel set.

were validated by both theoretical analyses and experiments.
The experiments showed the overall performance of DHCLoc
outperforms several existing algorithms by at least 25.2%
and 25.8% with two field datasets respectively, indicating
that DHCLoc is superior to the state-of-the-art methods by
a significant margin.

Regarding future works, we will focus on new advanced
DNN models, such as CNN and RNN, and the adaptability of
DHCLoc in different environments through transfer learning.
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