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Abstract— Great efforts have been devoted to solving the crowd
counting problem based on vision or other fine-grained mea-
surements. Popular vision and WiFi channel state information
based approaches, though are able to achieve relatively high
accuracy, suffer from limited scalability. In contrast, passive
WiFi sensing-based approaches are capable of supporting large
surveillance areas, but often rely on certain global linear or
approximately linear regression models, which cannot accurately
capture the complex mapping relationship between WiFi sensing
data and the corresponding crowd count, especially in a large
surveillance area during a long period of time. This paper
addresses the issue from the following three aspects. Firstly,
in order to combat with these coarse-grained regression models,
the large surveillance is partitioned into grids, such that either a
local linear model or other implicit local models can be built with
respect to each grid. Secondly, sequential WiFi spatial-temporal
matrix (SWSTM) is defined in alignment with grids to encode
the spatial-temporal information of crowds based on passive WiFi
localization and a sliding time window mechanism. Thirdly, the
spatial-temporal correlations among crowd features of different
grids are mined to better regress such local models by using a
recurrent neural network (RNN) with SWSTMs as inputs. Exten-
sive experiments are conducted in a real campus road network
with an area of about 4000m2, and demonstrate that the proposed
method significantly reduces the counting error rate from 22.54%
to 13.44% compared to several state-of-the-art methods.

Index Terms— WiFi localization, crowd counting, spatial–
temporal correlation, multi-objective optimization, deep learning.

I. INTRODUCTION

WITH the rapid development of cities, the surveillance
of gathering crowds has become an important research
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field. But it is still an open problem to accurately estimate the
sizes of crowds in large-scale areas, which is vital for many
intelligent perception applications [1], [2], [3], including traffic
management, business decision, smart city, public safety man-
agement, and etc. For example, with the spread of COVID-19,
accurately grasping the number of people in a large public
space is greatly helpful to the traffic management [4].

Therefore, crowd counting has attracted the attention of the
research community. Assisted with the recent advancement
in deep learning (DL), computer vision researchers have pre-
sented various high-accuracy crowd counting techniques [2],
[5], [6]. However, vision-based methods suffer from high
installation costs, blind spots, occlusion issues and privacy
concerns, and more importantly, cannot completely cover a
large-scale area of interest (AOI) with a single camera [7], [8].
As such, algorithms based on analyzing the radio frequency
(RF) signals have been introduced [9], [10]. Therein, the
WiFi channel state information (CSI)-based approach is a
promising one for high-precision crowd counting [11], [12],
and can achieve the accuracy of over 85% with the help of DL
technologies [13], [14]. But it is still limited to the scale and
environmental dynamic due to the fine-grained characteristic
of CSI, and can only be applied in indoor scenarios with minor
persons in practice.

Finally, only passive WiFi sensing-based methods have
the potential for crowd counting in a large AOI [15]. The
basic idea is leveraging a special kind of access point (AP),
termed WiFi sniffer, to passively sense the nearby pedestrians’
existence by capturing the probe (request) frames sent from
their mobile devices. However, the challenges from persons
with multiple WiFi-enabled mobile devices, uncertain sniff-
ing [16] and MAC address randomization [17] may affect this
kind of methods. Fortunately, the strict theoretical deduction
in [18] demonstrates both the expected number of mobile
devices carried by a pedestrian and the probability that a
mobile device can be sensed by a sniffer are constants for
a fixed environment. In addition, the rate and pattern of MAC
address randomization are proved to have a certain regularity
for a long timeslot [17]. As a result, it is expected that the
relation between the number of detected devices and the crowd
count within a relative large time window is approximate
to a linear mapping. Therefore, most of the passive WiFi
sensing-based methods attempted to train a global linear [19],
[20], [21] or approximately linear regression model [22] for
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count counting, and reported a large error rate of more
than 20%.

Inspired by [21] and our pilot studies, we find that the
mapping between the number of devices detected by WiFi
and the realistic crowd count in different sub-regions of the
AOI is varying over time and space, and thus we propose
to partition the AOI into small grids and then apply local
linear or other implicit models with different parameters for
each grid, so as to get a finer estimation. In fact, given a
gird, the crowd count/density is close to the adjacent girds in
space and several previous states in time, showing a strong
spatial-temporal correlation [23], [24]. Therefore, we further
consider leveraging DL technology to capture this character-
istic in order to optimize the mapping parameters.

On these grounds, this paper presents a novel crowd
counting approach for large-scale surveillance areas based on
passive WiFi sensing. To be specific, all detected devices are
located by passive WiFi localization firstly. Then, we partition
the whole AOI into grids with equal size, and the localization
results within a sliding time window are utilized to construct
the WiFi spatial-temporal matrix (WSTM) and several consec-
utive WSTMs are stacked as a sequential WSTM (SWSTM) to
maximally reserve the spatial-temporal information of crowds.
At last, three supervised learning methods are proposed to
regress the crowd count through the WSTM/SWSTM by
gradually adding the merits of area partitioning, utilizing spa-
tial correlation and spatial-temporal correlation, respectively.
In addition, a qualitative analysis on the superiorities of our
method and several key influence factors of the counting
performance are also presented.

For the purpose of performance evaluation, an experimental
crowd surveillance system is deployed in a real campus
environment with the area of about 4000m2, and a sensing
dataset is collected during a time period encompassing the
peak time after classes. It is shown that the counting accuracy
of our method is significantly better than that using the existing
global linear or approximately linear regression models [19],
[20], [21], [22]. Particularly, the propsed recurrent neural
network (RNN) model combining all merits can substantially
reduce the counting error rate from 22.54% to 13.44%, which
is competitive with vision-based and CSI-based methods in
accuracy but for much larger AOIs.

To sum up, our main contributions are four-fold:
• We combine the WiFi localization to construct formatted

SWSTMs, so as to reserve the spatial-temporal informa-
tion of crowds in the sensing data and facilitate the further
processing by supervised learning methods.

• Three different optimization/DL technologies are mod-
ified as the supervised crowd counter (SCC) of our
approach to utilize area partitioning, spatial and spatial-
temporal correlation.

• We present the integrated solution in detail in order to
make it easily being utilized and modified by practitioners
for their applications.

• A labeled WiFi sensing dataset is obtained in a real-world
large-scale scenario, and used to validate the effectiveness
of three strategies on capturing the fine-grained mapping
relationship.

The rest of this paper is organized as follows. Section II sur-
veys the literature in relation to our work. Section III presents
our method and a theoretical analysis on its superiorities.
In Section IV, three different SCCs are elaborately designed.
Section V shows the experimental results, and Section VI
concludes the whole paper and sheds light on future works.

II. RELATED WORK

In this section, we shall briefly introduce the literature
on crowd counting, including the traditional vision-based
approach and the emerging wireless-based approach.

A. Vision-Based Crowd Counting

A recent paper [25] surveyed the existing studies on
vision-based crowd scene surveillance, and reported the chal-
lenges. First, pixel-level approaches begin with edge detection
and use edge features to train a model, and texture-level
approaches [26], [27] are coarser-grained than pixel-level ones
and aim to analyze image patches. Both of them aim to
estimate the crowd count in a scene, rather than identify
individuals, and can only achieve coarse-grained results. Sec-
ond, object-level approaches [28] can obtain more accurate
results by identifying individuals but are only suitable for
sparse scenes. Third, line counting approaches [29] count
the crowd crossing a line of interest rather than the entire
AOI, and thus they cannot thoroughly handle the criticality
of a situation. Fourth, density mapping approaches [5], [6],
[30], [31] estimate the crowd density rather than identifying
the number of individuals in the scene, suffering from scale
variations [3], [32] and video qualities. Moreover, a common
limitation is that only a small area covered by a single
camera is considered. Therefore, when dealing with the crowd
counting in a large area covered by multiple cameras, it is still
an open problem [33], not to mention the possible coverage
holes and overlaps.

Based on the above discussion, it can be concluded that,
besides the traditional limitations, e.g., illumination condi-
tions and computational complexities, existing vision-based
approaches are also restricted by large area surveillance, high
pedestrian densities and cross-camera counting.

B. Wireless-Based Crowd Counting

First, with the advantages of low cost, large coverage,
scalability, device-free, and convenience for target recognition,
passive WiFi sensing has enabled crowd counting [22]. In [15]
and [19], the feasibility of the passive WiFi sensing-based
crowd counting method was validated through field experi-
ments, and the results showed it suffers higher error rates
than 30%. Similarly, [20] adopted WiFi sniffers with direc-
tional antennas and video-based crowd counting method, so as
to reduce the error rate by close to 20 percent. In [21],
a stereoscopic camera was installed at a calibration choke point
and helped to reduce the count error. In short, the existing
studies though appear to be feasible in practice, are mainly
restricted by the relatively low accuracy.

Second, efforts have been devoted to mining a variety of
deeper information from sensing data for aiding the crowd
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Fig. 1. The overview of the proposed crowd counting approach.

counting. An early study [34] demonstrated the feasibility of
using received signal strength (RSS) to estimate crowd counts,
and derived a linear formula that relates the crowd count to
the RSS average and variance. Nuzzer system [35] further
extended this model to work on a large scale. In [12], the
authors proposed a probabilistic approach to calculate the RSS
probability mass function (PMF) for each case of the crowd
count, achieving 25% counting accuracy. However, they need a
large number of WiFi sniffers deployed in order to achieve an
acceptable counting accuracy. One possible solution to resolve
this trade-off is to use CSI instead of RSS [13], [14], [36].
Unfortunately, it is hard to obtain CSI data by commonly used
APs/WiFi sniffers, and the fine-grained CSI measurements are
highly susceptible to environmental influence.

In summary, neither the traditional vision-based approaches
nor the emerging wireless-based approaches can perfectly
resolve the issues confronted by crowd counting. However, the
wireless-based approaches demonstrate the potential for crowd
counting in large areas and/or with high crowd densities, which
are the major shortage of vision-based ones. As such, it is
imperative to establish a finer mapping relationship between
the crowd count and the sensing data, so as to improve the
accuracy of passive WiFi sensing-based crowd counting.

III. PASSIVE WIFI SENSING-BASED
CROWD COUNTING APPROACH

In this section, we shall present the overview, the design
detail, and a qualitative analysis of the performance of the
proposed crowd counting approach.

A. Overview

The overview of the proposed crowd counting approach is
shown in Fig. 1, which can be divided into three stages:

1) Passive WiFi Localization: Several WiFi sniffers are
uniformly deployed in the AOI according to the coverage
requirements of WiFi localization. Then, a offline survey
is conducted using several reference devices to construct
the WiFi fingerprint database (FD). At last, a localization
method such as k-nearest neighbor (KNN) [37], weighted
KNN (WKNN) [38] or more advanced DHCLoc [39] is
employed to position all available fingerprints in the online
sensing.

2) Construction of WSTM/SWSTM: The sensing data within
one/several sliding window(s) is collected from WiFi sniffers
in the AOI and then preprocessed as fingerprints each of which
is a vector consisting of the RSS means from all WiFi sniffers
of a detected device, and a simple KNN-based binary classifier
trained by both the fingerprints in and out the AOI is adopted
to output a logical value denoting whether a detected device
is in the AOI. All fingerprints inside the AOI will be located
to form a set of positions. Based on the area partitioning and
localization results, WSTMs are generated by Algorithm 1 and
stacked as the SWSTM.

3) Supervised Crowd Counting Learning: We leverage
a traditional multi-objective optimization combined with
the local linear model (LLM), or end-to-end/sequence-to-
sequence DL method, as the SCC of our approach. The
SCC is used to establish a finer and more accurate mapping
between WSTMs/SWSTMs and the crowd counts, and exploit
spatial-temporal correlations among WSTMs/SWSTMs.

To sum up, all components in our approach will impact
the counting performance, and particularly, the classifier and
localization influence the accuracy slightly while the alterna-
tive SCC directly executes the counting function and affects
a lot.

B. Design Detail

The key components of the proposed approach are elabo-
rately formulated in the following.

1) Deployment of WiFi Sniffers: The WiFi sniffer can either
be dedicated WiFi sniffers or commercial programmable APs.
With the sniffing script, WiFi sniffers can periodically upload
the sensing data to the server for further processing. The
traditional manual deployment or the state-of-art automatic
deployment solutions of APs [40] is adopted for deploying
WiFi sniffers. Due to the unapparent effects that the WiFi
localization acts on crowd counting, we only ask the deploy-
ment of WiFi sniffers satisfying that every point in an AOI
should be covered by at least 3 non-collinear WiFi sniffers.

2) Offline Survey: To enable the WiFi localization, a offline
survey must be conduct to establish the FD. We first build the
cartesian coordinate system for the AOI using a laser range
finder measuring the size of AOI. Then, we utilize path-based
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fingerprint collection [41] which collect WiFi packets while
walking along a path with known start and terminal locations.
Suppose that there are mw WiFi sniffers, mw dimension finger-
print vectors are obtained by averaging the RSS measurements
extracted from all sensed packets sent by reference devices.
The location label of each fingerprint vector could then be
inferred by the timestamps and paths. In addition, to enable
the In/Out AOI classifier, both paths inside and outside the AOI
are surveyed. At last, all pathes inside the AOI are discretized
to nr reference points (RPs) and the FD with the size of
nr × (mw + 2) is obtained, where 2 denotes the length of
a RP’s 2-D location coordinate.

3) Sensing Data Preprocessing: The original sensing data
mainly includes timestamp, RSS, frame type, MAC address of
the transmitter, and the following preprocessing is conducted
based on these attributes: a) Abnormal Data Cleaning: the
frames with missing or over-ranged values will be discarded.
b) Device Filtering: fingerprints from non-mobile devices
such as wireless APs and staff’s devices are filtered out by
MAC addresses to ensure detected devices are carried by real
pedestrians; fingerprints from devices that are detected by
less than 3 WiFi sniffers are also abandoned. c) In/Out AOI
classifying: the devices carried by pedestrians before entering
or just leaving the AOI would also be detected by sniffers
due to the sliding window mechanism, and thus a simple
KNN-based classifier trained by the fingerprints of reference
devices locating both in and out the AOI is utilized. It is
expected to achieve high accuracy for such a simple binary
classification problem with mw features. As last, the online
fingerprints outside the AOI are abandoned.

4) WiFi Localization: Before the localization, a finger-
prints standardization method [42] is leveraged to alleviate
the device heterogeneity. Given a fingerprint vector F =
[F1, F2, . . . , Fmw ], the standardized fingerprint vector is cal-
culated by

F̂ = [F1 − F, F2 − F, . . . , Fmw − F]/σ̂ , (1)

where F = 1
mw

∑mw

i=1 Fi and σ̂ =

√
1

mw

∑mw

i=1(Fi − F)2

denote the mean and standard deviation of the fingerprint
itself, respectively. Then, we utilize a sliding window with the
size of 1t to filter out the sensing data D, and construct finger-
print vectors of each MAC in D1t , forming a set of fingerprint
vectors FS1t . For each standardized fingerprint vector F̂
in FS1t , the KNN-based WiFi localization algorithm [37] is
adopted to locate the device. The algorithm selects k RPs
with the least Euclidean distances between the standardized
FD and F̂, and takes the coordinate means of these RPs
as the location estimate. Finally, the set of device positions
within 1t , denoted by L1t , is obtained.

5) Construction of WSTM/SWSTM: The WSTM/SWSTM
is used to model the spatial and temporal relations with
respect to the crowd distribution in spatial domain and the
variation of crowd distribution in temporal domain. From
the perspective of representation, WSTM/SWSTM acts as the
manual feature extraction and can reform the random WiFi
modality into a consolidated size of format, facilitating further
input into an SCC. To construct the WSTM/SWSTM, we par-

tition the AOI into M × N grids with equal size according
to the cartesian coordinate system, and each of the grids
is a rectangle corresponding to a small region. Then, every
position in L1t is assigned to one grid. In temporal domain,
WSTMs in multiple consecutive sliding time windows are
stacked as sequential data, namely the SWSTM. More details
regarding the construction of WSTM/SWSTM is summarized
in Algorithm 1.

Algorithm 1 The Construction of WSTM/SWSTM
Input: the size of AOI H ×W , the partition

granularity M × N , the sequence length l, the
set of location estimates L1t

Output: the SWSTM Sl
1 Partition the AOI into M × N grids with equal size;
2 Initialize a M × N matrix S1t with 0, Sl ← ∅;
3 for L i ∈ L1t do
4 for j, k ∈ M, N do
5 if W

N (k − 1) ≤ L i .x < W
N k and

H
M ( j − 1) ≤ L i .y < H

M j then
6 S1t

jk ← S1t
jk + 1;

7 end
8 end
9 end

10 for t = 1, . . . , l do
11 Repeat above processes to generate S1t

t ;
12 Sl ← Sl

⋃
S1t

t ;
13 end
14 return Sl

6) Supervised Crowd Counter: After the original sensing
data being processed as WSTMs/SWSTMs, we further trans-
form the crowd counting problem into a supervised non-linear
regression with minor annotations of crowd counts. Count
labels of different WSTMs/SWSTMs can be obtained by
dividing the AOI into sub-regions, counting the crowd counts
in each sub-region using cameras, and then summing the
counts of all sub-regions. In the regression, three types of
supervised method can be adopted to gradually adding the
utilizations of the fine-grained mapping between WSTMs and
crowd counts, the spatial correlation inside one WSTM and the
temporal correlation among sequential WSTMs in an SWSTM.
• For traditional multi-objective optimizations such as the

particle swarm optimization (PSO) and genetic algorithm
(GA), an LLM is established with respect to the i th row
and j th column element in WSTM,

ci j = ai j · S1t
ij + bi j , (2)

where ci j is the crowd count in the corresponding gird,
ai j and bi j are the slop and offset of the LLM. Then,
we formulate the regression as

min |cgt
−

M,N∑
i, j=1

ci j | = min |cgt
−

M,N∑
i, j=1

(ai j · S1t
ij + bi j )|,

s.t. ai j ∈ [al , au], bi j ∈ [bl , bu], (3)
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where cgt denotes the real count of the whole AOI in
the current moment, and [al , au], [bl , bu] are the lower
bound and upper bound of ai j , bi j , respectively. With an
applicable optimization algorithm, 2 · M · N objectives,
i.e., ai j , bi j (i = 1, . . . , M; j = 1, . . . , N ), are optimized
simultaneously to minimize the goal |cgt

−
∑M,N

i, j=1 ci j |.
• For non-sequential DL models such as the deep neural

network (DNN) and convolutional neural network (CNN),
we establish the global non-linear mapping, or implicit
local model for each input, by

ĉ = f ∗(S1t ),

f ∗ ∈ F = { f (S1t
; θ)|θ ∈ RD

}, (4)

where F is the set of possible mapping functions deter-
mined by the models with different hyper-parameters, θ

is the hyper-parameters and D is the number of hyper-
parameters. Therefore, the regression process is occurring
in the build-in mechanism of DL models, and nonlinear
activations as well as multiple layers structure of these
models even can boost the mapping from WSTMs to
counts in a large margin. In addition, the fully connected
characteristic links up each element in the WSTM to
exploit the spatial correlation among grids, promising a
more optimal mapping.

• The sequential variations of DL models such as the RNN
and long short term memory (LSTM), can be adopted to
further exploit the temporal correlation among WSTMs
in an SWSTM for parameter optimizing. The basic idea is
that using the weights learned from (t−1)th WSTM S1t

t−1
to iteratively update the t th one. In analogy with 1-order
Markov chain, the temporal correlation is delivering and
accumulating step by step, resulting in a finer sequence-
to-sequence mapping.

C. Theoretical Analysis on Counting Performance

To clarify the basic idea of our approach for crowd counting,
we first conduct a pilot test regarding the linear relation
between the ground-truth crowd counts and the number of
detected devices located in the designated areas with a 20s
sliding window. As shown in Fig. 2, the slopes of the linear
relations in three sub-regions and the whole AOI (i.e., the sum
of all 5 sub-regions) of our testbed with respect to the time
variation are given. It can be clearly seen that the slope varies
over time and is different for diverse locations in a given AOI
(similar conclusion in [21]). On these grounds, we shall give
a qualitative analysis on the superiority of our approach.

In the ideal condition, suppose that there are enough people
in each of an appropriate partition of the AOI, i.e., M × N
grids, and without considering the impact of localization
errors, we follow [18], [19], [20], and [21] to assume the
relation between the crowd count and the expected number
of detected devices within 1t is a strict proportional mapping
cgt

i j = ai j · S1t
ij , or more generally, a linear function cgt

i j =

ai j · S1t
ij + bi j . Then, we can get the following conclusions.

First, traditional methods estimate the crowd count in the
whole AOI by ĉ = a ·

∑
S1t or ĉ = a ·

∑
S1t
+ b,

which is quite different from cgt
=

∑M,N
i, j=1 ai j · S1t

ij or

Fig. 2. The slope of the linear relation between the ground-truth crowd count
and the number of detected devices varies over time and different sub-regions.

cgt
=

∑M,N
i, j=1(ai j · S1t

ij + bi j ) and lead to great errors. This
is because the compromised a and b would ruin estimates
of majority grids (see Fig. 2). Whereas our approach tries to
find the approximately optimal ai j , bi j (i = 1, . . . , M; j =
1, . . . , N ) of the LLM or θs of DL models to minimize
estimate errors.

Second, when estimating parameters, localization errors
may degrade the counting. However, devices in a given grid
are probabilistically located in adjacent grids, and vice versa,
the surrounding devices have the probability to be located
in this grid, resulting in a compensating effect. Meanwhile,
in consideration of the spatial correlation, the expected error of
the device number between with and without the consideration
of localization error is a trivial value. Therefore, our approach
is insensitive to localization errors in some extent, but the
counting error would rapidly rise when the localization error
is large.

Third, in the real condition, due to the limited number of
people in the whole AOI as well as each grid, an additive white
Gaussian noise ϵi j would be introduced into the mapping,

ĉi j = ai j · (S1t
ij + ϵi j )+ bi j = ai j · S1t

ij + bi j + ϵ′i j . (5)

The noise is heavily influenced by the size of grids, i.e., the
partition granularity M×N . Large M×N both simultaneously
boosts the noise and aggravates the impact of localization
error. Therefore, a suitable M × N should be adopted to
trade off the count accuracy and errors according to the scales
of AOI and the crowd distribution, and a relative large time
window would also help to alleviate this contradiction.

Forth, we further introduce the SWSTM for sake of two
reasons: the estimated parameters show strong correlations in
the temporal domain (see Fig. 2), and thus more consecutive
WSTMs are helpful to estimate more accurate parameters; the
noise caused by limited number of people is time-varying due
to the change of crowd count in grids, and thus different offsets
of the LLM and DL model in each WSTM of an SWSTM are
updated to compensate them.

IV. SUPERVISED CROWD COUNTERS

As mentioned in Section III-B6, we shall give the detailed
description of three elaborately designed SCCs of our
approach in the following.
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Algorithm 2 The Training of PSO-SCC
Input: the number of particles m p, the training set of

WSTMs S = {S1, . . . Sntr } and its label set
Cgt
= {cgt

1 , . . . cgt
ntr }, the thresholds of particles’

speeds vth , the iterations I , the inertia factor
w, acceleration constants C1, C2

Output: the optimal solution Xg
1 Use the least square method to fit

cgt
k = a ·

∑
Sk + b(k = 1, . . . , ntr ) to get a, b;

2 Initialize m p particles by setting their states
xi = [{a} × M · N , { b

M ·N } × M · N ] and speeds
vi = [random(−vth, vth)× 2 · M · N ];

3 Initialize a m p dimensions vector Pl = [{I n f } × m p]

recording the minimum counting error of each
particle itself and a m p set
Xl = {Xl1, . . . , Xlmp} = {x1, . . . , xm p } recording the
corresponding state of each particle;

4 Initialize the global minimum counting error Pg = I n f
and the corresponding global optimal particle state
Xg = x1;

5 for j = 1, . . . , I do
6 for i = 1, . . . , m p do
7 Calculate the fitness value of the i th particle:

FV (xi ) =

ntr∑
k=1

(x1:M N
i ⊙sk+x(M N+1):2M N

i −cgt
k )2
; (6)

if FV (xi ) < Pl [i] then
8 Pl[i] = FV (xi );Xl{i} = xi ;
9 end

10 if FV (xi ) < Pg then
11 Pg = FV (xi );Xg = xi ;
12 end
13 Update the speed and state of the i th particle:

vi = wvi−1 + C1 · random(0, 1)(Xli − xi )

+C2 · random(0, 1)(Xg − xi );
(7)

xi = xi−1 + vi ; (8)

x1:M N
i = |x1:M N

i | (9)

14 end
15 end
16 return Xg;

A. PSO-Based SCC

We modify the popular multi-objective optimization
PSO [43] as the SCC of our approach, termed PSO-SCC, and
then give its training process in Algorithm 2. The ai j and bi j
of all girds for a WSTM are concatenated as the state of a
particle, and the speed of each particle with the same size is
used to control the direction and degree when optimizing.

There are three stages in the algorithm: 1) In the initializing
stage, states of all particles are initialized by a, b obtained
by using the least square method to fit the crowd count and
the number of detected devices in the training data. 2) In the
fitness calculating stage, we use the sum of squared counting

Fig. 3. The architecture of the proposed DNN-SCC. AF is short for the
activation function.

errors (6) as the fitness function, where “⊙” is the Hadamard
product between slopes and crowd counts in each grids of a
WSTM. Then, the fitness values of all particles are calculated,
and both the state of each particle when it reaches the minimal
fitness values of itself and the state of the particle that reaches
the global optimal fitness value as far are recorded. 3) In
the updating stage, the speed of each particle is dynamically
updated according the speed in the last iteration, the difference
between the particle’s optimal state and current state, and the
difference between the global optimal state and current state.
At last, the state is renewed by adding the updated speed,
aiming to avoid the local optimum and thus find a more
likely optimal solution. In addition, to avoid the ai j becomes
a negative value, we use the absolute values of x1:M N

i .

B. DNN-Based SCC

To design the DNN-SCC, we utilize a simple but effective
triangle-shaped fully connected DNN model with 4 hidden
layers, as shown in Fig. 3. The size of hidden layers are set
much larger than the possible partition granularity M × N ,
i.e., 512/256/128/64, in order to extend the model’s ability
for applying in different scale AOIs. Rectified linear unit
(ReLU) [44] is adopted as the non-linear activation function
in every node. To satisfy the requirement of one-dimensional
input for DNN-SCC, the WSTM will be flattened as a vector
with the size of M ·N , and the outputted crowd count is directly
obtained by summing all values in the last hidden layer. The
forward propagation process can be indicated as

X(i+1)
= ReLU (W(i)X(i)

+ B(i)), (10)

where X(i+1) denotes the outputs in the (i + 1)th layer, and
W(i), X(i), B(i) denote the weights, inputs, biases of the
i th layer, respectively. Particularly, the first inputs X(0)

=

Flatten(S1t) represents feeding WSTM into the model, and
the outputted count is a scalar. As for training, the MSE loss
is utilized to minimize the counting error, defined as

mseloss =
ntr∑
i=1

(ĉi − cgt
i )2, (11)
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Fig. 4. The architecture of the proposed RNN-SCC. AF is short for the
activation function.

where ĉi and cgt
i are the estimated and ground-truth crowd

count of the i th training WSTM, and ntr is the number of
training WSTMs.

C. RNN-Based SCC

To further including the temporal correlation, we modify
RNN model [45] to RNN-SCC and give the architecture in
Fig. 4. The RNN-SCC utilizes RNN cells to replace the nodes
in each layer of the traditional DNN model, resulting in
absorbing the merit of full connection and hidden state across
different time steps, such that it can effectively capture the
spatial and temporal correlation simultaneously. As for the
architecture, we deliberately leverage the same structure of
DNN-SCC for designing RNN-SCC in the vertical direction
as well as the activation function and loss function, so as
to highlight the difference in temporal domain compared to
DNN-SCC. Besides the forward propagation between RNN
cells in each layer, a dynamic update mechanism between time
steps (WSTMs in the SWSTM) is added into the model, and
thus the synthetic forward propagation process is expressed as

H(i+1)
t = ReLU (U(i)H(i+1)

t−1 +W(i)X(i)
t + B(i)

h ), (12)

X(i+1)
t = ReLU (V(i)X(i)

t + B(i)
x ), (13)

where H(i+1)
t and X(i+1)

t are the hidden states and the outputs
of the (i + 1)th layer and t th time step, B(i)

h and B(i)
x are cor-

responding biases, and U(i), V(i) and W(i) are corresponding
weights, respectively. In addition, the sequential outputs only
reserve the last one X(4)

l as the estimated count.

V. EVALUATION

To validate the effectiveness and the actual counting perfor-
mance of the proposed approach, a dataset is collected in a real
large-scale scenario, and extensive experiments are conducted.

Fig. 5. The layout of our testbed.

A. Testbed

We conduct experiments in a road network of our campus
with the surveillance area of about 4000m2, and the layout is
shown in Fig. 5. The AOI is further expended to the minimum
rectangle, i.e., H × W = 132m × 75m, to ensure the whole
surveillance area (colored regions) being included. There are
14 customized WiFi sniffers (blue circles) uniformly deployed
in the AOI, and numbered as W 1 to W 14. Fingerprints are
collected from pathes both inside the AOI (red dashed line)
and outside the AOI (green dashed line) to constitute the FD
and train the In/Out AOI classifier. To obtain the ground truth
of crowd counts, 5 smartphones installed on shelves with the
height of 2.1m are strictly synchronized and deployed in each
corner of the testbed to record videos of their corresponding
sub-regions (five different colored regions), and then the crowd
counts are manually annotated for one frame per second.

B. Dataset

An offline survey using 6 different smartphones with fixed
MAC address is conducted, and fingerprints are generated
within a sliding window with the size of 1t = 60s and step
of 1s. As a result, we collect 8290 fingerprints to train the
In/Out AOI classifier and it can achieve the accuracy of over
95% by a simple test. Then, 292 RPs are discretized from the
pathes inside the surveillance area, and the KNN algorithm
with k = 3 is utilized for localization. Finally, after hours of
collection during a time period encompassing the peak time
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after classes, total 2280s intact sensing data and corresponding
count labels are obtained. The total crowd flow is 145, 617 and
the average crowd count in the whole AOI per second is 64.

As for WSTMs/SWSTMs, the partition granularity is set
as M × N = 18 × 10 for all SCCs. To fairly compare
baselines, we uniformly divide the dataset with size of 2280s
into 30 consecutive timeslots, and take 15 of them as training
data and the others as testing data to ensure that they are
completely isolated. A sliding sequence window with size of
l = 30 is adopted when constructing SWSTMs.

C. Baselines, Parameters, Metrics and Assumptions

Three traditional global linear or approximately linear
regression methods that use the least square method to fit
the proportional function cgt

= a ·
∑
S1t (denoted by

G-PROP) [19], [21], the linear polynomial function cgt
= a ·∑

S1t
+b (denoted by G-LPOLY) [20], and the second-degree

polynomial function cgt
= a · (

∑
S1t)2

+ b ·
∑
S1t
+ c

(denoted by G-SPOLY) [22], between the ground-truth and
the number of detected mobile devices located in the AOI,
are implemented for comparison. All baselines use our pre-
processed data and In/Out AOI classifier, resulting in a slight
improvement on counting accuracy compared to their original
versions.

The parameters in the PSO-SCC are set as: m p = 100;
vth = 5; I = 1000; w = 0.95; C1 = C2 = 2, according to
field experiments of PSO [43] and our attempts on param-
eters optimizing. Both the DNN-SCC and RNN-SCC use
Adam [46] as their optimizers, and are trained by 1000 times.
Due to the differences between the structures (non-sequential
V S sequential) and the inputs (WSTMs V S SWSTMs)
of two models, different learning rates are set to achieve
their respective optimums, and thus lrDN N = 1e − 4 and
lrRN N = 2e − 5.

Three evaluation metrics are adopted to comprehensively
evaluate the counting performance, i.e., mean absolute error
(MAE), mean square error (MSE) and mean relative error
(MRE), which are defined as follows,

M AE =
1

nte

nte∑
i=1

|ĉi − cgt
i |, (14)

M SE =
1

nte

nte∑
i=1

(ĉi − cgt
i )2, (15)

M RE =
1

nte

nte∑
i=1

|ĉi − cgt
i |

cgt
i

× 100%, (16)

where nte is the total number of testing data, and ĉi and cgt
i are

the estimated crowd count and ground-truth crowd count of the
whole AOI, respectively. Therein, MAE and MRE reflect the
counting accuracy, while MSE shows the counting stability.

In addition, considering that certain strict assumptions need
to apply for both our approach and baselines to take place,
we summarize a list of assumptions in the following:
• Every point in the AOI must be covered by at least 3 non-

collinear WiFi sniffers.

TABLE I
THE COUNTING RESULTS OF THREE BASELINES
AND OUR APPROACH WITH DIFFERENT SCCS

• Every pedestrian pauses or stops short enough to ensure
his/her device(s) not being judged as wireless AP(s).

• Every WiFi sniffer upload its sensing data in real-time
and the time asynchronism does not exist.

• The pathes outside the AOI are surveyed enough, such
that the In/Out AOI classifier can achieve a high accuracy.

• The size of sliding time window is large enough, such that
most of mobile devices inside the AOI can be detected.

D. Validation of the Crowd Counting Performance

Based on above setups, the counting results of baselines
and our approach with different SCCs are summarized in
Table I. It can be seen that G-SPOLY and G-LPOLY have
a approximate counting accuracy due to the second-degree
coefficient (7.88× 10−6) of the former is close to 0, which is
attribute to the approximately linear characteristic bringed by
the huge amount of sensing data within a relative large time
window, as we mentioned in the Introduction. Overall, our
approach embedded with different SCCs fully exceeds base-
lines regarding all three metrics by a large margin. Particularly,
the PSO-SCC, DNN-SCC and RNN-SCC can reduce the MAE
by 21.13%, 35.55% and 42.41% under the same condition,
respectively, compared to the best baseline, i.e. G-LPOLY.

For more in-depth discussions, PSO-SCC slightly outper-
forms baselines by optimizing parameters in LLMs, and it
demonstrates the effectiveness of the fine-grained mapping
bringed by area partitioning. DNN-SCC has a greater ability
than PSO-SCC for mapping WSTMs to counts since the strong
fitness ability bringed by the non-linear activation functions
and multi-layer structure, and can effectively exploits the
spatial correlations among the crowd distribution in each grid
due to the full connection. Furthermore, RNN-SCC which has
the same vertical structure with DNN-SCC, are further incor-
porated with horizontal time series to capture the temporal
correlations among crowd distributions in adjacent WSTMs
of an SWSTM, and transmit them in the whole sequence,
resulting in a more accurate counting.

E. Ablation Studies

We conduct the following experiments to further explore
how the spatial granularity, the localization and the time
sequence length affect the counting accuracy of our approach.
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Fig. 6. The change curves of the MAE and MSE of our approach with
PSO-SCC and DNN-SCC when the partition granularity M × N increasing.

1) Spatial Granularity: To investigate the variation ten-
dency of counting accuracy with the partition granularity
of WSTM varying, we gradually increase M from 1 to
H = 132 and let N = round( W

H · M). G-LPOLY is adopted
as the baseline, and MAEs and MSEs of the PSO-SCC and
DNN-SCC which counts mainly relying on the spatial domain,
are given in Fig. 6. From the figures, we can conclude that:

First, change curves of both SCCs are fluctuant, which
is mainly attributed to the sparsity and randomness of the
crowd distribution in the real-world large scenario, rendering
the discontinuous tendency. When M × N is large, the dras-
tic fluctuation of PSO-SCC also indicates its limited ability
for optimizing such a large number of parameters, while
DNN-SCC shows the superiority of DL.

Second, as we discussed in Section III-C, a suitable partition
granularity should be leveraged to balance the limited number
of people/devices in grids and the localization errors, and the
optimal M×N is about 18×10 in our testbed. The subsequent
curve of PSO-SCC is well accord with our discussion, while
DNN-SCC can reach a state of equilibrium, which is not
strictly conform to the discussion due to its non-linear fitness
ability that aggregates pony-size girds.

Third, MAEs of PSO-SCC are always lower than those
of G-LPOLY, because we use the solution of G-LPOLY to
initialize PSO-SCC, while the two outliers of PSO-SCC’s
MSEs are attributed to the difference between the training and
testing data. In addition, we also find that DNN-SCC obtains a
worse result when M×N is small, i.e. 2×1 and 1×1, which
also verifies the simple utilization of the count obtained by
WiFi sniffers is not enough for high-precision counting, even
estimating by the DNN model.

Fig. 7. The variation of the localization error (RMSE) and counting accuracy
(MAE) when gradually removing WiFi sniffers. WS is short for WiFi sniffer.

2) Localization Error: As a key component of our
approach, WiFi localization plays a vital role in boosting the
counting performance. Therefore, we intentionally remove 1 to
11 WiFi sniffers out of all 14 ones, so as to weaken the
localization ability and increase the localization error. The
root mean square error (RMSE) of localization error, which
is obtained by 2 testing devices and the FD constructed by
4 distinct reference devices, is calculated by

RM SE =

√√√√ 1
nt f

nt f∑
i=1

(l̂i − lreal
i )2, (17)

where nt f is the number of testing fingerprints, and l̂i and
lreal
i are the estimated and real locations of the i th testing

fingerprint’s device. The removing order of Wifi sniffers is set
as: W 9 → W 14 → W 1 → W 4 → W 6 → W 3 → W 11 →
W 12 → W 8 → W 5 → W 13, in order to gradually increase
the RMSE. At last, we take the G-LPOLY and DNN-SCC
with 14 WiFi sniffer as baselines, and plot RMSEs and MAEs
of DNN-SCC under the schemes of different numbers of WiFi
sniffers in Fig. 7. When the number of WiFi sniffers ≥ 4,
MAEs slightly fluctuates around the MAE of DNN-SCC with
all WiFi sniffers, which well conforms to our discussions in
Section III-C, i.e., the compensation effect of localization and
the robustness of our approach. Particularly, in the extreme
case, DNN-SCC with only 3 WiFi sniffers still outperforms
G-LPOLY on counting accuracy.

3) Time Sequence Length: Another key parameter for con-
structing SWSTM is the time sequence length l, and thus
we test RNN-SCC under the same setup above but varying l
from 10 to 120. Since the SWSTM with the length of l
contains the sensing data within the timeslot with the length
of 1t+ l−1 ≈ 1t+ l, and thus the cases of DNN-SCC using
WSTMs within 1t = (60 + l)s, are also tested. On these
grounds, DNN-SCC using WSTMs within 60s is taken as the
baseline, and all MAEs are plotted in Fig. 8. According to the
results, we conduct the following analyses:

First, we reasonably believe that continually extending l
will gradually promote the counting accuracy of RNN-SCC,
but we find the MAE will increase when l is larger than 90.
We guess this phenomenon is attributed to that the temporal
correlation is decreasing when the sensing data is far away
from the current moment, and the LSTM or gated recurrent
unit (GRU) models may be helpful to relieve it by balancing
the long and short term temporal dependencies. In addition,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on October 05,2023 at 10:56:17 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 8. The MAEs of DNN-SCC within different 1t and RNN-SCC with
different l.

RNN-SCC will get a poor result when l is less than about 15,
which means that lesser sequence of WSTMs cannot provide
enough information for counting, but the added features ruins
the counting performance on the contrary.

Second, for cases of DNN-SCC within different 1t , it can
be seen that the MAE is continuously decreasing when 1t is
less than or equal to 80s, but it will increase when 1t =
90s to 120s. This is because the pedestrians who just already
pass the AOI are included in the WSTM when 1t is large,
degrading parameters that map WiFi counts to real counts.
Curiously, the MAE can be further reduced by enlarging 1t ,
and we attribute it to that counting passersby for all WSTMs
can reduce noise estimates and the offsets insides the model
can then eliminate the redundant count.

Third, to sum up, using the SWSTM by RNN-SCC sur-
passes handling single WSTM constructed within the same
length timeslot of sensing data by DNN-SCC in most cases,
since the later one will lose the temporal correlation between
crowd distribution of consecutive moments by locating and
constructing one WSTM for such a large time window.
Another advantage of SWSTMs is that the server only need
to deal a small amount of sensing data (within a relative small
1t) including positioning and constructing the WSTM for the
current moment, and obtain WSTMs of previous l−1 moments
in the RAM, which can improve the efficiency.

VI. CONCLUSION

In this paper, we proposed a passive WiFi sensing-based
crowd counting approach for large-scale surveillance areas,
which involved a series of advanced technologies including the
WiFi localization, optimization theory and DL. The proposed
method is a universal and flexible solution for the WiFi-based
crowd counting since it has the merits of low-cost and easy-
to-deploy, and the alternative components are convenient for
relevant researchers or practitioners adapting and modifying
the approach in their practices. Extensive experiments in a real
scenario demonstrated that our preliminary configurations of
the approach is successful, and the ablation studies also given
meaningful results about how some key factors influence the
counting performance.

In the next step, we plan to extend our approach for
providing more indexes on the crowd analyses, such as the
crowd density, the flow speed, and the trajectory of a crowd.

In addition, more advanced localization method and DL tech-
nologies, e.g., the attention mechanism and transformer model,
also deserve to be explored.
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