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Abstract—Fingerprint-based localization relies on an accurate
and up-to-date radio map, which is however cumbersome to
obtain. In this paper, a novel scheme is proposed to online
adapt radio maps to environmental dynamics by using low-cost
crowdsourced received signal strength (RSS) measurements. To
be specific, a coarse-grained radio map is initially established
in the offline phase utilizing the standard Gaussian process
regression (GPR) given a limited number of fingerprints (i.e.,
RSS measurements with location labels), and further can be
recursively refined in the online phase given crowdsourced RSS
measurements with their noisy location labels obtained through
the existing radio map. Differently from existing GPR-based
approaches, the proposed scheme adopts extended GPR to allevi-
ate the model inaccuracy induced by such noisy location labels,
and then presents a marginalized particle extended Gaussian
process (MPEG) to recursively filter the radio map. In addi-
tion, pedestrian dead reckoning (PDR) is leveraged to calibrate
such noisy location labels. Extensive experiments are carried out
in a real scenario with area of nearly 1000 m2 during a five-
month period of time, and a thorough comparison with several
existing approaches indicates that the proposed scheme gradu-
ally improves the localization accuracy on average by as much
as 31.2%, while the counterparts result in fluctuant localization
performance and improve the localization accuracy on average
by 13.3%.

Index Terms—Crowdsourcing, fingerprinting, indoor localiza-
tion, radio map.

I. INTRODUCTION

THE explosive proliferation of mobile devices have
spurred extensive demands on location-based services

(LBSs) in recent decades. The global positioning system (GPS)
has been widely used in outdoor positioning, but cannot
work in indoor environments due to a lack of line of sight
(LoS) transmission channels between satellites and indoor
receivers [1]. Therefore, in the past two decades great efforts
have been devoted to developing indoor positioning systems
(IPSs) to enable reliable and precise indoor positioning and
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navigation [2], [3]. Nowadays, WiFi network infrastructures
are available in almost every commercial and residential build-
ing, and nearly every off-the-shelf mobile device supports
WiFi. As such, WiFi-based localization, especially the WiFi
fingerprint-based method [4]–[8], has become an attractive
alternative to GPS in indoor environments.

Basically, a fingerprint essentially comprises of a vector
of statistical attributes (e.g., mean, variance, and histogram)
of or simply received signal strength (RSS) measurements
from multiple APs and the location labels attached to the
RSS measurements [4]. The fingerprint-based method nor-
mally involves the following two major steps [8]. In the first
step, a radio map consisting of a number of fingerprints col-
lected at specific locations is constructed via an offline site
survey. In the second step, when a device sends an online
location query containing the current vector of RSS mea-
surements, its location is estimated according to the current
radio map.

Building a radio map demands labor-intensive and time-
consuming measurement campaigns in an offline site survey,
imposing a severe limitation on implementing fingerprint-
based IPSs. Hence, it is of great importance to reduce
the workload in building radio maps. To that end, a num-
ber of approaches have been reported. For instance, the
crowdsourcing-based approaches [9]–[14] leverage daily activ-
ities of participants to automatically collect fingerprints so
as to save manpower. Recently, the Gaussian process regres-
sion (GPR)-based approaches [15], [16] gained much atten-
tion since the number of RSS measurements is substantially
reduced.

Apart from the difficulties in efficiently building radio
maps, the localization performance of fingerprint-based IPSs
often degrades over time due to environmental dynamics
which lead to the discrepancy between the current signal fea-
tures and the historically established radio map. As such,
significant research [17]–[23] has been conducted to pro-
duce update-to-date radio maps. However, existing studies are
still confronted with the following issues. First, the location
labels attached to crowdsourced RSS measurements normally
incur uncertainties, which result in model inaccuracy, but
most studies [20] simply ignore this issue when updating
radio maps and thus suffer from robustness. Second, different
approaches may impose various restrictions, like using ded-
icated devices [21], [22], performing specific activities [23],
and producing intractable radio maps [19]. Last but not least,
the existing GPR-based approaches [15], [16], [20], [22] have
limited scalability because it is usually time-consuming and
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error-prone to invert the associated covariance matrix given a
huge amount of crowdsourced fingerprints.

To address the above issues, this paper proposes a system-
atic scheme to generate and recursively update a radio map
by exploiting crowdsourced fingerprints. Specifically, during
the offline site survey, a coarse-grained radio map associ-
ated with a set of predefined locations (e.g., the points on
a regular lattice) is initially built using the standard GPR
given a limited number of fingerprints, which can be rapidly
derived by traversing the target space with their location labels
obtained through, e.g., manual configuration; then, during the
online localization, this radio map is recursively refined by
making use of fingerprints crowdsourced at arbitrary loca-
tions which can be obtained through the currently available
radio map. As such, it is unnecessary to align the location
labels of crowdsourced fingerprints with the predefined loca-
tions. Moreover, the proposed scheme leverages pedestrian
dead reckoning (PDR) [24] to calibrate the noisy location
labels as well as the extended GPR [25] to alleviate the model
inaccuracy, which enhances the performance and robustness
of the radio map. On these grounds, a marginalized particle
extended Gaussian process (MPEG) is presented based on the
framework in [26] to recursively filter the radio map given
newly crowdsourced fingerprints, so that filtering with a huge
amount of crowdsourced fingerprints can be implemented in an
online divide and conquer manner. Extensive experiments are
carried out in a real scenario with the area of nearly 1000 m2

during five months. A thorough comparison with the original
fingerprint-based IPS and other popular approaches confirms
the feasibility and validity of the proposed scheme, and indi-
cates that the proposed scheme is able to gradually improve the
localization accuracy, while the counterparts result in fluctuant
and low localization performance.

The rest of this paper is organized as follows. Section II
reviews the literature. Section III provides an overview of the
proposed scheme. Section IV extends the standard GPR to mit-
igate the influence of noisy location labels and further adopts
PDR to calibrate noisy location labels. Section V presents the
design and implementation of MPEG in detail. In Section VI,
experimental results and performance evaluation are reported.
We conclude this paper in Section VII.

II. RELATED WORKS

In this section, we shall briefly review the literature on
generating and updating radio maps, respectively.

Since fingerprint is usually represented by either the sta-
tistical attributes or the distribution of corresponding RSS
measurements, the more are the RSS measurements, the bet-
ter is the resulting radio map, but the site survey cost also
becomes higher. Therefore, existing studies mainly focus
on balancing the efforts spent and the resulting localization
performance, and can be categorized into the model-based
approach, crowdsourcing-based approach, and optimization-
based approach. The model-based approach uses various WiFi
signal propagation models to predict RSS measurements at
different locations instead of measurement campaigns [27].

However, none of models can accurately characterize sig-
nal propagations in complicated indoor environments. The
crowdsourcing-based approach leverages undedicated daily
activities to collect RSS measurements, and in combination
with other localization techniques like PDR, to provide crowd-
sourced fingerprints. In [9], a novel technique is proposed
based on the Gaussian process latent variable model (GPLVM)
to determine the latent-space locations of unlabeled RSS
measurements. In [10]–[12], PDR and extra environmental
information, e.g., virtual landmarks, floor layout, etc., was
exploited to infer the location labels of crowdsourced fin-
gerprints. The optimization-based approach estimates radio
maps using only a limited number of fingerprints. In [13],
a hybrid generative/discriminative semi-supervised learning
algorithm was proposed to utilize a large number of unlabeled
RSS measurements to supplement a small number of finger-
prints. In [28], an unsupervised manifold alignment was used
to estimate radio maps given only 1% of the fingerprinting
load, some crowdsourced RSS measurements and an indoor
map. In [15] and [16], the spatial correlation between nearby
fingerprints is employed to interpolate or calibrate radio maps.

Furthermore, different types of attempts have been made to
adapt existing radio maps to environmental dynamics. One
kind of solutions only consider the changes of APs and
replaces the outdated fingerprints in radio maps [17], [18].
Another kind of solutions try to fuse new fingerprints with
existing radio maps. In [19], LuMA modeled the problem of
updating a radio map as a transfer learning problem based on
dimensionality reduction, which learns a mapping from an old
radio map to a new one in a low-dimensional space. In [20], a
dynamic online-calibration scheme was proposed to apply the
GPR with the log-distance path loss model to construct and
calibrate radio maps, but required re-estimating the parameters
by maximizing the given likelihood function. Recently, a WiFi-
based nonintrusive IPS was proposed in [21] by using RSS
measurements between APs to online calibrate radio maps.
Similar scheme was reported in [22] by placing dedicated
devices at fixed locations. Additionally, in [23], AcMu makes
use of realtime RSS measurements from a static smartphone to
automatically update radio maps by modeling the underlying
relationship between nearby RSS measurements, which relies
on the movement detection of the smartphone.

To sum up, we can conclude that: 1) intensive efforts have
been invested on generating radio maps using crowdsourced
RSS measurements in the offline phase; 2) the studies on radio
map update in the online phase by fusing fresh RSS measure-
ments with existing radio maps is relatively limited; and 3) the
uncertainties in locations labels are ignored. Unlike the exist-
ing studies that separately tackle the problems in the offline
and online phases, this paper presents an approach that seam-
lessly combines the generation and update of radio maps, so
as to improve its robustness and scalability.

III. OVERVIEW OF THE SCHEME

The proposed scheme is similar to most traditional
fingerprint-based IPSs except that the standard GPR, PDR,
and MPEG are introduced, as illustrated in Fig. 1.
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Fig. 1. System architecture of the proposed scheme.

In the offline phase, a lightweight site survey is initially con-
ducted to collect a limited number of fingerprints. Specifically,
a smartphone user is asked to traverse the target space at a con-
stant speed to collect RSS measurements from nearby APs,
and meanwhile, the coordinates and times associated with the
beginning position and ending position of every straight path
are recorded to further infer the location labels. After that, a
coarse-grained radio map associated with a set of predefined
locations in the target space, e.g., the positions on a regular
lattice, can be produced based on the standard GPR which is
able to sufficiently make use of the spatial correlations among
the limited number of fingerprints.

In the online phase, as long as a location query including
current RSS measurements is sent to the server, a finger-
print matching algorithm, e.g., k nearest neighbor (KNN),
will be executed to determine and return a most possible
location according to the radio map. Differently from tradi-
tional fingerprint-based IPSs, the proposed scheme leverages
participants to crowdsource fingerprints in the online phase.
Particularly, a set of RSS measurements from nearby APs
is derived when a participant traverses the target space, and
is sent to the server together with their initial location esti-
mates determined based on the current fingerprint-based IPS
and PDR information (i.e., step count, step length, and head-
ing); then, the server will run MPEG to update the radio map
in an online fashion by using these crowdsourced fingerprints.

In summary, the proposed scheme can be readily integrated
into an existing fingerprint-based IPS, so as to recursively
adapt its radio map to realtime environments using crowd-
sourced fingerprints. Even though the location labels of crowd-
sourced fingerprints are often different, only the fingerprints
at the predefined locations are maintained, and the size of the
radio map does not change over time.

IV. PROCESSING NOISY LOCATION LABELS

In this section, we first briefly introduce the preliminaries
on the standard GPR from the perspective of fingerprint-based
localization, then present how to extend the GPR to train a
radio map using RSS measurements with noisy location labels,
and finally calibrate noisy location labels based on PDR.

Throughout this paper, letters in bold denote matrix or vec-
tor; E(·), V(·), and C(·, ·) denote the expectation, variance, and
covariance operators, respectively; ‖ · ‖ denotes the Euclidean
norm operator; superscript T denotes the transpose operator;
and I is the identity matrix.

A. Standard GPR

For ease of presentation, we only consider one WiFi AP.
At first, let y denote an RSS measurement in dBm collected
at a particular location with precise coordinates x ∈ R

2 from
this AP. Then, by regarding the RSS measurement y as the
observation and the coordinates x as the input feature, we can
have the following observation model:

y = f (x) + ε (1)

where f (x) maps the input, i.e., the location coordinates x, to a
Gaussian random variable ∼ N (m(x), σ 2

f ), and ε denotes the
observation noise and satisfies N (0, σ 2). Since the accurate
form of m(x) is difficult to derive, the following quadratic
polynomial function of x is employed according to [16]:

m(x) = xTAx + bTx + c (2)

where A = AT, A ∈ R
2×2, b ∈ R

2, and c ∈ R.
Then, given n coordinates X = [x1 . . . xn], the vector of

f (x), denoted f(X), is multivariate Gaussian with the mean
vector function m(X) = [m(x1), . . . , m(xn)]T, and the covari-
ance matrix function K(X, X), namely, that f(X) is a Gaussian
process (GP). The element on the ith row and jth column of
K(X, X′) can be modeled by using the commonly adopted
squared exponential kernel function [9] as follows:

k
(

xi, x′
j

)
= σ 2

f exp

(
−‖xi − x′

j‖
2l2

)
(3)

where xi, x′
j denote the ith column of X and jth column of X′,

respectively; l denotes the scale parameter.
As such, the corresponding RSS measurements, i.e., y =

[y1, . . . , yn]T, satisfy

y|X ∼ N
(

m(X), K(X, X) + σ 2I
)

(4)

where I has the order of n.

B. Extended GPR

As mentioned above, the coordinates x and X are assumed
to be exactly known, which can be satisfied in the tradi-
tional approach by cumbersomely and manually measuring the
required coordinates, whereas in our case, the location labels
of crowdsourced RSS measurements are often derived through
certain estimation approaches (e.g., WiFi fingerprint-based IPS
and PDR) and inevitably suffer from noises. Therefore, instead
of the true coordinates (i.e., x), the observed location label
(i.e., u) corrupted by noises (i.e., η) has to be employed to
approximately formulate the GPR model, as depicted in Fig. 2,
which certainly leads to model inaccuracy and thus degrades
the performance to some extent.

In order to improve the performance of radio maps built
through the GPR approach, it is necessary to adopt the
approach in [25] to extend the standard GPR to accommodate
the uncertainties in the location labels. To this end, given the
noisy location label u, we can establish the following model:

u = x + η (5)
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Fig. 2. GPR and its input being observed with noises.

where the uncertainty η is assumed to be white Gaussian with
the covariance matrix V(η).

It follows from (1) and (5) that y = f (u − η) + ε, and by
applying the first order Taylor expansion around u, we have:

y ≈ f (u) − ηT ∂f

∂u
+ ε. (6)

Then, the derivative of the random function f (u) can be
approximated by the derivative of its mean function m(u),
denoted by ∂ f̄ (u), and then we can have

y ≈ f (u) − ηT∂ f̄ (u) + ε (7)

which provides an approximate model describing the relation-
ship between the RSS measurement y and the random variable
f (·) with noisy location labels. Assuming the independence
between η and ε, we can obtain the following distributions:

y|f (u) ∼ N
(

f (u), ∂T
f̄ (u)

V(u)∂ f̄ (u) + σ 2
)
. (8)

Given the n noisy location labels U = [u1, . . . , un] with
the ground truth X and in combination with the distribution
of f(U), we can have

y|U ∼ N (m(U), Q(U)) (9)

where

Q(U) = K(U, U) + ∂T
f̄(U)

�U∂ f̄(U) + σ 2I (10)

with ∂ f̄(U) = diag[∂ f̄ (u1)
, . . . , ∂ f̄ (un)

] and �U = C(U, U).
Let A, b, c, σ, σf , l be the hyperparameters of the GP,

denoted θ . Given a set of crowdsourced fingerprints, i.e., RSS
measurements y and noisy location labels U, the maximum
likelihood estimator (MLE) can be utilized based on (9) to esti-
mate θ , so that the mean and variance of RSS measurements
at any location, say x∗, can be predicted as follows:

E(f∗|U, y, x∗) = m(x∗)
+ K(x∗, U)TQ(U)−1(y − m(U)) (11)

V(f∗|U, y, x∗) = k(x∗, x∗)
− K(x∗, U)TQ(U)−1K(x∗, U) (12)

where the functions m(·), k(·, ·), K(·, ·), and Q(·) are evaluated
by using the estimates of the hyperparameters.

Regarding each AP, its specific hyperparameters can be esti-
mated, such that the mean and variance of RSS measurements
at the predefined locations from this AP can be evaluated
through (11) and (12) for generating the corresponding radio

map. Since the new model (9), provides a more accurate char-
acterization as to crowdsourced fingerprints, it is promising
that more accurate means and variances can be obtained in
comparison with the standard GPR, and thus more accurate
radio maps can be derived.

C. Calibrating Location Labels

In order to further improve the accuracy of radio maps,
PDR is introduced to calibrate the location labels attached to
crowdsourced RSS measurements. The basic idea is to for-
mulate a constrained optimization problem to fuse the initial
location estimates returned by using the current radio map and
PDR information in relation to a trajectory traversed by any
crowdsourcing participant.

Prior to fusing such two sources of information, we have
to align them in the time domain because the frequency of
WiFi scan for collecting RSS measurements is usually not
synchronized with the step frequency of PDR. Without loss of
generality, suppose the frequency of WiFi scan is 1 Hz; instead
of directly using steps, the progress that a crowdsourcing par-
ticipant can make during 1 s, denoted d m, is thus employed
to realize the alignment. It is noticeable that d can be eas-
ily inferred by using the corresponding step length and step
frequency involved in PDR. Additionally, the heading esti-
mate that is closest to the corresponding WiFi scan in the
time domain is selected for use.

Given a trajectory delivering crowdsourced RSS measure-
ments at j time instances, their initial locations, denoted by
[l1, . . . , lj], can be estimated based on the fingerprint-based
localization method using the existing radio map. Then, by
letting u1, . . . , uj with ui = [ ux

i uy
i ] denote the calibrated

location labels, we can establish the following constrained
least squares problem:

min
u1,...,uj

j∑
i=1

‖ui − li‖2

s.t.
∣∣ux

i − ux
i+1

∣∣ ≤ (d + �d) cos(ϕi ± �ϕ)∣∣uy
i − uy

i+1

∣∣ ≤ (d + �d) sin(ϕi ± �ϕ),

with i = 1, 2, . . . , j − 1 (13)

where ϕi denotes the heading estimate at time instance i, and
�d and �ϕ denote the upper bound on the distance error
and heading error, which will be empirically set as 0.15 m
and 0.15 radian, respectively, in the following experiments.
Moreover, cos(ϕi ± �ϕ) (or sin(ϕi ± �ϕ)) denotes the maxi-
mum value of cos(ϕ) (or sin(ϕ)) with ϕ ∈ [ϕi −�ϕ, ϕi +�ϕ].
The heading and the step count can be estimated according
to [29], and the step length according to [30].

V. ONLINE RADIO MAP UPDATE

According to Fig. 1, given a sufficient number of crowd-
sourced fingerprints, MPEG updates the current radio map
based on the marginalized GPR framework in [26]. In what
follows, we shall introduce the state space model in MPEG,
then present the filtering process, and finally summarize
MPEG. Similarly to the treatment in the previous section, we
also take a single AP for example.
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A. State Space Model

It is intuitive that building a radio map demands the
expected RSS measurements at a set of predefined locations,
which can be approximated by using (11). Hence, the state
consists of the hyperparameters of the GP and the values of
the GP at a given set of locations.

First, since there does not exist a rule guiding the hyper-
parameters to evolve with time, an artificial evolution using
kernel smoothing which guarantees the estimation conver-
gence [26], [31] is adopted, namely,

θ t = bθ t−1 + (1 − b)θ̄ t−1 + st−1 (14)

where b is a weight between 0 and 1, θ̄ t−1 is the Monte Carlo
mean of θ at t −1, and st−1 ∼ N (0, r2�t−1) with r2 = 1−b2

and �t−1 being the Monte Carlo variance matrix of θ t−1.
Second, by exploiting the property of a multivariate

Gaussian distribution that the GP f(·) satisfies, a Kalman filter
can be formulated to describe the iterative relationship of the
GP. Specifically, define Uc

t = [Ut, X∗] and fc
t = f(Uc

t ), where
Ut is the noisy location labels of the crowdsourced fingerprints
at t and X∗ contains the predefined locations for building the
radio map. Since the prior distribution p(fc

t , fc
t−1|Uc

t−1, Uc
t , θ t)

is jointly Gaussian, according to the conditional property of the
multivariate Gaussian distribution [32], p(fc

t |fc
t−1, Uc

t−1, Uc
t , θ t)

is Gaussian and satisfies

N (
G(θ t)fc

t−1 + F(θ t), V(θ t)
)

(15)

where

G(θ t) = Kt
(
Uc

t , Uc
t−1

)
K−1

t

(
Uc

t−1, Uc
t−1

)
(16)

F(θ t) = mt
(
Uc

t

) − G(θ t)mt
(
Uc

t−1

)
(17)

V(θ t) = Kt
(
Uc

t , Uc
t

) − G(θ t)Kt
(
Uc

t , Uc
t−1

)T (18)

and the subscript of Kt and mt means that the function is
evaluated with respect to θ t.

Hence, the following state equation can be derived by trans-
forming the conditional density in (15) into a linear equation
of the function value with noises vf

t ∼ N (0, V(θ t)):

fc
t = G(θ t)fc

t−1 + F(θ t) + vf
t . (19)

Moreover, the observation equation could be directly
obtained from the RSS measurements at t

yt = Htfc
t + vy

t (20)

where Ht = [I, 0] is an index matrix to make Htfc
t = f(Ut),

the order of I is nt representing the number of noisy loca-
tion labels in Ut, and vy

t is additive Gaussian noise satisfying
N (0, ∂T

f̄(Ut)
�U∂ f̄(Ut)

+ σ 2I) according to (8).
To sum up, the state space model is specified by (14), (19),

and (20), and involves both nonlinear and linear parts, moti-
vating us to adopt the marginalized particle filtering technique
to resolve it.

B. Filtering With MPEG

We base MPEG on the recursive filtering framework
proposed in [26] to simultaneously learn hyperparameters and
estimate hidden function values at the predefined locations.

According to the state space model presented in the
above section, we aim to the compute the posterior dis-
tribution p(fc

t , θ1:t|U1:t, X∗, y1:t), which can be factorized
into two multiplicative terms based on the Bayes rule, i.e.,
p(θ1:t|U1:t, X∗, y1:t) and p(fc

t |θ1:t, U1:t, X∗, y1:t). Then, the
first term can be factorized into the following recursive form:

p(θ1:t|U1:t, X∗, y1:t) ∝ p(yt|y1:t−1, θ1:t, U1:t, X∗)
× p(θ t|θ t−1)p(θ1:t−1|U1:t−1, X∗, y1:t−1)

(21)

which can be used to form a particle filter framework.
For each particle at time t, the hyperparameters θ t are drawn

according to the proposal distribution p(θ t|θ t−1) [obtained
from (14)], and the importance weight can be computed based
on p(yt|y1:t−1, θ1:t, U1:t, X∗), which can be solved analytically
as follows:

p(yt|y1:t−1, θ1:t, U1:t, X∗)

=
∫

p
(
yt|fc

t , θ t, Ut, X∗
)
p
(
fc
t |y1:t−1, θ1:t, U1:t, X∗

)
d fc

t

= N
(

Htfc
t|t−1, HtPc

t|t−1HT
t + ∂T

f̄(Ut)
�U∂ f̄(Ut)

+ σ 2I
)

(22)

where p(yt|fc
t , θ t, Ut, X∗) ∼ N (Htfc

t , ∂
T
f̄(Ut)

�U∂ f̄(Ut)
+ σ 2I)

[refers to (20)], p(fc
t |y1:t−1, θ1:t, U1:t, X∗) = N (fc

t|t−1, Pc
t|t−1)

is the prediction step of Kalman filter for fc
t which is also

Gaussian distributed with the predictive mean fc
t|t−1 and covari-

ance Pc
t|t−1. After that, the second term associated with this

particle can be filtered using Kalman filter since fc
t is the

hidden state in (19) and (20).

C. Algorithm

Putting everything together, we can summarize the whole
algorithm as follows: at time t = 1, 2, 3, . . .

1) For each particle, say the ith one for i = 1, 2, . . . , N.
a) Drawing hyperparameters θ i

t according to the pro-

posal distribution p(θ t|θ̃ i
t−1).

b) Calculating the parameters, e.g., G(θ i
t), F(θ i

t),
V(θ i

t), and ∂T
f̄(Ut)

�U∂ f̄(Ut)
+ σ 2I, given the hyper-

parameters θ i
t.

c) Calculating fc,i
t|t−1, Pc,i

t|t−1 according to the predict

step of Kalman filter by using f̃c,i
t−1|t−1, P̃c,i

t−1|t−1.

d) Calculating fc,i
t|t , Pc,i

t|t according to the update step

of Kalman filter by using fc,i
t|t−1, Pc,i

t|t−1.
e) Calculating the importance weight w̄i

t through (22)
by using fc,i

t|t−1, Pc,i
t|t−1, ∂

T
f̄(Ut)

�U∂ f̄(Ut)
+ σ 2I.

2) Normalizing the weight wi
t = w̄i

t/�N
j=1w̄j

t.
3) Estimating the hyperparameters and hidden function

values based on weighted averaging

θ̂ t = �N
i=1wi

tθ
i
t (23)

f̂c
t|t = �N

i=1wi
tf

c,i
t|t (24)

P̂c
t|t = �N

i=1wi
t

(
Pc,i

t|t +
(

fc,i
t|t − f̂c

t|t
)(

fc,i
t|t − f̂c

t|t
)T

)
(25)

such that the fingerprints in the updated radio map are

f̂∗t|t = H∗
t f̂c

t|t (26)
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P̂∗
t|t = H∗

t P̂c
t|t

(
H∗

t

)T (27)

where H∗
t = [0, I] is an index matrix to obtain the

function value estimation at X∗.
4) Resampling θ i

t, fc,i
t|t , Pc,i

t|t with respect to the importance

weight wi
t to obtain θ̃

i
t, f̃c,i

t|t , P̃c,i
t|t for the next step.

5) Increasing t by 1 and repeat step 1).
As depicted in Fig. 1, after a lightweight site survey is

carried out at the beginning to collect a small amount of
fingerprints, the standard GPS will be applied to build a
coarse-grained radio map and the corresponding estimates of
the hyperparameters will be assigned to θ0 so as to launch
MPEG. To be specific, the mean E(fc

0) and variance V(fc
0) at

Uc
0 are first evaluated according to (11) and (12); then, let

θ̃
i
0 = θ0, P̃c,i

0|0 = V(fc
0), and draw f̃c,i

0|0 from N (E(fc
0), V(fc

0));
consequently, MPEG can be started as long as the first set of
crowdsourced fingerprints becomes available.

The major calculations of MPEG come from inverting
matrices, e.g., Kt in (16), the computation complexity of which
is O(n3) with n being the number of crowdsourced finger-
prints, and therefore, the computation complexity of MPEG is
O(n3N) with N being the number of particles.

From an information point of view, the more crowdsourced
fingerprints are fed into MPEG, the more accurate radio map
can be generated, which can be observed in the subsequent
experiments. But a practical issue arises here to be when and
how frequent MPEG should be scheduled. Considering the
fact that indoor positioning services are usually provided in
daytime, MPEG can thus be scheduled to run at midnight.
As to the update frequency, two key factors, i.e., the amount
of crowdsourced fingerprints and the environmental dynam-
ics, must be taken into account. If the update frequency is too
low, radio maps might become outdated, and meanwhile, too
many crowdsourced fingerprints might be accumulated, such
that running MPEG will cost a long time and even exhaust the
memory of a computer. Otherwise, frequently updating radio
maps may result in performance fluctuations due to insuffi-
cient crowdsourced fingerprints. Therefore, to tradeoff among
various factors, radio maps are suggested to be updated no
more than once a day and only if newly crowdsourced fin-
gerprints cover or nearly cover their target spaces (which can
be determined by localizing crowdsourced RSS measurements
using the current radio map).

VI. PERFORMANCE EVALUATION

In this section, extensive experiments are conducted to
thoroughly evaluate the performance of the proposed method.

A. Experimental Setup

In the experiments, realistic RSS measurements are col-
lected in a big open space with a total area of nearly 1000 m2,
i.e., the reading room on the third floor of the library building
in Inner Mongolia University, which includes 57 bookracks
with the height of around 2 m as well as a number of desks
and chairs, as illustrated in Fig. 3. The target space is divided
by a regular lattice with the interval 1 m, such that totally 938
lattice points are selected as reference points.

Fig. 3. Floor plan of the experimental space.

The experiments last for five months, and involve ten rounds
of collecting RSS measurements at different times, e.g., week-
day, weekend, holiday, daytime, and evening; see the caption
in Fig. 7 for detailed informations. During each round, a male
student with a smartphone (i.e., HUAWEI P7) held in front of
his chest was asked to arbitrarily traverse the reading room as
usual to produce training samples, and also walk along seven
prespecified trajectories ranging between 20 and 30 m to pro-
duce testing samples; as a result, each round contains 700 to
1200 training samples which cover the whole target space.
Besides, an Android APP was developed to trigger WiFi scan
to collect RSS measurements from nearby APs and mean-
while record the inertial measurements from accelerometer
and magnetometer for use in PDR at the frequencies of 1
and 100 Hz, respectively. It is noticeable that more than 100
distinct APs were detected in the target space, and most of
them only provide occasional and extremely weak RSS mea-
surements; hence, 22 APs with strongest RSS measurements
were selected for use in the experiments.

Two GPR based approaches (i.e., ZeroM-GPR and LDM-
GPR [20]), which build new radio maps using the crowd-
sourced training samples in each round, and a partial least
squares regression (PLSR)-based approach were implemented
for comparison. Note that PLSR was adopted in [23] to fuse
crowdsourced RSS measurements with noisy location labels
with radio maps, but it requests the smartphone to keep sta-
tionary at each crowdsourcing location for a period of time,
which is obviously different from our scenario. Hence, in the
experiments, PLSR just functions as a mathematical tool for
fusing fingerprints with a radio map.

In order to validate the effectiveness of PDR, two versions
of the proposed scheme, namely, MPEG-PDR and MPEG-
LOC, were realized to include or exclude the PDR-based
location calibration. Moreover, to guarantee the applicability
of the mean function in (2), the target space was divided into
ten small rectangular regions with the area of around 100 m2,
in each of which MPEG was performed with the particle num-
ber of 500. Correspondingly, the training samples were also
divided into ten groups according to their location labels.

The experiments were realized in MATLAB using a Lenovo
desktop computer with CPU i5-3470 and 16-GB RAM. The
MLE problems for estimating hyperparameters in the GPR
were solved using the MATLAB routine fmincon. The initial
coarse-grained radio map was built using the training samples
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Fig. 4. Comparison of localization errors by using MPEG-LOC with respect to different σu.

Fig. 5. Comparison of trajectory matching errors with/without PDR. (a) No. 2 Round(1 month). (b) No. 4 Round(1 month and 25 days). (c) No. 9 Round(5
months).

TABLE I
COMPARISON OF AVERAGE LOCALIZATION ERRORS BY USING

MPEG-LOC WITH RESPECT TO DIFFERENT σu

obtained in the first round, and their accurate location labels
were derived by manual configurations; then, the remaining
nine sets of training samples were employed to produce nine
rounds of radio map updates; accordingly, the testing samples
in each round were used for performance comparison by using
the weighted KNN (WKNN) method with k = 6.

B. Effectiveness of Extended GPR

It is evident that the extended GPR introduces the covari-
ance matrix �U in comparison with the standard GPR, and as
such, we shall take into account different cases of �U in order
to evaluate the effectiveness of the extended GPR. For ease
of treatments, �U are assumed to be σ 2

u I; that is to say, we
can observe the impact of the extended GPR on localization
through different values of σu, and particularly, when σu = 0,
the extended GPR reduces to the standard GPR.

By changing the value of σu between 0 and 5, the result-
ing average localization errors in the 9 rounds of radio map
updates by using the MPEG-LOC method are plotted in Fig. 4.
As can be seen, different values of σu result in significantly
different performance, but in most times, the extended GPR
(i.e., σu �= 0) is superior to the standard GPR (i.e., σu = 0).

Fig. 6. Comparison of the localization errors produced by MPEG-LOC with
respect to different times.

Moreover, the localization errors are averaged cross the nine
rounds with respect to different σu, as listed in Table I. It
reveals that the best localization accuracy can be achieved with
σu = 3 and 4, which is consistent with the overall localiza-
tion accuracy of the fingerprint-based IPS implemented in the
experiments. Therefore, we let σu = 3 for MPEG-LOC and
σu = 2 for MPEG-PDR in the following experiments.

C. Effectiveness of PDR

In order to validate the effectiveness of PDR, the trajectories
in relation to testing RSS measurements in the No. 2, No. 4,
and No. 9 rounds (i.e., corresponding to one month, nearly
two months, and five months, respectively) are employed to
evaluate the localization performance of simply using the



6916 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Fig. 7. Comparison of localization errors produced by different approaches at different times. (a) No. 1 Round (10 days). (b) No. 2 Round (1 month).
(c) No. 3 Round (1 month and 7 days). (d) No. 4 Round (1 month and 25 days). (e) No. 5 Round (2 months and 18 days). (f) No. 6 Round (3 months and
15 days). (g) No. 7 Round (3 months and 25 days). (h) No. 8 Round (4 months and 5 days). (i) No. 9 Round (5 months).

TABLE II
COMPARISON OF LOCALIZATION ERRORS PRODUCED BY DIFFERENT APPROACHES

fingerprint-based IPS (with the legend of “LOC”) and of com-
bining the fingerprint-based IPS with PDR (with the legend
of “PDR”), as illustrated in Fig. 5. It can be seen that the
localization errors calibrated by PDR are almost always less
than 8 m, whereas those by the fingerprint-based IPS can
be as high as 14 m. Therefore, PDR significantly improves
the trajectory matching accuracy, so as to provide accurate

location labels for use in radio map updates with crowdsourced
RSS measurements.

D. Effectiveness of Online Radio Map Update

Experiments are conducted to compare the IPS with and
without online radio map update, namely MPEG-LOC and
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Fig. 8. Comparison of localization errors produced by different approaches
with respect to nine rounds.

the original fingerprint-based IPS. As shown in Table II, with
time going on, the average localization error of the original
fingerprint-based IPS (termed “original”) appears increase, but
that of MPEG-LOC appears to be refined to some extent.

Moreover, the cumulative density function (CDF) of the
localization errors produced by MPEG-LOC in three different
rounds are plotted in Fig. 6. As can be seen, the localization
errors of MPEG-LOC generally decrease with the radio map
update. It can be concluded that recursively updating the radio
map evidently benefits localization accuracy.

E. Comparison of Different Approaches

First of all, the CDFs of the localization errors produced
by different approaches with respect to nine rounds of radio
map updates are illustrated in Fig. 7. It can be found that, the
proposed scheme, i.e., MPEG-PDR and MPEG-LOC, almost
delivers better localization performance than the other three
approaches in each round of radio map update, and in partic-
ular, MPEG-PDR produces the best localization accuracy.

Second, for ease of comparison, the average localization
errors produced by the five different approaches are plotted in
Fig. 8. As can be seen, during the nine rounds of radio map
updates, the proposed scheme evidently provides more robust
localization performance that its counterparts.

Third, the detailed average localization errors in each round
and the total average values (over the nine rounds) are listed
in Table II. As can be seen, the average localization error
of MPEG-PDR decreases from 4.98 m in the beginning to
3.86 m after nine rounds of radio map updates, and mean-
while, that of MPEG-LOC decreases from 4.98 to 4.12 m;
however, the other three approaches usually result in worse
localization errors fluctuating around 5 m than the proposed
scheme. Specifically, ZeroM-GPR derives worst localization
performance, and PLSR outperforms ZeroM-GPR and LDM-
GPR during the first several rounds, but appears to degrade
after the No. 4 round. According to the average localization
error over the nine rounds, it can be concluded that, in com-
parison with the original fingerprint-based IPS, MPEG-PDR,
and MPEG-LOC are able to improve the localization accu-
racy by 31.2% and 25.4%, respectively, while the other three

approaches can improve the localization accuracy by 13.3%
at most.

However, particle filter and GPR involved in the proposed
scheme result in a relatively high computation complexity.
In the experiments, each round of updating the radio map
costs around 14 min for MPEG-LOC and MPEG-PDR, around
2 min for ZeroM-GPR and LDM-GPR, and only around 2 s for
PLSR. But, considering the fact the online radio map update
can be scheduled at midnight, the relatively high computation
complexity is still acceptable in practice.

In summary, the experiments confirm the effectiveness of
the ideas adopted in the proposed scheme, i.e., extended GPR,
recursive radio map update, and PDR-based location label cal-
ibration, in the sense that the performance of fingerprint-based
IPSs are substantially improved; furthermore, the comparison
among five different approaches validates the superiority and
robustness of the proposed scheme.

VII. CONCLUSION

In this paper, we proposed to recursively update radio
maps using crowdsourced fingerprints in an online fashion. To
be specific, the standard GPR was extended to alleviate the
influence of noisy location labels attached to crowdsourced
RSS measurements; moreover, PDR was employed to fur-
ther calibrate the noisy location labels in comparison with
the traditional approach that relies on the original fingerprint-
based IPS; on these grounds, MPEG was adopted to fuse
crowdsourced fingerprints with existing radio map without the
alignment of location labels. Extensive experiments were con-
ducted, and a thorough comparison reveals that the proposed
scheme outperforms the other three approaches in the liter-
ature in terms of both localization accuracy and robustness.
This paper not only contributes to reducing the costs of build-
ing radio maps, but also makes it possible to update radio
maps irrespective the amount of crowdsourced fingerprints.

For future works, we plan to implement the proposed
scheme in a building-scale space by regularly crowdsourc-
ing fingerprints with multiple participants and different
smartphones.
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