
On the Pedestrian Flow Analysis Through
Passive WiFi Sensing

Baoqi Huang
College of Computer Science

Inner Mongolia University
Hohhot, China

cshbq@imu.edu.cn

Xiangyu Li
College of Computer Science

Inner Mongolia University
Hohhot, China

995285081@qq.com

Guoqiang Mao
School of Computing and Communication

University of Technology Sydney
and Data61, CSIRO

Sydney, Australia
guoqiang.mao@uts.edu.au

Bing Jia
College of Computer Science

Inner Mongolia University
Hohhot, China

jiabing@imu.edu.cn

Wuyungerile Li
College of Computer Science

Inner Mongolia University
Hohhot, China

gerile@imu.edu.cn

Abstract—The proliferation of mobile devices, including
smartphones and tablets, has been enabling new possibilities
for inferring information about the positions, behavior and
activities of the users carrying these devices. For instance,
by leveraging the WiFi probes sent out by mobile devices
in public spaces (such as shopping malls, metro stations,
etc.), even if pedestrians do not have their mobile devices
to be associated with any WiFi access point (AP), it is
attractive to conduct pedestrian analysis in a passive sensing
approach to facilitate the efficient management of public
infrastructures as well as convenient customer services. This
paper considers the problem of pedestrian flow analysis by
implementing a pedestrian surveillance system in the transfer
channel of a metro station in Guangzhou China. Firstly, a
fingerprint database is generated through a Gaussian process
regression (GPR) approach. On these grounds, a pedestrian
number estimation method based on linear regression is
presented by making use of the fingerprint-based localization
method to refine the number of mobile devices residing in
the surveillance area, and a pedestrian velocity estimation
method is proposed based on particle filter and the inverse
distance weighted (IDW) method. According to the dataset
obtained in real scenarios, the effectiveness and advantages
of the proposed two methods are confirmed.

Index Terms—WiFi sniffing, pedestrian number estima-
tion, velocity estimation, passive sensing, crowdsourcing

I. INTRODUCTION

Nowadays, WiFi network infrastructures (e.g. WiFi
access points (APs)) and WiFi enabled mobile devices
(e.g. smartphones and tablets) have become pervasive
in our daily lives. In light of IEEE 802.11 Standard, a
mobile device actively and periodically sends out probe
(request) frames across different channels for the purposes
of associating with an AP or switching between different
APs; correspondingly, any AP in the vicinity of this

Thanks to the National Natural Science Foundation of China (Grants
No. 41871363, 41761086, 61461037 and 61761035), the Natural Science
Foundation of Inner Mongolia Autonomous Region of China (Grant
No. 2017JQ09), the ”Grassland Elite” Project of the Inner Mongolia
Autonomous Region (Grant No. CYYC5016) and Chinese Scholarship
Council (CSC).

mobile device might receive such a probe frame irrespec-
tive of whether the mobile device is associated with it,
and normally returns a probe response frame. Since the
probe frames involve spatial-temporal information about
the user carrying this mobile device, a special kind of
WiFi APs, termed WiFi sniffers, can thus be leveraged
to passively sense users’ behavior and activities in public
spaces [1], such as shopping malls, metro stations, etc.,
through crowdsourcing the probe frames from their mobile
devices, enabling new possibilities for developing vari-
ous novel applications in an automatic and non-intrusive
way, such as pedestrian flow or crowd analysis [2]–[5],
tracking trajectories [6], unveiling social relationship [7]–
[10], measuring queueing time [11], localization [12],
[13], understanding urban scenes [14]–[16], etc. In fact,
besides probe frames, WiFi sniffers are able to receive
normal WiFi packets, so as to further enhance their sensing
capability.

In public spaces with massive pedestrian traffics, such
as metro transfer channels, underground pedestrian pas-
sages, and so on, it is of great importance to monitor
pedestrian situations in real time. However, the popular
video based approaches suffer from low performance due
to poor illuminations, high crowd densities and high com-
putational complexities [17], and thus, leveraging WiFi
sniffers for pedestrian flow analysis becomes attractive in
the literature.

Firstly, learning the number of pedestrians residing
in or passing through a specific region plays vital role
in understanding the criticality of a situation [18]. In
[2], a motion sensor was employed to collect ground-
truth of the number of pedestrians entering a shopping
mall, such that one slope coefficient was trained to map
the number of MACs detected by WiFi sniffers to the
pedestrian number; the field experiments showed that, this
method does not work when the number of MACs is
below say 2000, and suffers higher error rates than 30%
when the number of MACs is around 2000. In [3], WiFi
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sniffers with directional antennas were adopted to provide
more accurate positional information of detected mobile
devices, with the result that the resulting error rates can be
less than 20%. In [5], a stereoscopic camera was installed
at a specified calibration choke point to collect the ground-
truth of pedestrian numbers, so as to reduce the error rates
below 20%. Therefore, great efforts have to be made in
order to achieve more accurate estimates of pedestrian
numbers.

Secondly, since simply using pedestrian numbers does
not allow for a complete assessment of the criticality of
a situation, knowing pedestrian velocities is also a key
factor for the dynamic management of public infrastruc-
tures as well as providing convenient customer services
[19]. In [20], pedestrians share their position information
determined by GPS through an APP installed on their s-
martphones, such that pedestrian velocities can be directly
inferred, which does not belong to the passive sensing
approach considered in this paper. Intuitively, estimating
a pedestrian velocity through WiFi sniffers demands de-
tecting a mobile device carried by the pedestrian at least
twice so as to determine a physical distance and a corre-
sponding time interval. The most popular WiFi fingerprint-
based localization method [21] can thus be employed for
calculating such distances, but is inevitably degraded in
the considered situation due to severe dynamics and device
heterogeneity, implying that it is challenging to carry out
reliable pedestrian velocity estimation.

This paper investigates the above two problems oc-
curring in pedestrian flow analysis through passive WiFi
sensing. To this end, a pedestrian surveillance system
consisting of 5 WiFi sniffers was installed at the transfer
channel of the Yanji metro station in Guangzhou, China,
and a sniffing dataset involving four typical scenarios was
derived for further processing and analysis. In addition,
a fingerprint database, produced by using the Gaussian
process regression (GPR) method given received signal
strength (RSS) measurements only at a limited number of
reference points [22], [23], is employed to provide position
information of mobile devices detected by the sniffers. On
these grounds, a linear model is firstly regressed based
on the least squares method for estimating pedestrian
numbers by making use of localized mobile devices; then,
particle filter is adopted to estimate pedestrian velocities
based on the inverse distance weighted (IDW) method
given a sequence of RSS measurements which can be
crowdsourced by sniffers. Performance evaluations are
carried out and validate the feasibility and effectiveness
of the proposed two methods. It is shown that both of
the methods are able to deliver the estimation accuracy
of around 10%, which is significantly better than existing
other approaches.

The rest of the paper is organized as follows. Section
II provides an overview of the proposed surveillance
system. Section III and Section IV respectively introduce
the pedestrian number and velocity estimation methods
and corresponding experimental results. We conclude this
paper in Section V.

II. OVERVIEW OF THE PEDESTRIAN SURVEILLANCE
SYSTEM

In this section, we first briefly introduce the pedestrian
surveillance system, and then present an overview of the
sniffing dataset.

A. System Overview

The pedestrian surveillance system was deployed at the
transfer channel between Line 1 and Line 5 in the Yangji
metro station in Guangzhou, China, and consisted of five
WiFi sniffers. Specifically, four of them were installed at
the four corners of the surveillance area, i.e. a rectangle
with the length of 16.9 meters and width of 5.22 meters,
and the other one at the center. The surveillance area is
separated into two lanes by using fixed fences, such that
the pedestrian flow is bidirectional.

All the WiFi sniffers and a server were connected to
a 100 Mbps switch to form a wired local area network.
A UDP server program was developed and installed on
the server to collect data, including MAC address, RSS,
time stamps and channel ID, which were uploaded by each
WiFi sniffer at the frequency of 10 Hz.

B. WiFi Sniffers

The pedestrian surveillance system employed cus-
tomized WiFi sniffers (i.e. DS-AP-I [24]), each of which
integrates nine dual-band WiFi modules and is thus able
to simultaneously sniff nine different channels, with the
result that more mobile devices and more WiFi packets
(including both probe requests and normal data packet)
can be crowdsourced in comparison with standard WiFi
sniffers with only one dual-band WiFi module.

In particular, five modules were scheduled to work in
2.4 GHz with each one polling three of 13 channels,
and similarly, four modules in 5.8 GHz with each one
polling two of 12 channels. In addition, during channel
polling, each module kept sniffing one channel for 300
milliseconds. Note that one channel might be polled by
two different modules.

C. Fingerprint Database

A fingerprint database was established through an of-
fline site survey process to enable WiFi fingerprint-based
localization. In order to determine whether a mobile
device is located inside of the surveillance area, the
fingerprint database involves 76 reference points in the
surveillance area and another 99 reference points in the
neighboring non-surveillance area.

To reduce the workload required in the offline site
survey, the GPR based approach reported in [22], [23]
was adopted to produce a fingerprint database by collect-
ing RSS measurements through an Android smartphone
(Huawei Honor 6) and an iOS smartphone (Iphone 7)
from only 25% of the reference points. To disentangle
the complexity introduced by different frequencies, we
only establish the fingerprint database by using the RSS
measurements in 2.4 GHz.
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TABLE I
THE DETAILS OF THE SNIFFING DATASET IN FOUR TYPICAL SCENARIOS.

Description Date Start Time End Time Duration Number of Packets Number of MACs
Evening Peak Dec 26, 2018 (Wed) 17:47:51 18:45:46 57min 55sec 13714275 58940

Evening Off Peak Dec 26, 2018 (Wed) 21:34:55 22:20:26 45min 31sec 6325523 16580
Morning Peak Dec 27, 2018 (Thur) 07:48:23 08:52:12 63min 49sec 14105625 54101

Afternoon Off Peak Dec 27, 2018 (Thur) 13:00:02 13:46:44 46min 42sec 5780439 21678

D. Sniffing Dataset

Sniffing data were collected in four typical scenarios
during two work days, namely evening peak, evening off
peak, morning peak and afternoon off peak, as shown in
Tab. II-D. It can be observed that, more than thirteen
millions packets were sniffed in the peak times by the
five sniffers, and around six millions packets in the off
peak times; in terms of independent MACs, more than
fifty thousands MACs were detected in the peak times,
whereas only around twenty thousands MACs in the off
peak times. Therefore, such an abundant of information
enables us to carry out advanced pedestrian flow analysis.

III. ESTIMATING THE PEDESTRIAN NUMBER

In this section, we first elaborate the design of the
proposed pedestrian number estimation method, and then
report experimental results for performance evaluation.

A. Method

In the literature [2], [3], [5], linear regression is com-
monly adopted to learn the relationship between the
number of MACs detected and the number of pedestrians.
However, our study differs from the existing studies in
the following three aspects. First, unlike the existing
studies only using one coefficient (i.e. slope), the proposed
method learns a linear model with two coefficients (i.e.
slope and intercept) because intercept helps to alleviate
the influence of fixed devices existing in the surveillance
area. Second, the proposed method excludes the mobile
devices that lie outside of the surveillance area based on
the WiFi fingerprint-based localization method, so as to
improve the reliability and accuracy of the sniffing data
fed into the linear model. As a result, it is unnecessary to
preprocess sniffing data to remove the MACs in relation
to fixed devices and passer-by devices as was done in [2].
Third, since metro management demands low latency, the
estimation method is implemented in a small time gran-
ularity, namely that the numbers of MACs detected are
calculated every minute, such that the resulting pedestrian
number estimate is produced every minute, whereas the
existing works only considered hourly or longer results.

Furthermore, the least squares method is applied to
formulate the linear regression problem, and the k nearest
neighbor (kNN) method is adopted to calculate the final
localization result in the WiFi fingerprint-based localiza-
tion technique. One mobile device can be localized as long
as the number of sniffers detecting it exceeds a predefined
minimal number (say 1, 3 or 4), and is accepted for further
processing only if the localization result lies inside of the
surveillance area. Note that RSS measurements obtained

by one same sniffer during one second are averaged for
use in localization.

B. Performance Evaluation

In order to validate the effectiveness of the proposed
method, we first trained two regression models without
using localization: the first one was trained by using the
MACs detected by NO.3 sniffer which was installed in
the center of the surveillance area, and the second one
by using the MACs detected by any of the five sniffers.
Moreover, we took into account different values taken
by two key parameters m (i.e. the minimal number of
RSS measurements) and k in KNN in the localization
procedure to understand their influences.

As the beginning of our study, this study utilized a
video camera installed at one end of the transfer tunnel
to record pedestrian flows for around 15 minutes in each
typical scenario, such that the pedestrian numbers were
manually counted in an offline manner as the ground-
truth. As a result, we obtained 67 samples for both training
and testing purposes, each of which includes the number
of MACs detected to lie inside of the surveillance area
and the corresponding pedestrian number in one minute.
The training samples and testing samples were randomly
determined according to five-fold cross validation.

The RMSE and normalized RMSE (NRMSE) are listed
in Tab. II and Tab. III, respectively, where NRMSE is
defined as [5]

RMSE

maxt gt −mint gt
× 100% (1)

with gt denoting the ground-truth of the pedestrian number
in the t-th testing sample.

It is evident that the proposed method using localization
results significantly outperforms the method without using
localization by around 30%, while the two implementa-
tions of the latter do not have evident difference, implying
that the number of sniffers does not affect the performance
of the latter. Furthermore, it can be observed that the
performance of the proposed method slightly improves
with m and k increasing, which is contributable to the
fact that the localization accuracy also increases with m
and k increasing.

In order to have a clear observation, one set of linear
regression models was randomly selected from the five-
fold cross validation sets, as plotted in Fig. 1. It can be
seen that, the training samples (i.e. the scattered circles,
diamonds or squares in Fig. 1) in the proposed method
are more concentrated to the corresponding regressed
straight lines than those without using localization, which
is consistent with the results in Tab. II and Tab. III.
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TABLE II
RMSE USING FIVE-FOLD CROSS VALIDATION.

NO. NO.3 Sniffer All Sniffers m > 1 m > 2 m > 3
k = 6 k = 4 k = 1 k = 6 k = 4 k = 1 k = 6 k = 4 k = 1

1 28.24 33.63 23.27 20.99 18.38 24.14 22.70 19.12 24.95 24.46 20.31
2 36.79 30.61 27.37 27.81 27.98 25.13 23.72 25.90 25.59 24.03 23.32
3 43.61 40.45 32.38 33.86 33.80 35.53 37.10 33.68 34.52 34.72 33.73
4 43.96 44.37 34.35 34.06 31.19 33.51 32.74 30.60 33.68 32.17 30.67
5 37.29 39.85 29.95 29.84 25.38 31.68 32.87 29.79 33.40 34.07 33.20

Average 37.97 37.78 29.46 29.31 27.34 30.00 29.83 27.82 30.43 29.89 28.25

TABLE III
NRMSE USING FIVE-FOLD CROSS VALIDATION.

NO. NO.3 Sniffer All Sniffers m > 1 m > 2 m > 3
k = 6 k = 4 k = 1 k = 6 k = 4 k = 1 k = 6 k = 4 k = 1

1 11.09 13.21 9.13 8.24 7.22 9.48 8.91 7.51 9.80 9.61 7.97
2 17.11 14.26 12.79 12.99 13.08 11.74 11.08 12.12 11.97 11.24 10.92
3 14.44 13.43 10.75 11.24 11.20 11.80 12.32 11.18 11.46 11.52 11.20
4 15.32 15.49 11.98 11.87 10.86 11.66 11.41 10.65 11.74 11.23 10.71
5 12.70 13.68 10.28 10.23 8.69 10.93 11.34 10.26 11.52 11.74 11.46

Average 14.13 14.01 10.98 10.91 10.21 11.12 11.01 10.34 11.30 11.07 10.45

IV. ESTIMATING THE PEDESTRIAN VELOCITY

In this section, we first present a sniffing dataset analy-
sis to demonstrate the feasibility of estimating pedestrian
velocities through a passive approach, then describe a
particle filter based method, and finally report the experi-
mental results.

A. Analysis of Sniffing Dataset

Since estimating the velocity of a pedestrian carrying
a mobile device requires localizing the mobile device at
least twice, it is necessary to investigate whether this
condition can be satisfied in the pedestrian surveillance
system. To this end, we summarize the frequency (i.e. the
number) of mobile devices that can be localized between
4 and 20 times, as illustrated in Fig. 2. The event that a
mobile device can be localized l times means that l sets
of RSS measurements are available with the minimal time
interval between any two sets greater than or equal to 1
second. It can be observed that around 10% of the total
MACs in each typical scenario can be localized between
4 and 20 times, which is sufficient for us to carry out
pedestrian velocity estimation. As a result, it is feasible
to further infer pedestrian flow velocities based on these
individual estimates.

B. The Particle Filter based Method

In what follows, we shall present the particle filter
based method for estimating the velocity of an individual
pedestrian and leave the study of pedestrian flow velocity
in our future works.

Let the state of the i-th particle at t-th time instance with
i = 1, 2, · · · and t = 1, 2, · · · include the two-dimensional
position, denoted xi

t, where a mobile device is initially
detected, and its velocity vit. Since the surveillance area
is a transfer channel, each pedestrian can be assumed to
walk at a constant velocity along a horizontal straight line,

which is parallel with the side of the transfer channel. As
such, we can establish the following state space model[

xi
t

vit

]
=

[
xi
t−1

vit−1

]
. (2)

Given the RSS measurement vector obtained by the
five sniffers at time instance t, denoted rt, the weight
associated with the i-th particle is updated as follows

wi
t = wi

t−1 × Pr(rt|xi
t +

[
vit 0

]T × (Tt − T1)), (3)

where Pr(·|·) computes the probability of a given RSS
measurement vector conditional on a given position, and
Tt denotes the real time in second at the t-th time instance.

However, the fingerprint database only involves the
fingerprints at a set of discrete reference points, which
often do not include a given position. Therefore, we adopt
the IDW method to interpolate the mean and standard de-
viation of a RSS measurement vector at the given position
by using the 4 nearest neighboring reference points, so
that the probability in (3) can be calculated by assuming
that the RSS measurement vector rt satisfies a joint
independent Gaussian distribution with the interpolated
mean and standard deviation.

When initializing particles, their positions are drawn
from the reference points according to a two-dimensional
Gaussian distribution with the mean value at the initial
localization result and standard deviation of 3I (where I
is an identity matrix of order 2), and their velocities from
[0.4, 1.4 according to a uniform and random distribution.
Finally, the weighted mean value of the velocities among
all the particles is returned as the velocity estimate.

C. Performance Evaluation

To validate the performance of the pedestrian velocity
estimation method, one female experimenter was asked
to carry an iOS smartphone (Iphone 6S) and walk four
times through the transfer channel by following crowds
from both directions in each typical scenario. Meanwhile,
the times when the experimenter entered and exited the
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Fig. 1. Frequencies with respect to sampling times (starting from 4) of
same MAC in different data sets.

surveillance area were also recorded, for the purpose of
obtaining the ground-truth of her velocities. To avoid the
issues of MAC randomization and less than 2 localization
times, the smartphone was associated with a WiFi AP and
the experimenter kept refreshing the WiFi list.

The particle number n is set to be 1000 in the ex-
periment, and the error rate of the proposed velocity
estimation method is defined to be

abs(v − v̂)

v
× 100% (4)

where v and v̂ denote the true and estimated velocities,
respectively.

The experimental results with respect to four typical
scenarios are listed in Tab. IV-C. As can be seen, the av-

Fig. 2. Frequencies with respect to sampling times (starting from 4) of
same MAC in different data sets.

erage error rates fluctuate around 10%, which is acceptable
for management purposes. However, there do exist several
outliers with the error rates above 30%. This issue can be
mitigated in further pedestrian flow velocity estimation,
due to the fact that more pedestrians will be involved in
velocity estimation and the outliers can be averaged out.

V. CONCLUSION

In this paper, we introduced the pedestrian surveillance
system in the metro transfer channel through passive WiFi
sensing. Firstly, the pedestrian number estimation method
was reported based on linear regression by making use
of the fingerprint-based localization method to provide
accurate numbers of MACs residing in the surveillance
area. Secondly, the pedestrian velocity estimation method
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TABLE IV
THE ERROR RATES OF THE PROPOSED VELOCITY ESTIMATION METHOD IN FOUR TYPICAL SCENARIOS. “RADB” MEANS THE A-TH ROUND

AND THE B-TH DIRECTION.

Description R1D1 R1D2 R2D1 R2D2 R3D1 R3D2 R4D1 R4D2 Average
Evening Peak 0.50 4.57 16.47 3.52 38.05 14.60 10.54 10.35 12.32

Evening Off Peak 3.54 2.05 6.05 11.19 12.89 41.98 0.35 1.45 9.94
Morning Peak 2.83 16.63 5.80 6.22 0.74 33.42 1.22 12.57 9.93

Afternoon Off Peak 3.29 5.03 3.84 33.01 6.34 6.87 14.67 6.96 10.00

was proposed based on particle filter and the IDW method.
Based on the dataset crowdsourced during four typical
scenarios, the feasibility and effectiveness of the proposed
methods were demonstrated.

However, as the beginning of our study, there still exist
several problems that shall be considered in our future
works. First, we obtain the ground-truth of true pedestrian
numbers in training the model by manually counting, and
intend to adopt other sensory approaches to implement
automatical and online training and calibration. Second,
since the system was realized in a passive approach, device
heterogeneity inevitably degraded the performance. Third,
the proposed velocity estimation focuses on individual
pedestrian, and will be extended to realize pedestrian flow
velocity estimation. Fourth, more and more mobile devices
are adopting MAC randomization for privacy protection,
and thus it is necessary to evaluate the adaptability of
the proposed methods in larger surveillance areas given
random MACs. Last but not least, since signal attenuation
in 2.4 GHz is quite different from that in 5.8 GHz, the
resulting fingerprint database and localization algorithm
need to be adapted to guarantee localization performance.
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