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Pedestrian Flow Estimation Through Passive WiFi
Sensing

Baoqi Huang, Member, IEEE, Guoqiang Mao, Fellow, IEEE, Yong Qin and Yun Wei

Abstract—In public places, even if pedestrians do not have their
mobile devices connected with any WiFi access point (AP), WiFi
probe requests will be broadcast, so that WiFi sniffers can be
employed to crowdsource these WiFi probe packets for use. This
paper tackles the problem of exploiting the passive WiFi sensing
approach for pedestrian flow analysis. To be specific, a passive
WiFi sensing model is first established based on a probabilistic
analysis of interactions between WiFi sniffers and the moving
pedestrian flow, capturing the main factors affecting pedestrian
flow characteristics. On that basis, a sequential filtering algorithm
is proposed based on the Rao-Blackwellized particle filter (RBPF)
to produce simultaneous and efficient estimates of the pedestrian
flow speed and pedestrian number utilizing the real-time sniffing
results. In order to validate this study, an experimental pedestrian
surveillance system using WiFi sniffers is deployed at the transfer
channel of a metro station in Guangzhou, China. Extensive
experiments are conducted to verify the passive sensing model,
and confirm the effectiveness and advantages of the proposed
algorithm. The pedestrian flow estimation not only helps to im-
prove the safety and facility management and customer services,
but also paves the way for introducing other novel applications.

Index Terms—Pedestrian analysis, passive WiFi sensing,
crowdsourcing, WiFi fingerprinting

I. INTRODUCTION

NOWADAYS, WiFi network infrastructures (e.g. access
points, APs) and WiFi enabled mobile devices (e.g.

smartphones, tablets, etc.) have become pervasive in our daily
lives. In light of IEEE 802.11 Standard, a mobile device
actively and periodically broadcasts probe (request) frames
across different channels for the purposes of associating with
an AP and switching between different APs. Accordingly,
if any nearby AP may receive a probe frame irrespective
of whether the mobile device is associated with it, a probe
(response) frame will be returned. Since probe frames involve
some spatial-temporal information about the user carrying this
mobile device, a special kind of WiFi APs, termed WiFi
sniffers, can thus be leveraged to passively sense the user’
behaviors and activities in public places [1], such as campus,
shopping malls, metro stations, etc., by crowdsourcing the
probe frames, thus enabling new possibilities for developing
various novel applications in an automatic and non-intrusive
manner, such as pedestrian flow or crowd analysis [2]–[5],
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tracking trajectories [6], unveiling social relationship [7]–
[10], measuring queueing time [11], localization [12]–[16],
understanding urban scenes [17], [18], etc. In fact, besides
probe frames, some WiFi sniffers are able to sniff normal WiFi
packets, so as to enhance their sensing capability.

In public places with massive pedestrian traffic, such as
railway stations, underground pedestrian passages, and so on,
it is of great importance to monitor pedestrian situations in real
time for pedestrian safety and flow management. However,
the popularly used video based approaches normally suffer
from high computational complexities and small coverage, and
incur low performance especially in the conditions of poor
illuminations and high pedestrian densities [19]. In contrast,
passive WiFi sensing based pedestrian flow analysis is to some
extent immune to these limitations, and thus becomes attractive
in the literature.

According to the existing pedestrian flow studies [20],
[21], number and speed are two fundamental attributes of
pedestrian flows. Firstly, learning the number of pedestrians
located in or going through a specific region plays a vital role
in understanding the criticality of a situation [20]. Existing
passive WiFi sensing based studies [2], [3], [5] attempted to
train a simple linear model mapping the number of detected
mobile devices to the number of pedestrians in an area of
interest, and reported the error rate of more than around 20%.
Therefore, great efforts have to be devoted to improving the
estimation accuracy. Secondly, since simply using pedestrian
numbers does not allow for a complete assessment of the
criticality of a situation, pedestrian flow speed is usually
adopted as another key factor for the dynamic management of
public infrastructures as well as providing convenient customer
services [21]. In the active sensing approach, pedestrians share
their real-time location information determined by GPS and
other localization measurements through an APP installed on
their smartphones, such that pedestrian speeds can be directly
calculated [22], whereas in the passive sensing approach, due
to the sparse and random nature of detecting mobile devices,
it is challenging to estimate the speed of a pedestrian flow.

This paper tackles the problem of inferring two key charac-
teristics (i.e. the speed and number) of a pedestrian flow using
WiFi sniffers. First, a passive WiFi sensing model is estab-
lished based on a probabilistic analysis on a moving pedestrian
flow, and characterizes the interactions between WiFi sniffers
and the pedestrian flow, enabling us to theoretically investigate
the pedestrian flow characteristics. Second, based on the Rao-
Blackwellized particle filter (RBPF) [23], [24], a sequential
filtering algorithm is proposed to estimate both the speed and
number of the pedestrian flow given WiFi sniffing results.
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Therein, the WiFi fingerprint-based localization method [13],
[25] is adopted to assist the proposed algorithm in obtaining
location information of detected mobile devices.

For the purpose of performance evaluation, an experimental
pedestrian surveillance system consisting of 5 WiFi sniffers
was deployed at the transfer channel of the Yangji metro
station in Guangzhou, China, and a sniffing dataset was
collected at four typical scenarios during two work days. It
is shown that, the accuracy of pedestrian number estimates
based on the passive WiFi sensing model is significantly better
than that using the existing linear model [2], confirming the
superiority of the passive WiFi sensing model; moreover, the
error rate of pedestrian flow speed estimates in the peak
scenarios is below 10% with a probability of more than 0.8,
revealing the advantages of the proposed algorithm in terms of
the pedestrian flow speed estimation; in addition, a qualitative
analysis indicates the consistency between the estimates of the
proposed algorithm and the reality obtained by a video camera,
thus verifying the effectiveness of the proposed algorithm.

To sum up, the major contributions of this paper include
1) A passive WiFi sensing model is formulated to charac-

terize the interactions among various factors in relation
to pedestrian flows and passive WiFi sniffers, including
the pedestrian number, pedestrian flow speed, detected
mobile device number, probabilities of a pedestrian
carrying different number of mobile devices, layout of
the surveillance area, and so on.

2) The RBPF based algorithm is developed to provide a
unified and efficient solution by combining the pedestri-
an flow speed estimation based on particle filter and the
pedestrian number estimation based on linear Kalman
filter.

3) In order to provide more visual and informative results,
the surveillance area can be partitioned into a set of
small grids, so that a fine-grained estimate of the pedes-
trian number with respect to each grid is derived.

4) An experimental pedestrian surveillance system using
WiFi sniffers is implemented for evaluating the passive
sensing model and proposed algorithm in practice.

The rest of the paper is organized as follows. Section II
surveys the literature in relation to the WiFi passive sensing.
Section III establishes a passive WiFi sensing model for further
pedestrian flow analysis. Section IV presents the RBPF based
algorithm for estimating the pedestrian number and pedestrian
flow speed. Section V report the field experimental results. We
conclude this paper in Section VI.

II. RELATED WORKS

In this section, we shall briefly introduce the literature
of pedestrian analysis based on the traditional video based
approaches and the emerging wireless based approaches.

A. Video based Pedestrian Analysis

A recent paper [19] surveyed the existing studies on video
based crowd scene surveillance, and reported the challenges
in various video based techniques. Firstly, pixel-level ap-
proaches begin with edge detection and use edge features

to train a model, and texture-level approaches are coarser
grained than pixel-level approaches and aim to analyze image
patches. These two low-level approaches aim to estimate the
pedestrian number in a scene, rather than identify individuals,
and can only achieve coarse-grained results. Secondly, object-
level approaches are able to obtain more accurate results by
identifying individual subjects in a scene, but are only suitable
for sparse scenes. Thirdly, line counting approaches count
the number of pedestrians crossing a line of interest rather
than an entire scene or a region of interest. Therefore, the
criticality of a situation in a scene, particularly pedestrian
crowdness, cannot be thoroughly understood. Fourthly, density
mapping approaches estimate the density of a scene rather than
identifying the number of pedestrians in the scene, and require
to train a model by using a number of labelled samples.

Besides the above individual limitations, a common limita-
tion of all the video based techniques is that only the small
area covered by single camera is considered. That is to say,
when dealing with pedestrian analysis in a large area covered
by multiple cameras, it is still an open problem, not to mention
the possible coverage holes.

Based on the above discussion, it can be concluded that, be-
sides the traditional limitations (e.g., illumination conditions,
computational complexities), existing video based approaches
are also restricted by large area surveillance, high pedestrian
densities and cross-camera analysis.

B. Wireless based Pedestrian Analysis
First, with the advantages of low cost, large coverage,

scalability, non-intrusive detection and convenience for target
recognition, passive WiFi sensing has enabled various pedes-
trian analysis, including pedestrian number estimation, density
estimation, target tracking, and so on.

In [1], the feasibility of the passive WiFi sensing based
pedestrian flow analysis method was validated through field
experiments on a university campus. Subsequently, the authors
deployed motion sensors at the entrance and exit of a mall for
pedestrian counting, and then estimated the mapping between
the pedestrian number and the detected mobile device number,
in turn the estimation of the number of pedestrians in the mall;
the field experiments showed that, this method suffers higher
error rates than 30% when the detected mobile device number
is around 2000, and even worse, does not work when the
number of detected mobile devices is less than 2000 (see [2]
for details). Similarly, the authors in [3] adopted WiFi sniffers
with directional antennas and video-based pedestrian number
estimation method, so as to reduce the error rate close to
20%; in [5], a stereoscopic camera was installed at a specified
calibration choke point and helped to reduce the error rate by
43.68% compared with the simple WiFi sniffing method.

Moreover, the data collected by 29 public WiFi sniffers
in Lower Manhattan, New York, were employed to infer
the pedestrian number as well as the pedestrian flows cross
different streets [26]. In addition, a vehicle trajectory tracking
system was implemented in [6] by sniffing the mobile devices
of vehicle occupants, and reported positioning errors as high as
67 meters due to the long measurement range, limited number
of sniffers and sparse sniffing data.
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In short, the existing studies based on passive WiFi sensing
approach, though appear to be feasible in practice, are mainly
restricted by the relatively low accuracy.

Second, efforts have been devoted to mining a variety of
social information from WiFi sniffing data.

In [8], the preferred network list information contained
in probe frames was firstly utilized to infer social connec-
tions between users. Similarly, this information was used to
infer where participants come from in large events (such
as elections) [9], and the analysis showed that the results
were highly credible. However, the inclusion of the preferred
network list information in probe frames has been controlled
to protect privacy [27]. In addition, based on WiFi sniffing,
researchers reported a queuing time estimation algorithm in
[11], a device classification algorithm in [28], a pedestrian
meeting event detection algorithm in [17], and an algorithm for
mining potential social relationships and interaction patterns
by exploiting empty data frames in [10].

In summary, neither the traditional video based approach-
es nor the emerging wireless based approaches are able to
perfectly resolve the issues confronted by pedestrian analy-
sis. However, the wireless based approaches demonstrate the
potentials for addressing the issues of crowd estimation in
large areas and/or with high pedestrian densities, which are
the major shortages of video based approaches. As such, it is
imperative to understand the rules governing the relationship
between a pedestrian flow and WiFi sniffing results as well as
to improve the accuracy of WiFi based pedestrian analysis.

III. A PASSIVE WIFI SENSING MODEL FOR PEDESTRIAN
FLOW ANALYSIS

On the one hand, the invisible and indeterministic nature
associated with WiFi signal propagations leads to uncertainties
in matching the mobile devices detected by sniffers and
pedestrians to be monitored. On the other hand, the event that
a sniffer detects a mobile device is random and relies on the
spatial-temporal evolution between the sniffer and the mobile
device. Therefore, it is necessary to bridge the gap between the
data collected by sniffers and the pedestrian flow of interest.
To this end, we first present a probabilistic analysis of WiFi
sniffing with a pedestrian flow, then establish a passive WiFi
sensing model connecting WiFi sniffing data to the pedestrian
flow, and finally discuss how to infer the characteristics of the
pedestrian flow based on this model.

A. The Probabilistic Analysis

A mobile device is detectable if and only if its WiFi is
switched on. In this paper, we only consider such detectable
mobile devices, so that any mobile device mentioned will be
detectable unless otherwise specified.

The following notations are used in the later analysis:
• L and W are the length and width of a surveillance area

as shown in Fig. 1, respectively;
• v is the moving speed (meter per second) of a continuous

pedestrian flow going through the surveillance area;
• ρ is the intensity of a spatial Poisson distribution that the

pedestrian distribution is assumed to follow;

Fig. 1. The illustration of the problem

• b is the expected number of mobile devices carried by
one pedestrian, namely

b =

∞∑
i=1

ipi, (1)

where pi is the probability that a pedestrian carries i
mobile devices;

• q(t) is the probability that a mobile device can be detected
by a sniffer during a time interval t.

Given a specific surveillance area, L and W are usually
known constants, b is unknown constant and will be approx-
imated through regression, the function q(t) will be used for
deducing the sensing model, and v and ρ are the two key
variables to be estimated.

Since v and ρ reflect collective characteristics of a pedes-
trian flow, we make the following assumption

Assumption 1: Given a time interval which is sufficient for
a pedestrian to go through the surveillance area with the length
of L, the corresponding pedestrian flow speed v and intensity
ρ are assumed to be constant.

In addition, for ease of analysis, we assume
Assumption 2: The detection event is independent during

distinct differential intervals and among different mobile de-
vices.

Consider a continuous pedestrian flow passing through a
surveillance area, and without loss of generality, suppose that
the pedestrian flow moves along the opposite direction of the
x-axis, as shown in Fig. 1. We can obtain the following lemma
describing the relationship between the probability of detecting
a mobile device and the initial position of its holder.

Lemma 1: If a pedestrian carrying a mobile device goes
through the surveillance area from x, the probability that the
mobile device can be detected is

1− e−c x
v , (2a)

where

c = lim
∆t→0

q(∆t)

∆t
. (2b)

Proof: According to Assumption 1, it takes an average of
x
v seconds for the pedestrian to pass through the surveillance
area. The probability, i.e. q(xv ), can be calculated as follows

q
(x
v

)
= 1− (1− q(∆t)) x

v∆t

∼= 1− e− x
v∆t q(∆t)

with ∆t→ 0. The lemma is proved.
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It is noticeable that c actually denotes the first derivative of
q(t) at t = 0 and will function as an intermediate variable in
the following formulations.

Moreover, we can obtain the expected number of detected
mobile devices in the following lemma.

Lemma 2: If a pedestrian, carrying i mobile devices with
probability of pi i = 0, 1, ..., goes through the surveillance
area from x, the expected number of detected mobile devices
associated with this pedestrian is

∞∑
i=1

(
1− e−c x

v

)
ipi. (3)

Proof: Due to the independence assumption in Assump-
tion 2, the expected number of detected mobile devices is(
1− e−c x

v

)
i when the pedestrian carries i mobile devices.

Then, by applying the law of total probability, we can obtain
(3) and prove the lemma.

In light of Lemma 1 and 2, we can derive the following
theorem describing the relationship between the expected
number of detected mobile devices and various factors.

Theorem 1: If all the pedestrians currently in the surveil-
lance area go through the surveillance area, the expected
number of detected mobile devices associated with these
pedestrians is

bρWL
(

1− v

cL

(
1− e− cL

v

))
(4)

Proof: Let ∆l be a differential length. In a differential
stripe of W × ∆l as shown in Fig. 1, it is assumed that the
probability that there exists one pedestrian is given by ρW∆l.
The probability that there are more than one pedestrian can be
ignored. Thus, according to Lemma 2, the expected number
of mobile devices that are detected and located in W ×∆l is∑∞
i=1(1− e−c x

v )ipiρW∆l.
When these pedestrians go through the surveillance area,

the expected number of detected mobile devices equals to the
sum of ∆l along the horizontal x-axis, namely

∑∞
i=1

∑
L(1−

e−c
x
v )iρW∆lpi.

When ∆l→ 0, the summation along L can be substituted by
integral, namely

∑∞
i=1 iρWpi

(∫ L
0

(
1− e−c x

v

)
dx
)

, which
leads to (4). The theorem is proved.

Evidently, Theorem 1 reveals how the expected number of
detected mobile devices in the surveillance area is affected
by various factors, including the intermediate variable c, the
length L and width W of the surveillance area, the number
b, the pedestrian flow speed v and the pedestrian density ρ.
On this basis, one can investigate pedestrian flows from a
theoretical perspective.

B. The Passive Sensing Model

Prior to presenting the sensing model, let us consider a
pedestrian flow with the speed v and intensity ρ during an
interval, say [tA, tC ], as shown in Fig. 2 which involves three
snapshots at three distinct time instances, namely tA, tB and
tC . Accordingly, the pedestrian flow is divided into three parts
with labels A,B and C. Define zA, zB and zC to be the
expected numbers of detected mobile devices in relation to
the three parts.

It is clear that the pedestrians in the three parts enter and
exit the surveillance area at different times. Consequently,
pedestrians in the parts A or C incur different durations (when
they stay inside of the surveillance area), whereas pedestrians
in the part B have the same and maximum duration, i.e. tB−tA
or L

v ; see the lengths of yellow bars associated with different
pedestrians in Fig. 2.

Therefore, (4) in Theorem 1 is only suitable for determining
zA, namely

zA = ρWL
(

1− v

cL

(
1− e− cL

v

))
b. (5a)

Since all the pedestrians in the part B have the maximum
duration L

v , with the result that zB can be evaluated by simply
replacing L with LB and x with L in (4)

zB = ρWLB(1− e− cL
v )b. (5b)

Similarly, zC can be derived by replacing x with L−x in (4)

zC = ρWL
( v

cL
−
(

1 +
v

cL

)
e−

cL
v

)
b. (5c)

Given the sniffing data (i.e. the MAC address, time stamp,
received signal strength (RSS), Channel ID and sniffer ID
when a sniffer detects a mobile device) during [tA, tC ], it
is intrinsically cumbersome to pick out the detected mobile
devices to separately count zA, zB and zC . Fortunately, by
letting zABC = zA + zB + zC , we have

zABC = γ(v)xAB , (6a)

where

xAB = ρW (L+ LB), (6b)

γ(v) = (1− e− cL
v )b. (6c)

It follows from (6) that, the expected number of pedestrians
in the parts A (or C) and B, i.e. xAB , is related to the expected
number of detected mobile devices during [tA, tC ], i.e. zABC ,
through the unknown function γ(v); that is to say, xAB (or
equivalently ρ) can be estimated given zABC irrespective of
whether the detected mobile devices belong to the parts A, B
or C.

In summary, as the passive sensing model, (6) will help us
infer the characteristics of pedestrian flows.

C. Discussions

In order to apply the sensing model in practice, we have to
address the following issues.

1) Duration of tC − tA: The duration of tC − tA is
minimized to be L

v with tB = tA, and plays a vital role in
applying the passive sensing model. Its determination should
depend on the following issues. First, Assumption 1 is only
acceptable given a relatively short duration. Second, a short
duration results in a small amount of sniffing data, thus
restricting the performance of related algorithms. Third, a large
duration leads to a long time delay. Therefore, the duration
should be traded off to balance the estimation accuracy (or
processing overheads) and time delay.
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Fig. 2. The snapshots of a pedestrian flow at three time instances.

2) Localization: In the establishment of the passive WiFi
sensing model (6), it is a prerequisite to determine whether
a mobile device is inside the surveillance area or not at
a specific time. Besides, it is also necessary to obtain the
locations of detected mobile devices for estimating pedestrian
flow speeds. Therefore, the popular WiFi fingerprint-based
localization method [13], [25] will be adopted to assist the
design and implementation of the algorithm proposed in the
subsequent section.

3) Unknown function γ(v): The unknown parameters b and
c in γ(v) can be regarded as constants at a certain circum-
stance, and thus can be regressed based on (6) by employing
sniffing data with different values of v in real environments.
Note that b and c are essentially affected by socio-economic
factors, such as incomes, habitats, age distributions and so on,
thus are environment specific and not universally applicable,
and should be updated periodically to accommodate new
circumstances.

4) Estimating the Pedestrian Number: With the knowledge
of b and c, given the speed estimate, denoted v̂, and the
observation of zABC (by counting the unique MAC addresses
within [tA, tC ]), denoted by ẑABC , the estimate of the expected
pedestrian number xAB , denoted x̂AB , can be directly calcu-
lated using (6). Furthermore, in view of the assumption of the
spatial Poisson distribution, the average number of pedestrians
located in the surveillance area can be estimated as

x̂ =
L

L+ LB
x̂AB =

L

(tC − tA)v̂γ(v̂)
ẑABC , (7)

which will be employed to design the pedestrian flow estima-
tion algorithm in the subsequent section.

IV. PROPOSED ALGORITHM BASED ON RBPF

This section presents the RBPF based algorithm for esti-
mating both the pedestrian flow speed and pedestrian number.

A. Preliminaries

In order to smoothly output the estimates, the sliding time
window mechanism is adopted with the window size equal to
tC − tA and a relatively short step size controlling the output

frequency. The surveillance area is often as large as hundreds
of square meters, and is thus partitioned into small grids (as
shown in Fig. 3), so that each grid can be associated with a
separate pedestrian number to provide more detailed spatial
estimation and more visual information.

In addition, the area neighboring to the surveillance area
is also included and divided into grids due to the following
reasons. First, it is necessary to determine whether a mobile
device is inside the surveillance area or not by using the
WiFi fingerprint-based method, which requests the fingerprints
in the non-surveillance area. Second, the proposed algorithm
can be improved by utilizing the information in the area
neighboring to the surveillance area.

Fig. 3. The interior and exterior grids.

Considering the nonlinear nature of the problem, a two-
stage algorithm based on RBPF is designed to estimate the
pedestrian flow speed using particle filter in the first stage and
then the pedestrian number using linear Kalman filter in the
second stage. To this end, define the following notations:
• δ is the step size of the sliding time window;
• tk is the end time of the k-th sliding time window and

satisfies tk+1 − tk = δ;
• vk is the pedestrian flow speed at tk;
• n and m denote the numbers of interior and exterior grids,

respectively, with the lengths L1, · · · , Ln+m and widths
W1, · · · ,Wn+m, respectively;

• lj denotes the coordinates of the j-th grid center with
j = 1, · · · , n+m;

• plj (·) is the probability density function of the RSS mea-
surement vector at the j-th grid with j = 1, · · · , n+m;

• xk is an n-dimensional vector containing the expected
pedestrian numbers in the n interior grids at tk;
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• uk is an m-dimensional vector containing the expected
numbers of detected mobile devices in the m exterior
grids at tk;

• yk = {yk,i}ski=1 contains sk RSS measurement vectors
in the sliding time window at tk, with yk,i being a
RSS measurement vector averaged over one second and
associated with a common MAC address;

• Iij is the index of the j-th RSS measurement vector from
the i-th unique MAC address in yk with i = 1, · · · ,mk

and j = 1, · · · , ri, namely yk = {yk,Iij}
i=mk,j=ri
i=j=1 ;

• N is the particle number.

The centers of the n interior grids and m exterior grids are
employed as reference points to generate a fingerprint database
in the offline site survey of the WiFi fingerprint-based method.
Given a RSS measurement vector, a probabilistic approach is
leveraged to calculate the weight of each grid; taking the yk,i
and the j-th grid for example, its weight is

wi,j = plj (yk,i)× Lj ×Wj . (8)

where Lj×Wj reflects the influence grids with different sizes.
Using the normalization of wi,j , the weighted average of lj
with j = 1, 2, · · · ,m+n is calculated as the location estimate.

B. Particle Filter Part

The speed estimation is equivalent to estimating the poste-
rior probability p(v0:k|y0:k), which can be factorized into the
following recursive form according to Bayes’s theorem

p(v0:k|y0:k) ∝ p(yk|v0:k,y0:k−1)p(vk|v0:k−1,y0:k−1)
×p(v0:k−1|y0:k−1). (9)

As long as the distributions p(yk|v0:k,y0:k−1) and
p(vk|v0:k−1,y0:k−1) are available, (9) can be used to
recursively estimating vk based on particle filter.

Since the distribution p(vk|v0:k−1,y0:k−1) characterizes the
time update or prediction of the pedestrian flow speed, by
assuming the Markovian property in the pedestrian flow speed
vk, we can adopt an artificial evolution using kernel smoothing
which guarantees the estimation convergence [29], namely

vk = fvk−1 + (1− f)v̄k−1 + ek−1, (10a)

where f is a weight between 0 and 1, v̄k−1 is the Monte
Carlo mean of vk−1, and ek−1 ∼ N (0, (1 − f2)σ2

k−1) with
σ2
k−1 being the Monte Carlo variance matrix of vk−1.

Moreover, according to Assumption 1 and assuming the
independence among different RSS measurements, we can

have

p(yk|v0:k,y0:k−1)

=

mk∏
i=1

p(yk,Ii1 , · · · ,yk,Iiri |vk)

=

mk∏
i=1

∫
p(yk,Ii1 , · · · ,yk,Iiri |Ωi, vk)p(Ωi|vk) d Ωi

=

mk∏
i=1

∫
p(yk,Ii1 , · · · ,yk,Iiri |Ωi)p(Ωi|vk) d Ωi

∝
mk∏
i=1

∫
p(Ωi|yk,Ii1 , · · · ,yk,Iiri )p(vk|Ωi) d Ωi

≈
mk∏
i=1

∑
Θi

p(Θi|yk,Ii1 , · · · ,yk,Iiri )p(vk|Θi)

=

mk∏
i=1

∑
Θi

 ri∏
j=1

p(lθi,j |yk,Iij )

 p(vk|Θi)

∝
mk∏
i=1

∑
Θi

 ri∏
j=1

wIij ,θi,j

 p(vk|Θi), (10b)

where Ωi denotes the set of ri candidate locations correspond-
ing to the ri RSS measurement vectors associated with the
i-th unique MAC address. Similarly, Θi = {lθi,j}

ri
j=1 with

θi,j taking values from 1, · · · , n + m, reflecting that the ri
candidate locations are restricted within the n+m grid centers.

Evidently, the key step of calculating p(yk|v0:k,y0:k−1)
lies in the evaluation of p(vk|Θi). The state variable vk of
each particle provides a distance estimate between any pair of
location candidates in Θi, say lθi,j1 and lθi,j2 ; thus, we assume
that the distance estimate follows a Gaussian distribution,
∼ N (‖lθi,j1 − lθi,j2‖, σ

2
r) (where σ2

r is empirically set as 4),
which enables us to evaluate p(vk|Θi).

To reduce the computational overheads and avoid degen-
eration of the calculations, the following strategies can be
adopted. First, instead of the product of a sequence of weights,
their geometrical mean is evaluated to avoid degeneration.
Second, the dimension of Θi is reduced by only considering
the 3 most probable candidate locations since more than 3
candidate locations contribute little to the accuracy. Third, the
weights with respect to all the ri RSS measurement vectors
and all the grid centers can be stored for use in evaluating
(10b) after being calculated during the online localization
phase.

C. Kalman Filter Part

It follows from Assumption 1 that the pedestrian numbers
in the n interior grids at tk and tk+1 can be formulated as

xk+1 = A(vk)xk + B(vk)uk + εk, (11a)

where εk is additive white Gaussian noise with covariance Qk;
A(vk) (or B(vk)) is the n× n (or n×m) matrix describing
how pedestrians move between neighboring interior grids (or
between interior grids and exterior grids) during the interval
δ given the speed vk.
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If pedestrians walk from j-th interior grid to i-th interior
grid as shown in Fig. 3, then the associated two elements on
the i-th, j-th rows and j-th column of A(vk) are respectively

vkδ

Lj
, 1− vkδ

Lj
, (11b)

where vkδ
Lj

represents the proportion of pedestrians leaving j-th
grid for i-th grid; supposing j > n (i.e. j-th grid is exterior),
the element on the i-th row and (j − n)-th column of B(vk)
is

vkδ

Lj
× L

(tC − tA)vkγ(vk)
=

δL

(tC − tA)Ljγ(vk)
, (11c)

where, similarly to (7), L
vk(tC−tA)γ(vk) is used to calculate the

expected number of pedestrians from that of detected mobile
devices.

Moreover, establish the following measurement equation

g(yk) = C(vk)xk + ξk, (12a)

where

• g(yk) returns the n-dimensional vector containing the
expected numbers of detected mobile devices in the n
interior grids given the measurements yk, and its j-th
element is obtained by normalizing and summing the
weights in (8) with respect to this grid;

• C(vk) is a n× n diagonal matrix mapping the expected
numbers of detected mobile devices from the pedestrian
numbers in the n interior grids, namely

C(vk) =
(tC − tA)vkγ(vk)

L
I, (12b)

where I is an identity matrix of a proper order;
• ξk is additive white Gaussian noise with covariance Rk.

In summary, due to the linear relationship among xk and
g(yk) in (11a) and (12a), subject to additive Gaussian noise,
xk can be solved by leveraging Kalman filter given vk.

D. Summarizing the Algorithm

According to Model 1 in [24], we can obtain the
RBPF based algorithm as described in Algorithm 1, where
Ak,Bk,Ck are abbreviations for A(vk),B(vk),C(vk).

The initial speed v0 is defined to be randomly and uniformly
distributed within the speed range [vmin, vmax], such that

pv0
(v0) =

1

vmax − vmin
, (15)

and the initial pedestrian number vector in the grids, i.e. x0,
is assumed to be Gaussian

x0 ∼ N (x̄0, P̄0), (16)

where x̄0 and P̄0 can be empirically determined according to
normal pedestrian behaviors.

Algorithm 1 The RBPF based pedestrian flow algorithm
1: Initialization: For i = 1, · · · , N , initialize the particles,
v

(i)
0|−1 ∼ pv0

(v0) and set {x(i)
0|−1, P

(i)
0|−1} = {x̄0, P̄0}.

2: k=0.
3: while True do
4: For i = 1, · · · , N , evaluate the importance weights

q
(i)
k = p(yk|v(i)

0:k,y0:k−1) in (10b) and normalize

q̃
(i)
k =

q
(i)
k∑N

j=1 q
(j)
k

.

5: Particle filter measurement update (resampling): Re-
sample N particles with replacement

Pr(v
(i)
k|k = v

(j)
k|k−1) = q̃

(j)
k .

6: Particle filter time update and Kalman filter:
1) Kalman filter measurement update: For i =

1, · · · , N ,

x̂
(i)
k|k = x̂

(i)
k|k−1 + K

(i)
k (g(yk)−Ckx̂

(i)
k|k−1),(13a)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k CkP

(i)
k|k−1, (13b)

K
(i)
k = Pk|k−1C

T
k (S

(i)
k )−1, (13c)

S
(i)
k = CkP

(i)
k|k−1C

T
k + Rk. (13d)

2) Particle filter time update (prediction): For i =
1, · · · , N , predict new particles according to (10a),

v
(i)
k+1|k ∼ N (fv

(i)
k|k + (1− f)v̄k|k, (1− f2)σk|k).

3) Kalman filter time update: For i = 1, · · · , N ,

x̂
(i)
k+1|k = Akx̂

(i)
k|k + Bkuk, (14a)

P
(i)
k+1|k = AkP

(i)
k|kA

T
k + Qk. (14b)

7: k=k+1.
8: end while

The estimates, as expected means, of the state variables and
their covariances are given below.

v̂k|k =

N∑
i=1

q̃
(i)
k v̂

(i)
k|k, (17a)

P̂vk|k =

N∑
i=1

q̃
(i)
k

(
v̂

(i)
k|k − v̂k|k

)(
v̂

(i)
k|k − v̂k|k

)T
, (17b)

x̂k|k =

N∑
i=1

q̃
(i)
k x̂

(i)
k|k, (17c)

P̂k|k =

N∑
i=1

q̃
(i)
k

(
P

(i)
k|k +

(
x̂

(i)
k|k − x̂k|k

)(
x̂

(i)
k|k − x̂k|k

)T)
.(17d)

In conclusion, the summation of x̂k|k returns the estimate
of the pedestrian number at time tk, revealing how many
pedestrians are currently located in the surveillance area. Fur-
thermore, dividing each element of x̂k|k by the corresponding
grid area returns the pedestrian density associated with this
grid, enabling us draw heat maps for the surveillance area.
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TABLE I
THE DETAILS OF THE SNIFFING DATASET IN FOUR TYPICAL SCENARIOS.

Description Date Start Time End Time Duration Number of Packets Number of MACs
Evening Peak Dec 26, 2018 (Wed) 17:47:51 18:45:46 57min 55sec 13714275 58940

Evening Off-peak Dec 26, 2018 (Wed) 21:34:55 22:20:26 45min 31sec 6325523 16580
Morning Peak Dec 27, 2018 (Thur) 07:48:23 08:52:12 63min 49sec 14105625 54101

Afternoon Off-peak Dec 27, 2018 (Thur) 13:00:02 13:46:44 46min 42sec 5780439 21678

V. EXPERIMENTS

In this section, we conduct extensive experiments to vali-
date the feasibility of the WiFi passive sensing approach as
well as to evaluate the performance the proposed algorithm.
Specifically, we shall first introduce the implementation of the
experimental pedestrian surveillance system, and then present
experimental results.

A. Overview of the Experimental System

The experimental pedestrian surveillance system was de-
ployed at the transfer channel between Line 1 and Line 5
at the Yangji metro station in Guangzhou, China, which is
divided into two lanes (termed upper lane and lower lane) by
fixed fences, resulting in two bidirectional pedestrian flows.

The hardware of the experimental system consists of five
WiFi sniffers (DS-AP-I [30]), a computer and a 100 Mbps
switch which connects the sniffers and computer to form
a wired local area network. Specifically, four sniffers were
installed at the corners of the surveillance area (i.e. a rectangle
with the length of 18.1 meters and width of 5.22 meters), and
the other one at the center.

The software of the experimental system involves a UDP
server program installed on the computer to receive sniffing
data (including Sniffer ID, MAC address, RSS, time stamps
in millisecond and channel ID) uploaded by WiFi sniffers at a
frequency of 10 Hz, and a Matlab program implementing the
proposed RBPF based algorithm.

1) WiFi Sniffers: Each WiFi sniffer is customized to inte-
grate nine dual-band WiFi modules, such that nine different
channels can be simultaneously sniffed to crowdsource as
many mobile devices and WiFi packets (including both probe
requests and normal data packet) as possible.

In particular, five WiFi modules in a sniffer were scheduled
to work in 2.4 GHz with each one polling three of the total
13 WiFi channels, and similarly, the other four modules in
5 GHz with each one polling two of the 12 WiFi channels.
In addition, during channel polling, each module kept sniffing
one channel for 300 milliseconds. Note that one channel may
be polled by two different modules.

2) WiFi Fingerprint-based Localization: A fingerprint
database was generated by taking RSS measurements from
smartphones located at 76 interior reference points (i.e. the
centers of the interior grids) in the transfer channel and 99
exterior reference points (i.e. the centers of the exterior grids)
in its neighborhood. To reduce the overheads of the site
survey, a gaussian process regression (GPR) based method
reported in [31], [32] was adopted to generate the fingerprint
database with RSS measurements from only 25% of the
total 175 reference points. Two smartphones, i.e. an Android

(a) Experimenters in the upper lane (b) Experimenters in the lower lane

Fig. 4. The snapshots of the field experiment in the afternoon off-peak.

smartphone (Huawei Honor 6) and an iOS smartphone (Apple
7) were employed during the offline site survey. In addition,
due to the fact WiFi signals in 5 GHz suffer from significantly
larger attenuations than in 2.4 GHz, a fingerprint database
using RSS measurements from both 2.4 GHz and 5 GHz
will degrade localization performance. Since addressing such
localization problem is beyond the scope of this paper, we only
make use of the RSS measurements in 2.4 GHz for generating
the fingerprint database and conducting localization.

During the online localization, the RSS measurements from
one mobile device are averaged over one second with respect
to every sniffer, resulting a RSS measurement vector; if one
sniffer does not receive any RSS measurements due to, e.g.,
collisions, the corresponding element in the vector is set to
be −100 dBm. As such, any mobile device is localized at a
maximum frequency of 1 Hz.

3) Sniffing Dataset: Sniffing dataset was collected in four
typical scenarios, namely evening peak, evening off-peak,
morning peak and afternoon off-peak, as listed in Tab. I. It
can be found that the peak scenarios result in significantly
more packets and MACs than the off-peak scenarios.

For the purposes of training the sensing model and evaluat-
ing the proposed algorithm, it is imperative to derive ground-
truth pedestrian numbers and pedestrian flow speeds in the
sniffing dataset, which is difficult due to the uncontrollability
of both pedestrians and environments. To address this issue, a
controlled experiment was conducted. As shown in Fig. 4, one
experimenter carrying an iOS smartphone (Apple 6S) walked
two laps along pedestrian flows in both lanes, and another
experimenter followed closely behind the first experimenter
and recorded by hand the times when they entered and exited
the surveillance area, such that two samples of pedestrian
flow speeds can be obtained with respect to each lane. This
experiment was conducted twice in each of four typical
scenarios. Meanwhile, a video camera was installed to record
the pedestrian flows. In order to avoid MAC randomization
and ensure more localization numbers, the first experimenter
associated the smartphone with a WiFi AP and kept on
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refreshing the WiFi list to trigger more probe packets.
As a result, 32 pedestrian flow speed samples were derived

in total; moreover, a certain number of locations where RSS
measurements from this smartphone were crowdsourced can
be inferred as well, and can be further used as ground-
truth for evaluating localization accuracy; additionally, four
graduate students manually count pedestrians going through
the surveillance area by playing the video in slow motion,
such that 50 pedestrian number samples with speed labels were
derived.

B. Analysis of Localization

The feasibility and performance of the pedestrian flow speed
estimation depends on the localization performance in regards
to detected mobile devices, including localization number
(namely how many times a detected mobile device can be lo-
calized), localization interval (namely the time interval of suc-
cessively localizing a detected mobile device) and localization
accuracy. If a mobile device is distant from the surveillance
area or wireless channel is busy, it may be detected by less
than four sniffers in one second, and will be useless on account
of poor localization performance; otherwise, its localization
information will be used in the RBPF algorithm.

Due to MAC randomization, we count the localization
numbers and localization intervals in terms of each unique
MAC address, and plot their empirical cumulative density
functions (CDFs) in Fig. 5(a) and 5(b). It can be observed that,
for the total MAC addresses, more than 20% of them cannot be
localized, and around 30% of them can only be localized once,
and the remaining can be localized at least twice, enabling
the pedestrian flow speed estimation. Intuitively, the larger
is a localization interval, the better is the resulting speed
estimation, but there is around 80% of the localization intervals
with 1 second, which to some extent restricts the accuracy of
the pedestrian flow speed estimation.

Moreover, the empirical CDFs of localization errors are
plotted in Fig. 5(c). As can be seen, the median error is around
2.5 meters; this is a fair result considering the localization
performance of WiFi fingerprint-based method and the device
heterogeneity problem.

C. Analysis of MAC Randomization

Due to privacy issue, more and more mobile devices are
adopting MAC randomization, but since the implementation is
different across various brands and models of mobile devices,
thoroughly and precisely analyzing MAC randomization of
every device is tedious, and even impossible. However, as
far as the pedestrian flow estimation based on passive WiFi
sensing is considered, it is not the specific random MAC
address of a mobile device but the update frequency of the
random MAC address that affects the proposed pedestrian
estimation algorithms. Therefore, we shall present an indirect
analysis of MAC randomization based on the sniffing dataset.

Clearly, the worst case happens when every mobile device
generates a new random MAC address in each probe request
(i.e. each active scan). Fortunately, Fig. 5(a) illustrates that
around 50% of the detected MAC addresses can be localized

at least twice, and this ratio will be increased if removing those
unlocalized ones; that is to say, around 50% of the detected
MAC addresses are used in two or more active scans, implying
that the real situation is far away from the worst case. Thus,
it is feasible to infer the pedestrian number estimation from
MAC addresses.

D. Performance Evaluation

We first present the result on regressing the passive sensing
model, and then respectively evaluate the performance from
quantitative and qualitative aspects.

In the experiments, the particle number N = 100, the
sliding window size tC − tA = 35 seconds, the moving step
size δ = 1 second, the coefficient f = 0.95, vmax = 1.4 m/s
and vmin = 0.4 m/s according to the field experiment in Hong
Kong metro stations [33].

1) Regression of the Sensing Model: Using the nonlinear
least squares regression method (i.e. the Matlab routine l-
sqnonlin), we obtained the estimates of the unknown param-
eters in (6c), namely c = 0.072 and b = 0.7562, revealing
that the expected number of mobile devices carried by one
pedestrian is 0.7562 in the considered scenarios.

Note that the value of b is deviated from the average
number of mobile devices per person in reality due to the
following facts. First, as aforementioned, we only consider
detectable mobile devices with WiFi switched on, namely that
mobile devices with WiFi disabled are not counted here, thus
making b be decreased. Second, b tends to be increased due to
MAC randomization. However, b is only a parameter used for
describing the passive sensing model, and is not necessarily
equal to the average number of mobile devices per person.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Speed

0.4

0.5

0.6

0.7

0.8

0.9

γ

Samples
Regresed Model

Fig. 6. The illustration of γ(v) in the passive sensing model.

The value of γ is plotted with respect to different v in Fig. 6.
As can be seen, γ decreases from around 0.75 to 0.45, with
v rising from 0 to 1.4 m/s, due to the fact that pedestrians
with a higher speed will go through the transfer channel in
a shorter time, resulting a less number of detected mobile
devices, consequently a lower γ. More importantly, it can be
observed that γ appears to be constant when the speed is below
0.4 m/s, which is attributable to the fact that pedestrians with
an extremely low speed will stay in the transfer channel for a
sufficiently long time, such that no more mobile devices can
be detected, thus keeping γ constant.
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Fig. 5. Statistics of sniffing dataset in terms of localization.
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Fig. 7. The CDF of pedestrian flow speed estimation results.

2) Quantitative Evaluation: In the first place, in order
to evaluate the performance of the pedestrian flow speed
estimation, define |v−v̂|v to be the error rate. The empirical
CDF of the overall error rates as well as those respectively in
the peak and off-peak scenarios are plotted in Fig. 7.

As can be seen, the error rate in the peak scenarios is appar-
ently better than that in the off-peak scenarios, and specifically,
is below 0.1 in around 80% cases. This is attributable to
the following reasons: (1) more measurements available in
the peak scenarios result in more accurate estimation; (2)
pedestrians in the peak scenarios tend to be synchronized to
walk at nearly a same slow speed, whereas pedestrians in the
off-peak scenarios often walk freely with varying speeds.

In the second place, since the proposed algorithm estimates
the pedestrian number in the transfer channel at any time
instant, the ground-truth of which cannot be derived, especially
in crowded situations, indicating that it is hard to conduct a
quantitative performance evaluation. Alternatively, we can use
the 50 samples involving pedestrian numbers to quantitatively
evaluate the accuracy of the pedestrian number estimation
method (7), which is actually the basis of the proposed
algorithm. Besides, (7) with the accurate speed v and the
linear model based method in [2] are also implemented for
comparison.

Due to the limited number of total samples, the five-fold
cross validation method is adopted to generate as many results
as possible for plotting. The empirical CDFs of the error rates
in pedestrian number estimation are plotted in Fig. 8. As can be
seen, the usage of speed estimates only slightly deteriorates the
pedestrian number estimation, confirming the effectiveness of
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Fig. 8. The CDF of pedestrian number estimation results.

the sensing model as well as the pedestrian number estimation
method; more importantly, no matter whether an accurate
speed is known or not, the method based on the sensing model
outperforms the linear model based method reported in [2] in
most cases.

3) Qualitative Evaluation: To further validate the proposed
algorithm, we conduct qualitative performance evaluations
through the numbers of pedestrians located in the transfer
channel and the pedestrian flow speeds, which are both es-
timated by the proposed algorithm. For ease of presentation,
we pick out 45 minutes from the total duration of each typical
scenario, and plot the results every other 20 seconds in Fig. 9.

First of all, it is shown that the pedestrian numbers in the
peak scenarios are significantly greater than those in the off-
peak scenarios, which is certainly consistent with the real
situations.

It is intuitive that with a train arriving at the metro station of
either Line 1 or Line 5, the pedestrians tend to increase in the
transfer channel, resulting in a peak in the pedestrian number.
As can be seen from Fig. 9, in the afternoon off-peak scenario,
peaks in the blue bars (i.e. the lower lane) appear at 13:01,
13:02, 13:07, 13:08, 13:10, 13:11, etc., because subway trains
drive from two opposite directions; similarly, in the evening
off-peak scenario, peaks in the blue bars (i.e. the lower lane)
appear with larger intervals than those in the afternoon off-
peak scenario, due to the fact the subway train frequency is
often reduced in the evening off-peak times. However, the
peaks of the pedestrian numbers in the peak scenarios are not
as distinct as in the off-peak scenarios, on account of the high
pedestrian density and subway train frequencies.
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(a) Evening peak on 26 Dec 2018

(b) Evening off-peak on 26 Dec 2018

(c) Morning peak on 27 Dec 2018

(d) Afternoon off-peak on 27 Dec 2018

Fig. 9. Estimates of the pedestrian numbers and pedestrian flow speeds in the four typical scenarios (The bars denote the pedestrian number estimates and
the curves denote the pedestrian flow speed estimates; the blue bars and curves correspond to the lower lane and the red ones to the upper lane).

Moreover, the pedestrian numbers in the evening scenarios
appear to be symmetric in both lanes, whereas in the daytime
scenarios the pedestrian numbers in the lower lane are usually
greater than those in the upper lane; this interesting observa-
tion reflects the habits of citizens transferring between Lane 1
and Lane 5.

Additionally, it can be found that the pedestrian flow speeds
are often very low in the peak scenarios, but are relatively
high and incur fluctuations in the off-peak scenarios. However,
all these observations comply with the common sense that:
(1) there exists a restrictive relationship between the pedes-
trian number (or density) and the pedestrian flow speed in
pedestrian flows; (2) with sparse pedestrians in the off-peak
scenarios, pedestrians may walk freely at different speeds, and
the estimation of pedestrian flow speeds is easily degraded due

to insufficient RSS measurements.
In order to have a clear and intuitive view, we select 2 time

instants from each typical scenario, and show corresponding
snapshots from the videos in Fig. 10. To avoid biases caused
by the experimenters, we do not select time instants when they
were inside of the transfer channel. Besides, since the proposed
algorithm suffers from a short delay due to the sliding window
mechanism, we plot in Fig. 11 the heat maps of the pedestrian
densities at 10 seconds behind the time of the snapshots.

It can be seen that, the three sources, i.e. pedestrian number-
s, the heat maps and snapshots, demonstrate good consistence
at all the eight time instants, which to some extent validates the
effectiveness of the proposed algorithm. Furthermore, in the
crowded situations (e.g. Fig. 10(b) and Fig. 10(e)), it is hard
for either us or the video based pedestrian counting approaches
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(a) Evening peak (18:02:30) (b) Evening peak (18:40:40) (c) Evening off-peak (21:50:00) (d) Evening off-peak (22:12:20)

(e) Morning peak (08:15:24) (f) Morning peak (08:21:00) (g) Afternoon off-peak (13:30:40) (h) Afternoon off-peak (13:32:30)

Fig. 10. Snapshots from the video taken at the transfer channel in the four typical scenarios.

to tell any differences, whereas the proposed algorithm shows
that the pedestrian numbers have a difference of around
50, indicating the advantage of the proposed algorithm in
comparison with video based approaches.

In summary, the extensive experiments not only validate the
passive WiFi sensing model, but also confirm the effectiveness
of the proposed algorithm in comparison with the existing
studies in terms of the estimation of pedestrian numbers.

VI. CONCLUSION

This paper dealt with the problem of inferring pedestrian
flow characteristics via a passive WiFi sensing approach. To
be specific, the passive WiFi sensing model was initially estab-
lished by probabilistically analyzing the interactions between
a moving pedestrian flow and WiFi sniffers, and after that, the
sequential filtering algorithm based on RBPF was proposed
to simultaneously estimate the pedestrian number and the
pedestrian flow speed given real-time WiFi sniffing data. The
experimental pedestrian surveillance system, deployed in the
transfer channel of a metro station in Guangzhou, China, con-
firmed the feasibility of monitoring pedestrian flows through
WiFi sniffers as well as the effectiveness of the proposed
algorithm.

However, during the design and implementation of the
experimental system, we have identified several problems and
will consider them in future works. First, it is worthwhile to
extend the study and results in the transfer channel to a large-
scale surveillance area. Second, cracking randomized MACs
will be helpful in both the pedestrian number estimation and
pedestrian flow speed estimation. Third, existing solutions for
WiFi localization with heterogenous mobile devices do not
perform well in our problem due to the small amount of
the sniffers (i.e. 5), so that it is necessary to develop a new
robust localization algorithm. Last but not least, it is attractive
and meaningful to fuse, e.g., video based approaches with the
wireless based approach, so as to leverage the output of video

based approaches to automatically update the parameters in
the sensing model.
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(h) Afternoon off-peak (13:32:30)

Fig. 11. Heat maps of the pedestrian densities in the four typical scenarios. The lower lane corresponds to the pedestrian flows coming out of the snapshots
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