
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 4, APRIL 2021 3599

A Theoretical Analysis on Sampling Size in
WiFi Fingerprint-Based Localization

Baoqi Huang , Member, IEEE, Runze Yang , Bing Jia , Member, IEEE, Wuyungerile Li ,
and Guoqiang Mao , Fellow, IEEE

Abstract—This paper deals with a key problem in WiFi
fingerprint-based localization, namely how to sample a sufficient
number of received signal strength (RSS) measurements during an
offline site survey. To this end, a probabilistic framework is firstly
presented to characterize the ability of distinguishing two finger-
prints, and is then applied in both the ideally infinite sampling case
and the realistically finite sampling case with correlated samples.
On these grounds, it is shown that the Euclidean distance between
the vectors of mean RSS measurements at any two positions is
the key factor of determining localization performance, and how
several other factors affect localization performance. More impor-
tantly, based on the central limit theory, a quantitative analysis is
conducted to describe the degradation in localization performance
introduced by finite and correlated samples. In addition, provided
that correlated samples satisfy the first order autoregressive model,
an explicit formula is derived to describe the relationship between
the correlation coefficient and the sampling sizes, which can be
employed to guide the offline site survey. Extensive simulations are
conducted to confirm the effectiveness of the probabilistic frame-
work as well as the correctness of different analytical results, and
an experiment is also carried out for validation. This paper not only
helps to understand the basic mechanism of WiFi fingerprint-based
localization, but also provides insightful guidelines for efficiently
building a fingerprint database.

Index Terms—Central limit theory, performance analysis,
sampling size, WiFi fingerprint-based localization.

I. INTRODUCTION

W ITH the widespread of WiFi (or IEEE 802.11) enabled
infrastructures and mobile devices in our daily life, it is

promising to develop and deploy WiFi based indoor localization
systems. Great efforts have been invested in the past decades
to enable reliable and precise WiFi indoor positioning and
navigation [1]. In particular, due to its simplicity and tolerance
to pervasive multipath effects in indoor environments, WiFi
fingerprint-based localization [2]–[6] has gained most attention
in both academic and industrial fields.
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Basically, WiFi fingerprint-based localization involves two
phases, namely an offline site survey phase and an online lo-
calization phase. In the offline site survey phase, a fingerprint
database consisting of a number of WiFi fingerprints (i.e., con-
sisting of a vector of mean RSS measurements associated with
multiple APs) labelled with reference locations within a service
area is constructed. In the online localization phase, when a
mobile device sends an location query containing its current re-
ceived signal strength (RSS) measurements from multiple WiFi
access points (APs), its location can be inferred by searching the
existing fingerprint database through, e.g., thek nearest neighbor
(KNN) method.

Though various WiFi fingerprint-based localization tech-
niques [7]–[10] and relevant performance analyses [11]–[15]
have been reported, it is still challenging to efficiently de-
velop and deploy WiFi fingerprint-based localization systems
[16]–[18]. Specifically, the fingerprint at any reference location
is usually represented by the statistical attribute (e.g., mean,
variance, and histogram) of associated received signal strength
(RSS) measurements from multiple APs, so that building a
fingerprint database normally demands labor-intensive and time-
consuming measurement campaigns. Sampling size that speci-
fies the number of RSS measurements requested for producing
one fingerprint plays a vital role, due to the fact that it not only
determines the overheads of building a fingerprint database, but
also affects the localization performance [19]. Intuitively, the
larger is the sampling size, the better is localization performance,
but it is infeasible to conduct infinite sampling. Thus, it is of
great value to derive an efficient sampling size for the offline site
survey, such that having more samples does not significantly
improve localization performance, with the result that both
manpower and time are substantially saved without sacrificing
localization accuracy. To be best of our knowledge, this problem
is still open in the literature.

Essentially, WiFi fingerprint-based localization can be cast as
a classification problem [20], [21], in the sense that dedicated
classification algorithms are employed to select one or multiple
most probable fingerprints in the fingerprint database which
matches a vector of RSS measurements made in real time from
multiple APs, such that the final location can be determined
based on the location labels of such selected fingerprints. There-
fore, the quality of the fingerprint database, i.e., the ability of
discriminating any two fingerprints, determines the resulting
localization performance, motivating us to focus on studying
how to discriminate one fingerprint from another.
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In general, a fingerprint is produced by using the sample
average of sequentially sampled RSS measurements at the corre-
sponding reference location, which is obviously affected by the
sampling size and correlations, and is always distinguishable
from most other fingerprints in a fingerprint database except
a few distant but similar fingerprints (where the similarity is
often measured by, e.g., Euclidean distance), which are respon-
sible for introducing significant localization errors. As such,
understanding how to discriminate two fingerprints in various
circumstances is a fundamental approach for investigating the
influence of sampling size, and also paves the way for analyz-
ing localization performance, calibrating fingerprint databases,
designing advanced localization algorithms, and etc.

Therefore, in this paper, a probabilistic framework is initially
established to characterize the probability of discriminating one
fingerprint from another, in both the ideally infinite sampling
case and realistically finite sampling with correlation. Then, as
a mathematical tool, the framework is leveraged to investigate
the influences of different factors on localization performance.
As a result, it is concluded that the localization performance
only relies on the Euclidean distance between the vectors of the
mean RSS measurements associated with such two fingerprints
as well as the corresponding standard deviation. Moreover, by
using the central limit theorem, the influences of the finite
sampling size and correlation between RSS measurements are
further investigated. In addition, supposing correlated samples
satisfying the first order autoregressive model, a formula is
obtained and shows the mathematical relationship among the
localization performance, sampling sizes in both uncorrelated
and correlated cases, and correlation coefficient, suggesting the
efficient sampling size for developing WiFi fingerprint-based
localization systems. Extensive simulations and an experiment
are carried out and confirm the effectiveness of the probabilistic
framework as well as various results obtained.

The rest of the paper is organized as follows. Section II reviews
the performance analysis studies. Section III and Section IV
respectively establish the theory of localization performance
analysis with infinite and finite sampling. In Section V, both
simulations and experimental results are reported. We conclude
this paper and shed light on future works in Section VI.

II. RELATED WORKS

Due to the complexities of indoor wireless signal propa-
gations, it is challenging to characterize the performance of
WiFi fingerprint-based localization. Most existing results are
obtained through either experiments or simulations [12], [22],
and theoretical studies are quite limited.

In [23], the average and probability of the localization error
were formulated, but closed-form formulas were unavailable, so
that only simulation results were presented. In [11], a prelimi-
nary analytical model based on the Euclidean distance between
vectors of RSS measurements was developed for a localization
system with simplified assumptions on signal propagation and
system design, and the influences of the AP number and signal
propagation parameters were investigated. In [24], an analytical
model that employs proximity graphs for predicting localization

performance was developed and also verified through simula-
tions. This model can be used to analyze the internal structure of
fingerprints, so as to identify and eliminate unnecessary location
fingerprints stored in a fingerprint database, thereby saving
on computation while performing location estimation. In [25],
an analytic expression for the cumulative distribution function
(CDF) of the localization error was presented to investigate the
effects of the number of fingerprints and the distance between ad-
jacent fingerprints on the localization error, which were further
verified through experiments. In [26], the probability density
function (PDF) of the localization error was formulated and
further approximated by using nonparametric kernel density
estimation techniques. As a result, accurate online evaluation
of the localization error is possible, but it is difficult to derive
common knowledge about WiFi fingerprint-based localization.
In [14], the Cramer-Rao Lower Bound (CRLB) was leveraged
to investigate the fundamentals of WiFi based localization, re-
vealing that how the number of APs and RSS gradients affect
localization performance. In [13], a general but complicated
probabilistic model was presented to investigate the accuracy
and reliability of WiFi fingerprint-based localization with dif-
ferent numbers of RSS measurements from one or more AP
during the online localization phase. In [15], a new localization
error bound was derived by analogizing WiFi based localization
into one of information propagation in a parallel Gaussian noisy
channel and turned out to outperform the CRLB. However,
all these studies cannot directly and comprehensively answer
how WiFi fingerprint-based localization is affected by different
factors.

Besides, there exist extensive studies relying on, e.g., pedes-
trian dead reckoning (PDR) [27], crowdsourcing [17], and etc.,
to alleviate the overheads of the offline site survey. In what
follows, we shall review some studies on the optimization of
the key parameters in the offline site survey.

In [28], the relationship between localization accuracy and
the distance between adjacent reference locations was investi-
gated, and an optimization method was developed based on the
Gaussian process model to balance the survey workload and
localization accuracy. Experiments were conducted to validate
the efficiency of the mechanism, and show that the method
can largely reduce the workload of the site survey. In [16], an
algorithm was developed to determine the minimum number of
reference locations which can be randomly distributed within the
area of interest, in order to achieve the predefined localization
accuracy with a desired confidence level. Both experiments and
simulations were conducted and validated the effectiveness of
the proposed algorithm.

In summary, though extensive efforts have been invested on
WiFi fingerprint-based localization as well as its performance
analyses, there still exist obvious gaps between the realistic
localization systems and various analytical models. Specifically,
existing studies focused on either designing advanced fingerprint
matching algorithms used in the online localization phase, or
controlling the density of reference locations in the offline
site survey phase, but ignored the problem of how many RSS
measurement samples are sufficient at each reference location
in the offline site survey phase in order to produce a nearly ideal
fingerprint. In this paper, we shall first propose a probabilistic

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 14,2021 at 02:53:46 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: THEORETICAL ANALYSIS ON SAMPLING SIZE IN WIFI FINGERPRINT-BASED LOCALIZATION 3601

TABLE I
NOTATIONS DEFINITION

framework to analyze the performance of WiFi fingerprint-based
localization, and then solve the problem in relation to the sam-
pling size from a theoretical approach.

III. PERFORMANCE ANALYSIS OF INFINITE SAMPLING

In view of WiFi fingerprint-based localization techniques, if
two fingerprints are similar to each other, it is hard for the online
localization phase adopting say the KNN method to discriminate
one from the other given an arbitrary location query at nearby
locations, such that the localization result tends to be erroneous.
In other words, given a WiFi fingerprint based localization sys-
tem, the key factor for determining its localization performance
is the ability of discriminating any two fingerprints regardless
of how many fingerprints involved.

Therefore, we introduce a probabilistic framework by formu-
lating the probability of discriminating two fingerprints from
each other in an ideal case, namely that the mean RSS measure-
ment associated with each fingerprint is derived through infinite
sampling. For ease of presentation, we define the following
symbols used in this paper in Table I.

A. WiFi RSS Measurement Model

As was commonly assumed [11], [13], [24], the RSS mea-
surements of the signals propagated from p APs to a receiver at
the position l, denoted x = [x1, x2, . . . , xp]

T , are independently
and normally distributed, namely

x ∼ N(m(l), σ2Ip), (1)

Fig. 1. The illustration of infinite sampling and finite sampling.

where m(l) ∈ Rp is a vector function calculating the mean RSS
measurements (in dBm) at any given position l ∈ R2 from p
APs, and Ip is the identity matrix of order p.

Regarding the i-th reference location, the corresponding vec-
tor of the mean RSS measurements is abbreviated as mi, and if
only one AP (i.e., p = 1) is considered, the mean RSS measure-
ment is represented by mi.

B. Discriminating Two Fingerprints

Instead of directly measuring localization errors, the proba-
bility of discriminating different fingerprints given a RSS mea-
surement is defined as the metric for localization performance.

The following Lemma takes into account the simplest case
that two fingerprints with only one AP are involved.

Lemma 1: Suppose that RSS measurements made at l1 and
l2 are independently and normally distributed with means m1

and m2, respectively, and the standard deviation σ. Then, the
probability that an arbitrary RSS measurement made at l1 is
classified as belonging to l1 other than l2 is

Pr(fm1,σ(x) > fm2,σ(x)) = Φ

( |m2 −m1|
2σ

)
, (2)

where fm1,σ(·) denotes the PDF of a normal variable with the
mean m1 and standard deviation σ, and Φ(·) denotes the CDF
of a standard normal variable.

Proof: Without loss of generality, suppose m1 < m2. An
arbitrary RSS measurement made at l1, say x ∼ N(m1, σ

2), is
classified as belonging to l1 other than l2 if and only if it is more
probable to obtain x at l1 than l2, i.e.,

fm1,σ(x) > fm2,σ(x). (3)

As is depicted in Fig. 1, the two solid curves represent the
true PDFs of RSS measurements at l1 and l2 from one AP, and
it is evident that (3) holds if and only if the integral range is x ∈
(−∞, (m1 +m2)/2). As such, the probability thatx is correctly
classified as belonging to l1 other than l2 is

Pr(fm1,σ(x) > fm2,σ(x)) =

∫ m1+m2
2

−∞
fm1,σ(x)dx

=

∫ m1+m2
2

−∞
f0,σ(x−m1)dx =

∫ −m1−m2
2

−∞
f0,σ(x)dx

= Φ0,σ

(
m2 −m1

2

)
= Φ

(
m2 −m1

2σ

)
,
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where Φ0,σ(·) is the CDF of the normal variable N(0, σ2). Sim-
ilarly, the formulation of the probability in the case of m1 > m2

can be derived. Finally, the lemma is proved. �
Then, considering the case of two fingerprints with more APs,

we can obtain the following theorem.
Theorem 1: Suppose that the vectors of RSS measurements

from pAPs and made at l1 and l2 are independently and normally
distributed with mean vectors m1 and m2 and the standard devi-
ationσ. Then, the probability that an arbitrary RSS measurement
vector made at l1 is classified as belonging to l1 other than l2 is

Pr(fm1,σ(x) > fm2,σ(x)) = Φ

(‖m2 −m1‖
2σ

)
. (4)

Proof: Let x be a vector of RSS measurements made at l1.
Similar to the treatments with one AP, the necessary and suffi-
cient condition of correctly classifying x is that the Euclidean
distance between x and m1 is less than that between x and m2.
Then, it is simple to obtain (4). �

Remark 1: Theorem 1 essentially simplifies the continuous
area for localization into a set of discrete reference locations.
Since we are not concerned with the precise values of localiza-
tion errors, but intend to evaluate how localization performance
is changed with different factors, it is sufficient to adopt the
probabilistic framework in the performance analysis. Moreover,
(4) holds if and only if the Euclidean distance between x and the
mean RSS measurement vector at l1 is less than that associated
with x and l2, which is factually the same as the comparing
approach adopted in the online localization phase. Therefore,
the proposed framework is congruent with the practical WiFi
fingerprint-based localization techniques.

Remark 2: Irrespective of the number of APs (i.e., p), the
similarity between any two fingerprints, namely ‖m2 −m1‖,
plays a vital role in discriminating the corresponding two ref-
erence locations, in the sense that reducing the similarity by
increasing ‖m2 −m1‖ contributes to localization performance.
Moreover, for an existing localization system, adding one or
more extra AP (namely increasing p), will definitely increase
‖m2 −m1‖, so that the probability in (4) will rise as well and
localization performance can be improved. In addition, the stan-
dard deviation of RSS measurements at any reference location,
i.e., σ, is another important factor of determining localization
performance, and it is intuitive that reducing σ tends to improve
localization performance.

Remark 3: The result in Theorem 1 is consistent with existing
relevant studies. For instance, in [14], a CRLB based approach
is applied to analyze the performance of WiFi fingerprint-based
localization, revealing that the larger is the gradient of the mean
RSS measurement at any location, the better is the localization
performance, which evidently admits Theorem 1; in [29], the
difference between the mean RSS measurements of two finger-
prints is empirically adopted as a metric for optimally deploying
WiFi APs.

Remark 4: As was mentioned before, discriminating two
fingerprints is key to the localization performance of a WiFi
fingerprint-based localization system. For instance, provided
that a pair of fingerprints associated with two distant reference
locations in a fingerprint database have high similarity, RSS
measurements sampled at one of them are prone to be classified

as belonging to the other, with the result that large localization
errors are eventually incurred. According to Theorem 1, one can
reduce such localization errors by introducing a new AP(s) or
moving an existing AP(s) to an appropriate position, such that
the similarity is lowered. Therefore, evaluating and improving
the quality of a fingerprint database can be implemented based
on discriminating two fingerprints. However, since it is beyond
the main purpose of this paper, we shall work towards it in our
future works.

In summary, the proposed probabilistic framework based on
formulating the probability of discriminating two fingerprints
is correct and feasible, and also as a basis, paves the way for
further analysis in practical scenarios.

IV. PERFORMANCE ANALYSIS OF FINITE SAMPLING

Since knowing an exact mean RSS measurement demands
infinite sampling, which is infeasible in practice, sample average
based on finite sampling is alternatively used as approximations.
Thus, in what follows, the performance analysis shall be con-
ducted given a limited sampling size. In addition, we take into
account two fingerprints with multiple APs.

A. Discriminating Two Fingerprints With Finite Samples

Given any AP and any reference location, due to the limited
size of RSS measurements made in the offline site survey, the
resulting sample average usually deviates from the true mean
value, as depicted in Fig. 1 where the dashed curves represent
the approximate PDFs with the sample averages m̂1 and m̂2 as
the mean values. As a result, fingerprint-based localization algo-
rithm has to employ inaccurate fingerprints during localization.
Then, we can obtain the following theorem.

Theorem 2: Suppose that RSS measurements made at l1 and
l2 from p APs are independently and normally distributed with
means m1 and m2, respectively, and the standard deviation
σ. Then, given the sampling size nu, the probability that an
arbitrary vector of RSS measurements made at l1, denoted x, is
classified as belonging to l1 other than l2 is

Pr(fm̂1,σ(x) > fm̂2,σ(x)) = Em̂1,m̂2

(
Φ

(
bm1(m̂1, m̂2)

σ

))
,

(5)
where m̂1 and m̂2 are the sample averages, Em̂1,m̂2 is the
expectation taken with respect to m̂1 and m̂2, and

bm1(m̂1, m̂2) =
(m̂2 − m̂1)

T

‖m̂2 − m̂1‖
(
m̂1 + m̂2

2
−m1

)
(6)

Proof: Pr(fm̂1,σ(x) > fm̂2,σ(x)) can be evaluated by cal-
culating the integral of fm̂1,σ(x) when fm̂1,σ(x) > fm̂2,σ(x),
which will hold as long as x is closer to m̂1 than m̂2, i.e., the
integral range (denoted D) of x is defined by

(x− m̂1)
T (x− m̂1) ≤ (x− m̂2)

T (x− m̂2)

⇔ (m̂2 − m̂1)
T

‖m̂2 − m̂1‖ (x−m1) ≤ bm1(m̂1, m̂2)

⇔ (m̂2 − m̂1)
T

‖m̂2 − m̂1‖ Rx′ ≤ bm1(m̂1, m̂2)
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where

x′ = RT (x−m1) (7)

and R is the orthogonal matrix satisfying

(m̂2 − m̂1)
T

‖m̂2 − m̂1‖ R = [ 1 0 · · · 0 ]. (8)

It is clear that the first column of R equals to (m̂2−m̂1)
‖m̂2−m̂1‖ . As such,

for x′, its first element, denoted x′
1, satisfies

x′
1 =

(m̂2 − m̂1)
T

‖m̂2 − m̂1‖ (x−m1) ≤ bm1(m̂1, m̂2), (9)

and all the other elements are free. From the perspective of vector
view, bm1(m̂1, m̂2) is actually the projection distance of the
vector from m1 to m̂1+m̂2

2 on the vector m̂2 − m̂1.
Given a specific pair of m̂1 and m̂2, we have∮

D

fm1
1,σ

(x1) · · · fmp
1 ,σ

(xp)dx1 · · · dxp

=

∮
D

1

(
√

2π)p−1
f0,σ(‖RT (x−m1)‖)dx1 · · · dxp

=

∮
D

1

(
√

2π)p−1
f0,σ(‖x′‖)dx′

1 · · · dx′
p

=

∮
D

f0,σ(x
′
1) · · · f0,σ(x

′
p)dx

′
1 · · · dx′

p

= Φ

(
bm1(m̂1, m̂2)

σ

)
. (10)

Thus, the theorem is proved. �
Remark 5: Following the proof of Theorem 2, we can put it

further by transforming m2 and m1 to any other two vectors
with their Euclidean distance equal to ‖m2 −m1‖, and obtain
the same value of (5), namely that the probability (5) relies on
‖m2 −m1‖ other than the specific vectors m1 or m2. This is
the same as in the infinite sampling case.

Furthermore, it is of great value to understand how local-
ization performance is affected by the sampling size, i.e., nu.
The following theorem describes the degradation in localization
performance caused by the finite sampling size nu.

Theorem 3: Provided that the same scenario as in Theorem 2
is considered and the sample averages m̂1 and m̂2 are suffi-
ciently close to their true means m1 and m2, respectively, the
probabilities given in (4) and Theorem 2 satisfy

Pr(fm̂1,σ(x) > fm̂2,σ(x)) ≈ Pr(fm1,σ(x) > fm2,σ(x))

−
σ2
u exp

(
−‖m2−m1‖2

8σ2

)
√

2π

(‖m2 −m1‖
4σ3

+
(p− 1)

σ‖m2 −m1‖
)
(11)

where σu denotes the standard deviation of the sample average
m̂1, and it follows from the central limit theory that

σu =
σ√
nu

. (12)

Proof: First of all, since bm1(m̂1, m̂2) is infinitely differen-
tiable except m̂1 = m̂2, we can apply the Taylor series expan-

sions on Φ(
bm1 (m̂1,m̂2)

σ ) around (m1,m2) with m1 �= m2 and
obtain

Em̂1,m̂2

(
Φ

(
bm1(m̂1, m̂2)

σ

))
≈ Φ

(
bm1(m1,m2)

σ

)

+ Em̂1,m̂2

([
m̂1 −m1

m̂2 −m2

]T
H

[
m̂1 −m1

m̂2 −m2

])
(13)

where H is the Hessian matrix of Φ(
bm1 (m1,m2)

σ ).
Secondly, by applying fundamental and tedious matrix cal-

culus operations, we can obtain the blocks of H on the main
diagonal as follows.

H11 = Φ′′ (m2 −m1)(m2 −m1)
T

4σ2‖m2 −m1‖

− Φ′
(

3Ip
2σ‖m2 −m1‖ − 3(m2 −m1)(m2 −m1)

T

2σ‖m2 −m1‖3

)
(14)

H22 = Φ′′ (m2 −m1)(m2 −m1)
T

4σ2‖m2 −m1‖

+Φ′
(

Ip
2σ‖m2 −m1‖ +

(m2 −m1)(m2 −m1)
T

2σ‖m2 −m1‖3

)
.

(15)

where

Φ′ =
1√
2π

exp

(
−‖m2 −m1‖2

8σ2

)
(16)

Φ′′ = −‖m2 −m1‖
2
√

2πσ
exp

(
−‖m2 −m1‖2

8σ2

)
(17)

Thirdly, with σu we have

Em̂1

(
(m̂1 −m1)(m̂1 −m1)

T
)
= σ2

uIp. (18)

Finally, by substituting (14), (15), (16), (17) and (18) into
(13), we can obtain (11). Thus, the theorem is proved.

Remark 6: The negative difference given in (11) indicates
that localization performance is degraded due to finite sampling;
specifically, the degradation is approximately proportional toσ2

u,
and also depends on ‖m2 −m1‖. Supposing that ‖m2 −m1‖
rises up from 0, exp(−‖m2−m1‖2

8σ2 ) drops from 1 to 0, whereas

( ‖m2−m1‖
4σ3 + (p−1)

σ‖m2−m1‖ ) initially drops and then gradually rises

up after ‖m2 −m1‖ > 2σ
√
p− 1. Therefore, it is conjectured

that the degradation will diminish with ‖m2 −m1‖ increasing.
Remark 7: According to (11), the localization performance

is dependent on the following parameters, σ, ‖m2 −m1‖, p
and nu, where σ and ‖m2 −m1‖ are actually dependent on
wireless channels, p is often predetermined, and only nu is an
optional parameter relying on the offline site survey. Therefore,
gain in localization performance can be attained by making more
samples, namely increasing nu, but will die off with nu above
a threshold due to the inversely proportional relationship. As
such, (11) enables us to find out efficient sampling sizes in the

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 14,2021 at 02:53:46 UTC from IEEE Xplore.  Restrictions apply. 



3604 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 4, APRIL 2021

finite and uncorrelated sampling case, so as to avoid wasting
manpower and time in collecting excessive RSS measurements
in the offline site survey.

B. Discriminating Two Fingerprints With Finite and
Correlated Samples

When RSS measurements associated with finite sampling are
also correlated, (18) will not hold any more. As a result, we
can readily derive the following corollary about the influence of
finite and correlated samples on localization performance.

Corollary 1: The same scenario as in Theorem 2 is consid-
ered, except that the RSS measurements between the same pair of
AP and reference location are correlated. Then, the probabilities
given in (4) and Theorem 2 satisfy

Pr(fm̂1,σ(x) > fm̂2,σ(x)) ≈ Pr(fm1,σ(x) > fm2,σ(x))

−
σ2
c exp

(
−‖m2−m1‖2

8σ2

)
√

2π

(‖m2 −m1‖
4σ3

+
(p− 1)

σ‖m2 −m1‖
)
.

(19)

where σ2
cIp denotes the covariance matrix of m̂1 obtained by

using n correlated samples, namely

Em̂1

(
(m̂1 −m1)(m̂1 −m1)

T
)
= σ2

cIp. (20)

Remark 8: Similarly to the cases of infinite sampling in The-
orem 2 and finite sampling without correlation in Theorem 3, the
difference in the mean RSS measurements still plays a vital role,
but the standard deviationσc, which relies on sample correlation,
essentially determines the magnitude of the diminishing effect
caused by sample correlation. In other words, the degradation in
localization performance is approximately proportional to σ2

c ,
indicating that one should pay attention to the value of σc in
practice.

C. Analysis Based on the First Order Autoregressive Model

Treat the RSS measurements from one AP as a discrete
stationary time series, which can be modelled by a first order
autoregressive model [30]. Particularly, let st be the stationary
time series representing the RSS measurement from one AP at
time t. Then, st can be represented as follows

st = (1 − α)m+ αst−1 + vt, (21)

where the correlation coefficient α lies between 0 and 1, and vt
denotes a white noise process independent from st. In essence,
α is a parameter that determines the degree of autocorrelation
of the original RSS measurements. Moreover, different samples
from vt are identically and independently distributed, i.e., vt ∼
N(0, σ2

v).
On these grounds, we can obtain the following theorem about

the sampling distribution given correlated samples.
Theorem 4: Suppose that RSS measurements made at any

location from any AP follows the first order autoregressive
model in (21). Then, given the sampling size nc, the sample
average is normally distributed with mean m and variance

σ2
c =

σ2

nc

(
1 + α

1 − α
− 2α(1 − αnc)

nc(1 − α)2

)
. (22)

Proof: First of all, since the RSS measurements are normal,
regardless of their correlation, it is evident that the sample
average is also normally distributed with the same mean, i.e.,
m. Then, it follows from (21) that

st = (1 − αt)m+ αts0 +
t∑

i=1

αt−ivt. (23)

Since st follows the normal distribution with mean m and
standard deviation σ, we can obtain

σ2
v = (1 − α2)σ2. (24)

Given n sequential correlated RSS measurements, the vari-
ance of the sample average has the below formulation.

σ2
c = V ar

⎛
⎝ 1
nc

nc−1∑
j=0

sj

⎞
⎠

=
1
n2
c

V ar

⎛
⎝1 − αnc

1 − α
s0 +

nc−1∑
j=1

j∑
i=1

αj−ivi

⎞
⎠

=
σ2

nc

(
1 + α

1 − α
− 2α(1 − αnc)

nc(1 − α)2

)
,

where V ar(·) denotes the variance operation. �
In what follows, we intend to make comparisons between

the cases with finite correlated samples and finite uncorrelated
samples based on Theorem 4.

Remark 9: Firstly, suppose that the same number of RSS
samples are obtained in both cases, namely nu = nc, and then,
it follows from Theorem 4 that

σ2
c

σ2
u

=
1 + α

1 − α
− 2α(1 − αnc)

nc(1 − α)2
(25)

which is only dependent on α and nc, and has nothing to do with
the noise level σ. According to Theorem 3 and Corollary 1, σu

and σc respectively determine the degradations in localization
performance achieved in the two cases in comparison with the
infinite sampling case, so that the ratio actually characterizes the
degree of the degradation induced by sample correlation.

Remark 10: Secondly, suppose that different numbers of RSS
samples are obtained in both cases but produce the same standard
deviation of the sample averages, namely σc = σu. It follows
from Theorem 4 that

nc

nu
=

1 + α

1 − α
− 2α(1 − αnc)

nc(1 − α)2
. (26)

The significance of (26) is two-fold.
� The efficient sampling size can be obtained through (26):

firstly, the efficient sampling size in the finite uncorrelated
case (i.e., nu) can be determined, in the sense that using as
few as nu uncorrelated samples to produce one fingerprint
is able to approximately achieve the localization perfor-
mance with infinite sampling; secondly, the correlation
coefficient (i.e., α) in the target space for site survey can
be empirically or experimentally evaluated; thirdly, given
specific α and nu, the efficient sampling size in the finite
correlated case (i.e., nc) can be calculated based on (26).
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Fig. 2. The probability of successful localization with infinite sampling.

� Given α and nc, (26) determines a unique nu, which
essentially functions as a scalar indicator of localization
performance in light of (7), so that different values ofα and
nc can be intuitively compared through nu for the purpose
of evaluating different sampling strategies.

To sum up, we establish the relationship between localization
performance and several other factors with uncorrelated and
correlated samples in the finite sampling cases, which can be
used to guide the efficient construction of fingerprint databases
in practice.

V. SIMULATIONS AND EXPERIMENTS

In this section, both simulations and experiments are carried
out to validate the proposed framework and results.

A. Simulations for Infinite Sampling

Based on (4), the probabilities of successful localization with
respect to different values of σ and differences in the mean
RSS measurements are plotted in Fig. 2. It is shown that, the
probability is always greater than 0.5, indicating a at least
fifty-fifty chance to discriminate two fingerprints, and normally
rises up with the difference increasing; if the difference is
sufficiently large, the probability approaches to 1, meaning that
discriminating such two fingerprints is almost surely successful.
For instance, when the difference is above 50 dB, the proba-
bilities approach to 1 regardless of the value σ. Additionally,
it can be observed that increasing σ significantly reduces the
probabilities. For instance, given a difference around 10 dB, the
probability is nearly 1 when σ = 2 dB, but reduces to around
0.7 when σ = 10 dB.

B. Simulations for Finite Sampling

Firstly, in order to validate the approximate formula in The-
orem 3, i.e., (11), the probabilities of successful localization
with respect to different values of σ and n are evaluated through
both (11) and the numerical integration approach. As depicted in
Fig. 3, given ‖m2 −m1‖ = 10 dB and p = 1, the gap between
(11) and the numerical result reduces with n increasing, and
particularly, whenn = 30, the curve of (11) almost overlaps with
its counterpart derived by the numerical approach regardless of

Fig. 3. The probability of successful localization with finite sampling evalu-
ated by (11) and a numerical approach.

Fig. 4. The probability of successful localization with finite and uncorrelated
samples evaluated by (11).

the value of σ. As such, the approximation in Theorem 3 is
feasible and thus acceptable.

Secondly, given finite uncorrelated samples, the probabilities
of successful localization with respect to different values of σ
andnu are plotted in Fig. 4 based on (11), where the probabilities
associated with infinite sampling are plotted with the legend
“InfSamp” for comparison. Note that the gap between the prob-
abilities associated with finite sampling and the corresponding
infinite sampling represents the degradation induced by finite
sampling. As such, it can be found that the degradation can
be mitigated by increasing either the sampling size nu, or the
difference in the mean RSS measurements (i.e., ‖m2 −m1‖),
both of which tend to force the last term in (11) to 0. This is also
consistent with Remark 6 and 7. For instance, the gap is trivial
when nu = 5 regardless of the values of σ and ‖m2 −m1‖,
and almost disappears when nu ≥ 10. Exception happens when
‖m2 −m1‖ approaches to 0 in the sense that the gaps do not
exist, which is attributable to the fact that having two different
reference locations with the identical mean RSS measurement
from one AP (i.e., p = 1) results in half chance of successful
localization.

Moreover, given finite and correlated samples, the probabil-
ities of successful localization with respect to different values
of σ, nc and α are plotted in Fig. 5 based on Corollary 1 and
Theorem 4. Similar results can be observed as in the uncorrelated
case except that much more samples are required.

Thirdly, considering the case in Remark 9, namely nc = nu,
the ratio σ2

c

σ2
u

with respect to α and sampling size nc is plotted in
Fig. 6 according to (25). As can be seen, with nc increasing, the
ratio generally rises; as a result, the degradation in localization
performance due to sample correlation is gradually enlarged, but
appears to be stable when nc is above a threshold. In addition,
given a specific sampling size, the higher is the value of α, the
larger is the ratio, thus resulting a lower probability of successful
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Fig. 5. The probability of successful localization with finite and correlated
samples.

Fig. 6. The ratio σ2
c

σ2
u

calculated using (25) with respect to different values of

α and different sampling sizes.

localization according to (19) in Corollary 1; that is to say, high
correlation in RSS measurements does deteriorate localization
performance.

Finally, we shall explain how Remark 10 works in view of
the above simulation results. According to Fig. 4, the localiza-
tion performance of using 10 uncorrelated RSS measurements
to produce a fingerprint approaches to that with infinite sam-
pling, namely nu = 10. Supposing that α = 0.5 (or α = 0.9),
it follows from Remark 10 that nc =

1+α
1−αnu, indicating that

using nc = 30 (or 190) correlated RSS measurements is able
to achieve similar localization performance as using nu = 10
uncorrelated RSS measurements, which evidently conforms to
Fig. 5 and suggests that the efficient sampling size should be
around 30 (or 190).

C. Experiments

We assigned 24 uniformly distributed reference locations in
our lab (see Fig. 7) with the size of 6 m ×12 m, installed
four WiFi APs (which enable packet sniffing WiFi) nearby the
four corners and finally collected RSS measurement samples
during 5 minutes at each reference location. In the experiments,

Fig. 7. The floor plan and the real scenario in our lab.

Fig. 8. The standard deviations of RSS measurements at different reference
locations with respect to four APs.

different fingerprint databases are produced based on different
RSS sampling strategies and K nearest neighbors (KNN) with
k = 3 is employed to fulfill the online localization.

To emulate sampling with different correlations, we actually
select RSS samples from raw data with different intervals i.e.,
1 s, 40 s and 100 s, are used, and as a result, the corresponding
sample correlations (i.e., α) are respectively 0.98, 0.88 and 0.77
evaluated by using the Yule-Walker method.

In the first place, we shall investigate the assumptions we have
made in this paper. To this end, we plot the standard deviations
and histogram of RSS measurements collected at each reference
location in Fig. 8 and Fig. 9 respectively. As can be seen, even
if the standard deviations are not equal and the histograms are
not perfectly normal, the standard deviations are in the same
magnitude of order and the histograms are essentially similar to
normal distributions, so that the theoretical analysis conducted
in this paper is advisable and significative.

In the second place, we produce fingerprint databases by using
different numbers of RSS samples (i.e., nc) at each reference
location given a specific α and plot the localization errors in
Fig. 10 and Fig. 11. According to (26), a unique nu is calculated
given a pair of nc and α, and is also depicted in both figures.
Specifically, Fig. 10 illustrates that, given a specific α, the
localization accuracy improves with the sampling size nc as
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Fig. 9. The histograms of RSS measurements with respect to different AP at
two reference locations.

Fig. 10. The localization errors with respect to different sampling strategies.

Fig. 11. The localization errors with respect to different sampling strategies
given the same value of nu.

well as nu, which is consistent with Theorem 3 and Remark 7.
Moreover, Fig. 11 shows that, regardless of the values of nc and
α, nu is the key factor that determines the localization accuracy,
which confirms the second part of Remark 10.

According to Fig. 4, when nu = 5, the localization perfor-
mance has been very close to the infinite sampling case, indicat-
ing that it is acceptable to collect 5 uncorrelated RSS samples
to produce a fingerprint. However, even if we have made RSS
measurements at each reference location for a relatively long
period of time, which is far more than usual, the equivalent nu

is only as large as 2.58, implying that there is still room for
improving the localization accuracy.

In summary, both the simulations and experiments validate
the theoretical analysis and corresponding results in the paper.

VI. CONCLUSION

In this paper, a probabilistic framework was initially presented
to evaluate the performance of WiFi fingerprint-based localiza-
tion by involving only two fingerprints with infinite sampling,
and was then extended to the more practical cases by gradually
taking into consideration finite sampling and sample correlation.
On these grounds, a theoretical analysis was conducted and
revealed the fundamentals in relation to the performance of
WiFi fingerprint-based localization. Particularly, the efficient
sampling size for producing a fingerprint was thoroughly investi-
gated based on a quantitative analysis. Extensive simulations and
experiments were carried out, and confirmed the effectiveness of
the proposed framework and the correctness of the correspond-
ing performance analysis. The results in this paper not only
help to understand the mechanism of WiFi fingerprint-based
localization, but also provide insightful guidelines for efficiently
building a fingerprint database.

Regarding future works, we would like to adopt the prob-
abilistic framework to investigate other performance issues in
relation to realistic WiFi fingerprint-based localization systems,
e.g., how to calibrate a fingerprint database, how to design a
superior localization algorithm, and etc.
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