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Abstract—The 5G heterogeneous networks (HetNets) are ca-
pable of providing real-time computing services for autonomous
vehicles (AVs) by deploying edge computing devices (ECDs) at
macro cell base stations (MCBSs) and small cell base stations
(SCBSs). With the imbalanced distribution and fast moving AVs
contending intensely for computing services, how to efficiently ex-
ploit cooperations among participants in 5G HetNets to improve
the service performance is therefore challenging. In this paper, we
develop a game theoretic scheme for collaborative vehicular task
offloading to facilitate the computing services in 5G HetNets.
Specifically, we propose a two-stage vehicular task offloading
mechanism to promote the cooperation among participants with
the target of improving the task completion rate and the utilities
of the participants, where the mechanism jointly considers the
network architecture of the HetNets, the imbalanced distribution
of AVs and the reuse of task results. In the first stage, an auction
model is designed to help the MCBS select the optimal SCBS
to execute the offloaded task based on the requirement of the
task and the available computing resources of SCBSs. According
to the task execution cost declared by the selected SCBS, the
MCBS then bargains with the AV for the agreement of the task
offloading service to maximize their utilities in the second stage.
Using simulations, we show that the proposed collaborative task
offloading scheme can achieve a higher task completion rate
for the task offloading service and bring higher utilities to all
participants than conventional schemes.

Index Terms—5G heterogeneous networks, vehicular task of-
floading, edge computing, game theory.

I. INTRODUCTION

RECENT years have witnessed the breakthrough of au-
tonomous driving worldwide which could potentially

change the way of our transportation and daily life [1]–[3].
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Fig. 1. Illustration of the collaborative vehicular task offloading in HetNets.

For example, with vehicles becoming self-driving, people can
be released to work or play video games on the trip and
let the vehicle drive and park by itself. Never feeling tired
and distracted, the autonomous driving is much safe and can
reduce energy consumption with better planned routes and
driving strategies. For AVs driving on the roads, a huge body
of computing tasks need to be executed to facilitate compu-
tationally intensive applications. The tasks, such as camera-
based traffic monitoring, sensed data processing and artificial
intelligence, typically have high computational demands which
pose challenges to the autonomous driving [4].

To meet the ever increasing demands of AVs, the inte-
gration of edge computing and 5G heterogeneous networks
(HetNets) is advocated to provide task computing services
to facilitate autonomous driving [5]–[7]. In 5G HetNets, as
shown in Fig. 1, several small cell base stations (SCBSs)
are covered by the communication coverage of a macro cell
base station (MCBS) [8]–[10]. By deploying edge computing
devices (ECDs) at the MCBS and SCBSs, an AV can offload
its computing task to the MCBS or its connected SCBS to
improve the driving experience. Compared to the cloud server,
the MCBS and SCBSs are in proximity of AVs so that they
can provide services to AVs at the edge of the networks. With
the rich computing resources provided by the ECDs deployed
at MCBS and SCBSs, the long latency involved in remote
transmissions can be reduced [11]–[13].

Motivated by the aforementioned observations, edge com-
puting and computation offloading schemes have been ex-
tensively studied to facilitate different vehicular applications
[14]–[21]. However, few of them concurrently consider the
imbalanced distribution of AV’s task computing requests, the
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reuse of task results as well as the dynamic cooperation among
participants including AVs, SCBSs and MCBS. In general,
an AV with a high driving speed may leave the coverage of
its connected SCBS before receiving the result of the task.
In addition, AVs are not evenly distributed in the coverage
of the MCBS [22]. Consequently, in the coverage of the
SCBSs with a high vehicle density, the available computing
resources of the SCBSs may not be able to serve all the
tasks. On the contrary, in the coverage of the SCBSs with
a low vehicle density, the computing resources may not be
fully utilized. More importantly, the reuse of task results is
rarely mentioned in existing works. In practice, the results or
partial results of some computing tasks, such as the amount
of traffic on a road, can often be reused for a period of
time. As such, the utilization of computing resources can be
significantly improved. Besides, the tasks requested by AVs
typically have stringent time constraints (represented by a
time to live (TTL) metric) and the base stations with different
computing abilities may declare different costs for outsourcing
computing services. For the AVs, they intend to execute tasks
within the TTL and minimize the costs. In contrast, the base
stations intend to maximize their profits. The negotiation of the
transaction for the task computing outsourcing therefore needs
to be studied with the target of improving their utilities. To
summarize, an integrated task offloading architecture is needed
for 5G HetNets to help the participants work cooperatively to
compute tasks and enhance their utilities.

To this end, we propose a game theoretic scheme for collab-
orative vehicular task offloading in 5G HetNets. Specifically,
by considering the network architecture of the HetNets, the
imbalanced distribution of task requests and the reuse of task
results, a two-stage task offloading mechanism is designed to
promote the cooperation among the participants. With such a
mechanism, the participants can cooperate with each other to
compute the task, where the efficient scheduling can adjust the
distribution of task computing requests and make full use of
the resources in the networks. In the first stage, we formulate
the second price sealed auction (SPSA) model to help the
MCBS make the task allocation strategy, where the strategy
is used to select the optimal SCBS to execute the offloaded
task based on the requirement of the task and the available
computing resources. By doing this, the task can be completed
within the TTL and the cost for completing the task can be
minimized. According to the cost of completing the task bade
by the optimal SCBS, the MCBS and the AV then bargain
with each other to reach an agreement for the task offloading
service in the second stage to maximize their utilities. Our
main contributions are three-fold.
• Mechanism design: We propose a two-stage task of-

floading mechanism to provide computing services for
AVs in 5G HetNets. With the designed task offloading
mechanism, the distribution of AVs’ task computing
requests can be balanced and the task completion rate
can be improved.

• Problem formulation: Based on the designed mechanis-
m, the utility optimization problems for the SCBSs, the
MCBS and the AV are formulated by jointly considering
the requirement of the task, the reuse of the task result

and the available computing resources in the networks.
• Game analysis: To solve the formulated problems and

promote the cooperation among the participants, the in-
teractions among the SCBSs and the interactions between
the MCBS and the AV are modeled as the SPSA and a
two-round bargaining game, where the optimal strategies
of them are respectively obtained by analyzing the two
game models to maximize their utilities.

The remainder of this paper is organized as follows. Section
II reviews the related works. The system model is presented in
Section III. Section IV presents the proposed game theoretic
task offloading scheme in detail. Section V evaluates the
proposed scheme by simulations, and Section VI closes the
paper with conclusions.

II. RELATED WORK

A. Task Offloading Schemes in Vehicular Networks

In vehicular networks, the task offloading schemes have
been extensively studied. To make full use of the computing
resources, Guo et al. [23] developed a collaborative task
offloading scheme in vehicular networks. With the designed
scheme, the overall processing delay can be minimized. By
considering the realistic environment, Li et al. [24] developed
a coding-based data offloading scheme in vehicular networks,
where the offloading problem is formulated as a utility max-
imization problem and solved by designing an algorithm to
decide the optimal coding policy. Sun et al. [25] proposed a
cooperative task scheduling scheme for computation offloading
in vehicular networks, where the task is divided into subtasks
to minimize the execution time. Zhou et al. [26] presented a
reliable task offloading scheme in vehicular networks by ana-
lyzing the information asymmetry and information uncertainty.
In this scheme, a stable task offloading algorithm is designed to
minimize the network delay. By combining the cloud and edge
computing, Zhao et al. [27] studied a collaborative offloading
problem to support the computation offloading services in
vehicular networks, where the problem is solved by designing
a distributed optimization algorithm. Sun et al. [28] proposed
a learning-based task offloading scheme which considers the
dynamic and uncertain vehicular environment. The simulation
results demonstrate that the proposed scheme can reduce the
offloading delay compared with the existing algorithm.

Different from these existing works, the vehicular task
offloading scheme proposed in our paper focuses on the
cooperation among participants in the task offloading process
to improve the task completion rate and enhance their utilities.
In the proposed scheme, the utilities of the participants are
analyzed by jointly considering the imbalanced distribution of
the task requests, the reuse of the task results and the available
resources of the MCBS and the SCBSs.

B. Game-based Task Offloading Schemes

There have been a lot of works focusing on the game-based
task offloading schemes to complete computing services. Cao
et al. [29] formulated the offloading decision making problem
as a non-cooperative game, where the Nash equilibrium of
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TABLE I
SUMMARY OF NOTATIONS

Notations Description
K, I, Q Sets of SCBSs, AVs and tasks, respectively.

K̃ Set of SCBSs which can complete the task within the
TTL.

sq , sq Input size and output size of task q.
Tq , Ti,q TTL of task q and TTL requested by AV i.
pq Popularity of task q’s result.
Dq Number of resources that task q needs to be used.

smin, smax Minimum and maximum values of sq and sq .
ri Transmission rate between the MCBS and AV i.

rmin, rmax Minimum and maximum values of ri.
Dmin, Dmax Minimum and maximum values of Dq .
Tmin, Tmax Minimum and maximum values of Tq .

φ Parameter of the Zipf-like distribution.
ς Cost of the MCBS for delivering task per unit time.

Pi,q Transaction price that AV i pays for the service.
CMC,q Cost spent on completing the task.
dk,q Idle computing resources owned by SCBS k.

dmin, dmax Minimum and maximum values of dk,q .
Ci,q Reserve price of AV i for computing the task.
λk,q Cost of SCBS k for computing the task.

Ck,q(λk,q) Bid of SCBS k for computing the task in the SPSA game.
Bk∗,q Price that the MCBS pays the selected SCBS k∗.

ψMC , ψi The discounting rates of the MCBS and AV i.
Γk,q |g The proposed profit distribution strategy of the MCBS

for the task offloading service in round g.
Pi,q |g Reserve price of AV i for the task offloading service in

round g estimated by the MCBS.
pa|g , pr|g Probabilities that AV i accepts and rejects zk,q |g .
XMC,q Utilities of the MCBS.
Xi,q Utilities of AV i.
Xk∗,q Utilities of the selected SCBS k∗.

the game is obtained by designing a machine learning-based
computation offloading algorithm. Liwang et al. [30] devel-
oped a truthful reverse auction mechanism for computation
offloading in vehicular networks. The scheme considers the
opportunistic contacts between vehicles while satisfying the
properties of truthfulness and individual rationality. Cheng et
al. [31] proposed an auction game-based offloading scheme
to offload the cellular traffic through carrier-WiFi networks.
Through simulations, the authors show that the scheme can
achieve lower service delay than the existing mechanism.
Wang et al. [32] proposed a market framework to price
the offloading service, where the interactions between the
service providers and the service consumers are formulated
as a multi-leader multi-follower Stackelberg game. By taking
the selfishness into account, Zheng et al. [33] modeled the
offloading decision process of mobile users as a stochastic
game, where the Nash equilibrium of the game is reached by
using a multi-agent stochastic learning algorithm. To minimize
the task’s computation time and energy consumption, Hong
et al. [34] formulated the multi-hop computation offloading
problem as a potential game, where the QoS-aware distributed
algorithm is designed to achieve the game’s Nash equilibrium.
Peng et al. [35] proposed a multiattribute-based double auc-
tion mechanism to facilitate the task offloading in vehicular
networks. With the designed mechanism, ECDs can serve the
vehicles by providing the requested tasks and attributes.

Although the game-based task offloading schemes have
been widely studied, few of them consider the cooperation
among the participants (i.e., MCBS, SCBSs and AVs) in the

5G HetNets to promote the task offloading performance. In
contrast to the existing works, the imbalanced distribution
of computing requests, the reuse of task results and the
cooperation among the participants are jointly considered in
our paper to improve the task completion rate and enhance
their utilities for the task offloading services.

III. SYSTEM MODEL

In this section, we model the system of the proposed
collaborative vehicular task offloading scheme in 5G HetNets.
The notations used in this paper are summarized in Table I.

A. Network Model

In the 5G HetNets, as shown in Fig. 1, there are several
SCBSs covered by a MCBS. Let K = {1, .., k, ...,K} and
I = {1, ..., i, ..., I} be the sets of SCBSs and AVs in the
communication coverage of the MCBS. The ECDs are de-
ployed at base stations to provide AVs with task computing
services, where the computing ability of SCBS k is determined
by its idle computing resources. The SCBSs distributed in
the networks are connected to the MCBS with high speed
wired links. As the communication coverage of the SCBSs
is limited while the driving speed of AVs is high, an AV
which offloads the task to its connected SCBS may leave the
SCBS’s coverage before the task is completed. In addition, the
distribution of task computing requests generated by AVs are
usually imbalanced in the coverage of the MCBS. Therefore,
in this paper, we focus on the scenario that the task of each
AV is offloaded to the MCBS. Specifically, the MCBS is
responsible for scheduling the tasks requested by AVs with the
target of adjusting the distribution of computing requests and
making full use of the resources in the networks. For AVs,
they are equipped with on-board unit (OBU) and thus can
communicate with the MCBS for requesting task computing
services [36]. If an AV has a task needs to be computed,
the AV can offload the task to the MCBS using wireless
communication. Apart from the computing and transmission,
the MCBS and the SCBSs also have the caching ability to
store the computing results that are frequently used. On the
other hand, some of the requested tasks have been partially
computed, where the results and the associated tasks are also
cached in the networks to serve AVs. For example, the task of
traffic flow can be divided into several subtasks, where each
subtask is in charge of one road. If the result of a subtask is
obtained in advance, it can be used to support the task directly.
If one of these tasks is required by an AV, the rest of the
requested task will be computed. In this way, the task results
can be reused and the utilization of the computing resources
can be improved.

B. Task Model

To achieve different computing goals for the autonomous
driving, computing tasks requested by AVs may have different
requirements and values. Let Q = {1, ..., q, ..., Q} be the
set of tasks that can be requested by AVs in the networks.
For task q(q ∈ Q), it can be characterized by a tuple
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(sq, sq, Dq, Tq, pq), where sq and sq are the input size and the
output size of the task [37]. Both sq and sq range from smin to
smax. Dq is the computing resources that task q needs to use
for completing the task, which follows a uniform distribution
within [Dmin, Dmax]. Tq is the TTL associated with task q.
The result of the task will become useless if the time exceeds
the task’s TTL. pq is the popularity of task q’s result. For ease
of analysis, pq is determined by the Zipf-like distribution in
this paper [38]–[40]. We have

pq = 1/

(
q̃φ

Q∑
%=1

1

%φ

)
. (1)

Here, q̃ is the rank of task q. φ is the parameter to charge
the distribution and ranges from 0 to 1. For example, the
distribution follows the strict Zipf distribution if φ = 1 while
it follows the uniform distribution if φ = 0.

IV. PROBLEM FORMULATION AND GAME ANALYSIS

In this section, we first introduce the two-stage task of-
floading mechanism, followed by the problem formulation and
game analysis for collaborative vehicular task offloading.

A. Two-stage Task Offloading Mechanism

Consider that AV i is in the coverage of the MCBS and
intends to offload task q, the AV then sends a task computing
request to the MCBS using the wireless connection. The
request includes the AV’s identification number, sq , Dq and
Ti,q , where Ti,q is the TTL of the task requested by AV i, we
have Ti,q ≤ Tq . After receiving the request, the MCBS then
makes a task allocation strategy based on the following cases.

Case 1 : The task result is cached in the MCBS.
In this case, if the task result is available in the MCBS’s

cache and the result can be transmitted to the AV within the
requested TTL, the mechanism moves to the second stage
directly. In the second stage, the MCBS negotiates with AV i
for the transaction price. If an agreement between the MCBS
and AV i is achieved, the MCBS delivers the task result to the
AV. Otherwise, the task computing service will be canceled.

Case 2 : The task result is not cached in the MCBS.
In this case, the task result is not cached in the MCBS.

Therefore, in the first stage, the MCBS needs to make the task
allocation strategy to minimize the task completion cost based
on the task transmission time and the computing resources
that can be provided to execute the task. The task allocation
strategy indicates the optimal SCBS selected by the MCBS
to execute the task. If the task cannot be completely executed
within the TTL requested by the AV, the MCBS will deliver
a message to AV i to cancel the service. Otherwise, the
mechanism moves to the second stage, where the MCBS
negotiates with AV i for the transaction price of the service
based on the strategy and the minimum task computing cost
obtained in the first stage. If an agreement between AV i and
the MCBS is achieved, the AV will send the input of the task to
the MCBS. Then, the MCBS allocates the task to the SCBS
according to the optimal task allocation strategy. After the
selected SCBS finishes the task computing service, the MCBS
collects the result and delivers it to AV i.

Based on the task offloading mechanism, the MCBS intends
to select the optimal SCBS to execute the task. In this way,
the SCBSs covered by the MCBS need to compete with each
other to win the chance for executing the task. After the MCBS
selects the optimal SCBS, the MCBS and the AV need to
negotiate with each other for the transaction price of the task
offloading service to maximize their utilities. We thus resort to
game theory to model the interactions among the participants
in the task offloading process. Specifically, for the interactions
among SCBSs in the first stage, we model this process as the
SPSA game to determine their optimal bidding prices. This
is because the SPSA enables the SCBSs to bid with their
real valuation of the task computing service. In the SPSA, the
players are the SCBSs, where the strategy of each SCBS is the
bid based on its cost for completing the task. With the SPSA,
each SCBS sends its bid for the task computing service to the
MCBS and the MCBS selects the one with the lowest price as
the winer of the game. For the winner, it will obtain the second
lowest price bade by other SCBS. To promote the cooperation
between the AV and the MCBS in the second stage of the
mechanism, the interactions between them is formulated as a
two-round bargaining game, where the MCBS is the leader of
the game. In the first round of the bargaining game, the MCBS
proposes a transaction price for the task computing service. If
the AV accepts the proposal, an agreement between the AV
and the MCBS is reached and the game is over. Otherwise, the
game moves to the next round, where the MCBS proposes a
new transaction price. In this round, the game is over no matter
whether the agreement is achieved or not. Specifically, if the
AV accepts the proposal, an agreement between the AV and
the MCBS is reached. Otherwise, the task offloading service
will be canceled.

According to the game models, we then analyze the utilities
of the participants in the task offloading process. We first
define the cost for completing the service. It consists of
three parts which are the cost for transmitting the input of
the task, the cost for computing the task and the cost for
transmitting the output of the task, respectively. Through wired
connections, the SCBSs and the MCBS can transmit data with
high speed, we therefore ignore the time and cost incurred for
transmitting data between the MCBS and the SCBSs. The cost
for computing the task thus can be given by

CMC,q =

{ sq+sq

ri
ς, if `i,q = 1, δMC,q = 1,

Bk∗,q +
sq+sq

ri
ς, if `i,q = 1, δMC,q = 0,

(2)

where δMC,q = 1 indicates that the task result is available
in the MCBS’s cache and δMC,q = 0 otherwise. `i,q = 1
means that the result of the requested task can be received by
the AV within the requested TTL (i.e., Ti,q). ri denotes the
communication rate between the MCBS and AV i and ranges
from rmin to rmax. Bk∗,q is the final price that the MCBS
pays the selected SCBS k∗ for executing the task computing
service. ς is the cost for delivering data per unit time. sqri ς and
sq

ri
ς are the costs of the MCBS for receiving the input and

delivering the output of the task, respectively.
According to the cost for completing the task computing

service, we then analyze the utilities of the MCBS, the selected
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SCBS and the AV, respectively. The utility of the MCBS
is related to the cost spent on completing the task and the
transaction price paid by the AV. It can be defined as

XMC,q = Pi,q − CMC,q (3)

=


Pi,q −

sq+sq

ri
ς, if `i,q = 1, δMC,q = 1,

Pi,q −
(
Bk∗,q +

sq+sq

ri
ς
)
, if `i,q = 1, δMC,q = 0,

0, otherwise,

where Pi,q is the transaction price that AV i pays the MCBS
for the task offloading service. In order to increase profits, the
transaction price of the task offloading service should be larger
than the cost for completing the task, we have CMC,q < Pi,q .
As such, CMC,q can be regarded as the reserve price of the
MCBS. Namely, if CMC,q ≥ Pi,q , the MCBS will cancel the
task offloading service.

Similar to the MCBS, the utility of the SCBSs is decided
by whether the task result is cached in the MCBS. If the task
result is available in the MCBS’s cache, the utility of the
SCBSs will be zero. Otherwise, the task computing service
will be executed by the selected SCBS. If SCBS k∗ wins the
game, its utility can be expressed as

Xk∗,q = Bk∗,q − Ck∗,q(λk∗,q), `i,q = 1, δMC,q = 0, (4)

where Ck∗,q(λk∗,q) = min{Ck,q(λk,q), ∀k ∈ K} and Bk∗,q >
Ck∗,q(λk∗,q). Ck,q(λk,q) is the bid of SCBS k in the SPSA
game.

Then, we define the utility of AV i. Intuitively, if the task
computing service is completed within the TTL requested by
the AV and with a low price, the AV will obtain a high utility.
We define the utility of AV i for task q as

Xi,q =

{
Ci,q −Pi,q, if `i,q = 1,
0, otherwise,

(5)

where Ci,q is the reserve price charged by AV i for the task
offloading service. Namely, if Ci,q < Pi,q , AV i will cancel
the task offloading service.

B. Problem Formulation and Game Analysis

From the above analysis, we can know that the utilities of
the MCBS, the selected SCBS and the AV are related to the
reserve price of AV i (i.e., Ci,q), the reserve price of the
MCBS (i.e., CMC,q) and the transaction price paid for the
task (i.e., Pi,q). In this subsection, we first analyze CMC,q and
Ci,q by modeling the interactions among SCBSs in the first
stage as the SPSA game. Then, we formulate the interactions
between the MCBS and AV i as a two-round bargaining game
to determine Pi,q in the second stage. The proposed two-stage
task offloading algorithm is detailed in Algorithm 1.

Stage 1: SPSA-based SCBS selection
In this stage, if the task result is cached in the MCBS, we

have Bk∗,q = 0 and CMC,q =
sq+sq

ri
ς . Otherwise, the MCBS

needs to determine CMC,q to maximize its utility. To make
sure that the task can be executed within the TTL, the MCBS
needs to select the SCBSs which can complete the task on

time from set K. Namely, the SCBSs that can be selected by
the MCBS to execute the task should satisfy

Ti,q ≥
sq + sq

ri
+

(1− εk,q)Dq

dk,q
, k ∈ K, (6)

where εk,q is the proportion of the task that the SCBS has
executed. Specially, εk,q = 1 means that the task result is
cached in this SCBS. dk,q is the idle computing resources
owned by SCBS k. It follows a uniform distribution within
[dmin, dmax].

After this, the MCBS needs to select the optimal SCBS
to maximize XMC,q. For the MCBS, the problem can be
formulated as
P1 :

max
k

XMC,q = max
k
{Pi,q − CMC,q} (7)

= max
k

{
Pi,q − δMC,q

sq + sq

ri
ς

− (1− δMC,q)

(
Bk∗,q +

sq + sq

ri
ς

)}
.

s.t. C1 : Dmin ≤ Dq ≤ Dmax,∀q ∈ Q,
C2 : smin ≤ sq, sq ≤ smax,∀q ∈ Q,
C3 : dmin ≤ dk,q ≤ dmax,∀k ∈ K,
C4 : `i,q = 1,
C5 : rmin ≤ ri ≤ rmax,∀k ∈ K,
C6 : CMC,q < Pi,q,

C7 : Tq ≥ Ti,q ≥ δMC,q
sq+sq

ri

+ (1− δMC,q)
(
sq+sq

ri
+

(1−εk,q)Dq
dk,q

)
.

(8)

Given the value of Pi,q , which is analyzed in the next stage,
the maximization problem of the MCBS can be rewritten as
P2 :

max
k

XMC,q = max
k
{Pi,q − CMC,q} (9)

= max
k

{
Pi,q − δMC,q

sq + sq

ri
ς

− (1− δMC,q)

(
Bk∗,q +

sq + sq

ri
ς

)}
= Pi,q − δMC,q

sq + sq

ri
ς − (1− δMC,q)

sq + sq

ri
ς

−min
k
{(1− δMC,q)Bk∗,q} .

s.t.C1− C7. (10)

To solve P2, the MCBS resorts to the SPSA game to model
the interactions among the SCBSs. In the SPSA, each SCBS
bids for the task computing service and the MCBS selects
the one which bids with the lowest price, where the final
transaction price (i.e., Bk∗,q) is the second lowest price in
the SPSA. Let K̃ = {1, 2, ..., K̃} denote the set of SCBSs that
satisfy (6). If SCBS k∗ is selected by the MCBS, its utility is
calculated by (4). Otherwise, its utility is zero. Therefore, the
problem of SCBS k∗ can be given by
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P3 :

max
Ck∗,q(λk∗,q)

Xk∗,q = max
Ck∗,q(λk∗,q)

{Bk∗,q − Ck∗,q(λk∗,q)} .

(11)

s.t. C3, C4, C7,
C8 : δMC,q = 0,

C9 : Ck∗,q(λk∗,q) = min{Ck,q(λk,q)}, k ∈ K̃,
C10 : Ck∗,q(λk∗,q) > λk∗,q,

(12)

where λk,q(k ∈ K̃) is the cost of SCBS k for computing the
task. It depends on the proportion of the task that the SCBS
has executed. We have

λk,q = (1− εk,q)Dqck,q, (13)

where ck,q is the cost per unit resource for computing. When
the SCBS has more idle resources, a higher execution rate can
be provided to compute the task with the result that the SCBS
declares a higher price. As such, ck,q can be defined by

ck,q =
dk,q − dmin

dmax − dmin
. (14)

From (12), we can know that the maximization problem of
SCBS k is related to the bidding strategies of all the SCBSs
in the game, where the bidding strategy of SCBS k(k ∈ K̃)
is a function of λk,q . Based on the value of λk,q , SCBS k
needs to decide the optimal bidding strategy to win the game,
where the optimal bidding strategy of SCBS k is given by the
following theorem.

Theorem 1: In the SPSA, the optimal bidding strategy
of SCBS k(k ∈ K̃) for the task computing service is
Ck,q(λk,q) = λk,q .

The proof of this theorem is given in appendix A.
Based on theorem 1, we can know that the optimal strategy

of each SCBS is Ck,q(λk,q) = λk,q . It indicates that each
SCBS cannot obtain a higher utility by changing the strategy.
In other words, all the SCBSs will adopt this strategy to
compete with each other so that the game achieves the Nash
equilibrium. From the above analysis, we have

Bk∗,q = Ck̃,q(λk̃,q) = λk̃,q, (15)

where λk̃,q is the second lowest bid declared by SCBS k̃.
Then, we define the reserve price of AV i. If the task needs

to use more computing resources, the AV will have a higher
reserve price. Therefore, Ci,q increases with Dq . It can be
defined as

Ci,q =
sq + sq

ri
ς + ∆Dq, (16)

where ∆ is the cost per unit resource expected by AV i for
computing the task. We have

∆ = max

{
γi,q,

Dq −Dmin

Dmax −Dmin

}
, (17)

where γi,q(0 ≤ γi,q ≤ 1) is used to reflect the personal
preference for the task.

In the above analysis, we assumed that the number of
SCBSs that can complete the task on time in the networks

is larger than 1 (i.e., K̃ > 1). Here, we analyze the situation
where K̃ = 1. In this situation, the MCBS only has one SCBS
that can be selected to execute the task. It means that the
SCBS can win the SPSA game without competing with other
SCBSs. If this situation occurs, the cost for completing the
task is CMC,q = λk∗,q +

sq+sq

ri
ς . Accordingly, the profits for

completing the task computing service will be equally shared
between the MCBS and the SCBS. We have

Bk∗,q = λk∗,q +
Pi,q − CMC,q

2

= λk∗,q +
Pi,q − λk∗,q −

sq+sq

ri
ς

2
. (18)

In this way, the utilities of the MCBS and the selected SCBS
can be given by

XMC,q = Xk∗,q =
Pi,q − λk∗,q −

sq+sq

ri
ς

2
. (19)

Stage 2: Bargaining-based task offloading
After the MCBS makes the optimal task allocation strategy

and obtains the cost for completing the task (i.e., CMC,q), the
MCBS then negotiates with the AV to achieve an agreement.
Obviously, the AV intends to minimize the transaction price
for the task offloading service while the MCBS intends to
maximize the profits. Thus, we model the interactions between
the AV and the MCBS as a bargaining game with two rounds
to determine the transaction price (i.e., Pi,q) and distribute the
profits (i.e., Ci,q − CMC,q).

For the MCBS, the problem can be formulated as
P4 :

maxXMC,q = max {Pi,q − CMC,q} (20)

= max {Pi,q} − δMC,q

sq + sq

ri
ς

− (1− δMC,q)

(
Bk∗,q +

sq + sq

ri
ς

)
,

s.t. Pi,q > CMC,q, (21)

where the value of Bk∗,q+
sq+sq

ri
ς is obtained in the first stage.

Similarly, the problem of the AV can be formulated as
P5 :

max{Ci,q −Pi,q} = Ci,q −min{Pi,q}, (22)

s.t. Pi,q < Ci,q. (23)

To solve P4 and P5, we then analyze the two-round bar-
gaining game in detail. In round g(g ∈ {1, 2}), the MCBS
proposes a transaction price ΓMC,q|g for the task offloading
service. Then, the AV makes a decision based on ΓMC,q|g .
Specifically, if the AV accepts ΓMC,q|1, an agreement between
the AV and the MCBS is achieved and the bargaining is
finished. Otherwise, the game moves to the next round, where
the MCBS proposes ΓMC,q|2. In round two, the bargaining
game is over no matter whether the AV accepts or rejects
ΓMC,q|2. The utilities of the MCBS and the AV will have
discounts if the game moves to the next round to reflect their
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patience for the service. The discounting rates of the MCBS
and AV i are denoted as ψMC and ψi, respectively.

In the bargaining game, the reserve prices of the MCBS
and AV i are CMC,q and Ci,q . As the MCBS does not know
the reserve price of the AV, it estimates that the profits (i.e.,
Ci,q−CMC,q) for the task offloading service follows a uniform
distribution within [0,Pi,q|1−CMC,q] in the first round, where
Pi,q|1 can be defined as

Pi,q|1 =
sq + sq

ri
ς +Dq. (24)

According to these conditions, the MCBS needs to decide
the optimal strategy in each round to maximize its utility.
In order to promote the cooperation between the MCBS and
the AV, the MCBS sends the information (i.e., reserve price,
patience for the task and ΓMC,q|1) to the AV in the first
round. For the AV, it needs to make a decision for accepting or
rejecting the proposal. The optimal strategies of the MCBS and
the AV in the first round are given by the following theorem 2
and theorem 3.

Theorem 2: In the first round of the bargaining game, the
optimal strategy of the MCBS is

zMC,q|1 =
Pi,q|1 − CMC,q
4

2−ψi − ψMC
2

(2−ψi)2
. (25)

The proof of this theorem is given in appendix B.
Theorem 3: In the first round of the bargaining game, the

optimal strategy of the AV is that if

Ci,q >
Pi,q|1 − CMC,q

2− ψMC
1

(2−ψi)
+ CMC,q, (26)

the AV will accept the proposal and the agreement is reached.
Otherwise, the proposal will be rejected.

The proof of this theorem is given in appendix C.
If the proposal is accepted by the AV, the transaction price

can be given by Pi,q =
Pi,q|1−CMC,q

4
2−ψi

−ψMC 2

(2−ψi)
2

+ CMC,q. If an

agreement between the MCBS and the AV is not reached in
the first round, the bargaining game will move to the next
round, where the optimal strategies of the MCBS and the AV
are given by the following two theorems.

Theorem 4: In the second round of the bargaining game,
the optimal strategy of the MCBS is

zMC,q|2 =
Pi,q|1 − CMC,q

4− ψMC
2

(2−ψi)
. (27)

The proof of this theorem is given in appendix D.
Theorem 5: In the second round of the bargaining game,

the optimal strategy of the AV is that if

Ci,q >
Pi,q|1 − CMC,q

4− ψMC
2

(2−ψi)
+ CMC,q, (28)

an agreement between the AV and the MCBS will be achieved.
The proof of this theorem is given in appendix E.
If an agreement is achieved in this round, we have Pi,q =

Pi,q|1−CMC,q
4−ψMC 2

(2−ψi)
+ CMC,q.

Algorithm 1 Two-Stage Task Offloading Algorithm
1: Initial the parameters of the task offloading service.
2: `i,q = 0.
3: AV i sends a task computing request to the MCBS.
4: //Stage1 :
5: if δMC,q = 1 then
6: if Ti,q ≥

sq

ri
then

7: `i,q = 1.
8: Calculate CMC,q using (2).
9: else

10: Cancel the task offloading service.
11: end if
12: else
13: for k = 1; k ≤ K do
14: if Ti,q ≥

sq+sq

ri
+

(1−εk,q)Dq
dk,q

then
15: K̃← k.
16: end if
17: end for
18: if K̃ ≥ 1 then
19: `i,q = 1.
20: if K̃ > 1 then
21: for k = 1; k ≤ K̃ do
22: Calculate λk,q using (13).
23: Send λk,q to the MCBS.
24: end for
25: Select the SCBS k∗ by k∗ = arg min{λk,q}.
26: Calculate Bk∗,q using (15).
27: Calculate CMC,q using (2).
28: else
29: Calculate Bk∗,q using (18).
30: Calculate CMC,q by λk∗,q +

sq+sq

ri
ς .

31: end if
32: else
33: Cancel the task offloading service.
34: end if
35: end if
36: //Stage2 :
37: if `i,q = 1 then
38: MCBS calculates Pi,q|1 using (24)
39: MCBS makes the optimal strategy using (25).
40: if Ci,q >

Pi,q|1
2−ψMC 1

(2−ψi)
+ CM,q then

41: AV i accepts ΓMC,q|1.
42: else
43: MCBS makes the optimal strategy using (27).
44: if Ci,q >

Pi,q|1
4−ψMC 2

(2−ψi)
+ CM,q then

45: AV i accepts ΓMC,q|2.
46: else
47: AV i rejects ΓMC,q|2.
48: The task offloading service is canceled.
49: end if
50: end if
51: end if

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
collaborative task offloading scheme using a simulator imple-
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Fig. 2. Task completion rate by changing different parameters. (a) Number of SCBSs. (b) Maximum value of the resources that the task needs to use. (c)
Maximum value of the task’s TTL.

TABLE II
SIMULATION PARAMETERS

Parameters Values
K {1,2,...,20}
Q {1,2,...,150}

Dmin 10
Dmax {25,50,75,100,125,150,175,200}

dmin, dmax 10, 200
smin, smax [0.1,1] MBytes
Tmin 1
Tmax {1,2,3,4,5,6,7,8,9,10}
φ 0.9
ri [5,15] Mbit/s
ς 10
γi,q 0.5

ψMC , ψi 0.8, 0.8

mented in Matlab. We first introduce the simulation scenario,
followed by the simulation results and discussions.

A. Simulation Scenario

In the simulation, we consider the scenario that an AV
intends to offload its task to the MCBS, where the input size
and the output size of the requested task are selected from
[0.1, 1] MBytes. The number of SCBSs in the communication
coverage of the MCBS varies from 1 to 20. The computing
ability of each SCBS is randomly selected from [10, 200].
The task results cached in the MCBS and the SCBSs are
based on the popularity, where the popularity of the task result
follows the Zipf-like distribution. Specifically, we assume that
the MCBS stores the complete results of the 20 most popular
tasks. Apart from these tasks, each SCBS in the coverage of
the MCBS stores the 10 most popular tasks, where the portion
of each task result is selected from [0, 1]. The parameters used
in the simulation are listed in Table II.

To evaluate the performance of the proposed collaborative
task offloading scheme, we compare the proposed scheme with
the conventional schemes shown as follows.
• RSS+RBS: The MCBS allocates the task computing

service to a randomly selected SCBS. In addition, the
bidding strategy of the MCBS in each round of the
bargaining game is randomly selected.

• RSS+OBS: The MCBS allocates the task computing
service to a randomly selected SCBS while the bidding
strategy of the MCBS in each round of the bargaining
game is determined by the proposed scheme.

• OSS+RBS: The MCBS allocates the task computing
service to the optimally selected SCBS. However, the
bidding strategy of the MCBS in each round of the
bargaining game is randomly selected.

Under these conditions, the metrics used for the performance
evaluation include:
• Task completion rate: The task completion rate is com-

puted by the number of completed tasks divided by the
total number of tasks requested by AVs. We evaluate the
task completion rate (i.e., Fig. 2) with different schemes
by changing K, Dmax and Tmax, respectively.

• Utilities of the participants: We evaluate the utilities of
the MCBS, the selected SCBS and the AV (i.e., Figs. 3-
5) which are involved in the task offloading service with
our proposed scheme and the conventional schemes by
changing K, Dmax and Tmax, respectively.

B. Simulation Results

Fig. 2 shows the task completion rate with different task
offloading schemes by changing K, Dmax and Tq , respective-
ly. From this figure, we can see that the proposed scheme
can achieve a higher task completion rate than the conven-
tional schemes. In comparison, the RSS+RBS results in the
lowest task completion rate compared with other schemes. In
Fig. 2(a), the task completion rate increases with an increase
of K in the proposed scheme and OSS+OBS. This is because
the more SCBSs there are, the more candidate SCBSs with a
high computing ability are available to execute the task. As a
result, the probability that the task can be completed on time
becomes high. For RSS+RBS and RSS+OBS, the increase in
the number of SCBSs hardly affects the task completion rate
because the two schemes always randomly select the SCBS
to execute task. In Fig. 2(b), the task completion rate for the
task offloading service in all the schemes decrease with an
increase of Dmax. With the increase of Dmax, the task has a
low probability to be completed within the TTL, thus resulting
in a low task completion rate. Fig. 2(c) is the task completion
rate with increasing the value of Tmax. In this figure, with an
increase of Tmax, there are more time available for computing
the task. Therefore, it can be seen that the task completion rate
has the increasing trend in all the schemes. In addition, we can
see that the increase of the task completion rate in the proposed
scheme and OSS+RBS is higher than that in RSS+RBS and
RSS+OBS. The reason for this is that the proposed scheme
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Fig. 3. Utility of the participants versus number of SCBSs. (a) Utility of the MCBS. (b) Utility of the selected SCBS. (c) Utility of the AV.
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Fig. 4. Utility of the participants versus maximum value of the resources that the task needs to use. (a) Utility of the MCBS. (b) Utility of the selected
SCBS; (c) Utility of the AV.
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Fig. 5. Utility of the participants versus maximum value of task’s TTL. (a) Utility of the MCBS. (b) Utility of the selected SCBS. (c) Utility of the AV.

and OSS+RBS can select the optimal SCBS to execute the
task based on the required TTL.

Figs. 3-5 are the utilities of the MCBS, the selected SCBS
and the AV involved in the task offloading service with
different values of K, Dmax and Tmax. It can be seen from
these figures that the proposed scheme can bring the highest
utilities to all the participants compared with the conven-
tional schemes. This is because that the proposed scheme
can allocate the task more efficient and therefore has a high
probability to complete the task offloading service. As a result,
the participants involved in the task offloading process can
obtain more utilities.

In Fig. 3(a) and (c), the utilities of the MCBS and the
AV increase with an increase of K in the proposed scheme
and OSS+RBS. The reasons are as follows. First, the task
completion rate is increased with an increase of K. Thus,
the profits generated by the completed tasks can be shared
to enhance their utilities. Second, with the increase of K,
the task can be computed with a low cost which also brings
high utilities to the MCBS and the AV. For the utility of the
selected SCBS, as shown in Fig. 3(b), it first increases and
then decreases with the increase of K in the proposed scheme
and OSS+RBS. The reason for the increase is that the number

of tasks that can be completed by SCBSs increases with the
increase of K. For the decrease, the reason is that the increase
in the number of SCBSs makes the competition more intense
and thus reduces the utility.

Fig. 4 shows the utilities of the participants with increasing
Dmax. As seen in this figure, the utilities of all the participants
increase with an increase of the value of Dmax. This is because
when Dmax is larger, more computing resources will be used
for computing the task and the reserve price of the AV for the
service becomes higher. As a result, the utility of the selected
SCBS is increased to compensate for the resources spent on
computing the task. In addition, due to the increased profits
(i.e., Pi,q −CMq

) that can be shared between the MCBS and
the AV, the utilities of the MCBS and the AV are increased.

Fig. 5 shows the utilities of the participants by changing
the value of Tmax. From Fig. 5(a) and (c), we can see that
the utilities of the MCBS and the AV keep increasing in
the proposed scheme and OSS+RBS. This is because with
the increase of Tmax, the probability that the task can be
completed within the TTL requested by the AV becomes
high so that the MCBS and the AV can obtain more utilities.
However, in RSS+RBS and RSS+OBS, the MCBS randomly
selects a SCBS to execute the task. Consequently, their utilities
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are hardly affected by the increase in time. As for the utility
of the selected SCBS, we can see in Fig. 5(b) that it increases
with the increase of the value of Tmax in all the schemes. This
mainly accounts for the fact that with the increase of the value
of Tmax, more time can be used for executing the requested
task. As a result, the task that allocated to the selected SCBS
can be completed with a high probability.

VI. CONCLUSION

In this paper, we have proposed a game theoretic scheme for
collaborative vehicular task offloading in 5G HetNets to im-
prove the task completion rate and the utilities of participants.
Specifically, by considering the imbalanced distribution of
computing requests, the reuse of task results and the available
resources owned by base stations, a two-stage task offloading
mechanism has been designed to promote the cooperation
among the participants involved in the task offloading service.
In the first stage, we have formulated an auction model to help
the MCBS select the optimal SCBS to execute the offloaded
task. With the task computing cost bade by the optimal SCBS,
a bargaining game has been adopted to model the interactions
between the MCBS and the AV to reach an agreement of the
task offloading service in the second stage. Compared with the
conventional schemes, the simulation results have shown that
the proposed scheme can obtain the highest task completion
rate for the offloading service and bring the highest utilities
to the participants.

About the future work, we plan to extend this work in
two aspects. One is the optimization of the caching strategies
of the MCBS and the SCBSs to further improve the task
completion rate and the utilities of the participants. The other
is the analysis of the security of vehicular task offloading by
integrating the proposed scheme with blockchain.

APPENDIX A
PROOF OF THEOREM 1

As the SCBSs in the networks are rational individuals, the
bidding price of SCBS k should larger than its cost to obtain
profits. We have λk,q < Ck,q(λk,q). Then, based on the value
of the price declared by SCBS k̃(k̃ ∈ K̃/k), we prove this
theorem considering different cases.

Case1: λk̃,q > Ck,q(λk,q) > λk,q
In this case, λk̃,q is the second lowest price bade by SCBS

k̃. SCBS k is the winner of the game if its bidding strategy
is λk,q(λk̃,q > λk,q). As a result, SCBS k will obtain λk̃,q
after completing the task offloading service. If SCBS k bids
by Ck,q(λk,q) instead of λk,q , we have λk̃,q > Ck,q(λk,q).
The SCBS can also win the SPSA game and obtain the same
utility. Therefore, in this case, the bidding strategy λk,q is as
good as Ck,q(λk,q).

Case2: Ck,q(λk,q) > λk,q > λk̃,q
In this case, SCBS k̃ is the lowest bidder and wins the

SPSA game. If the bidding strategy of SCBS k is λk,q , we
have λk,q > λk̃,q . On the other hand, if the bidding strategy
of the SCBS is Ck,q(λk,q), we have Ck,q(λk,q) > λk̃,q . As
such, the SCBS will lose the chance to compute the task
no matter whether its bidding strategy is λk,q or Ck,q(λk,q).

Consequently, in this case, there is no difference between the
bidding strategy λk,q and the bidding strategy Ck,q(λk,q).

Case3: Ck,q(λk,q) > λk̃,q > λk,q
In this case, if the bidding strategy of SCBS k is Ck,q(λk,q),

we have Ck,q(λk,q) > λk̃,q . As such, the SCBS will lose the
chance to compute the task and obtain the profits. However, if
the bidding strategy of the SCBS is λk,q , the SCBS will win
the game and gain the utility λk̃,q − λk,q > 0. Therefore, the
bidding strategy λk,q is better than Ck,q(λk,q) in this case.

Since the above analysis contains all the cases, we thus
can conclude that Ck,q(λk,q) = λk,q is the optimal bidding
strategy of SCBS k(k ∈ K̃) to maximize its utility in the
SPSA game. The theorem is proved. �

APPENDIX B
PROOF OF THEOREM 2

We use the reverse induction method to analyze the optimal
strategies of the AV and the MCBS in the bargaining game.
We focus on round two and assume that AV i rejects zMC,q|1
in the first round. In round two, the MCBS estimates that the
profits for computing task q (i.e., Ci,q − CMC,q) follows a
uniform distribution with [0,Pi,q|2−CMC,q]. In this way, the
goal of the MCBS is to decide zMC,q|2 to maximize its utility.
If the AV accepts the proposal, the utility of the MCBS is
ψMCzMC,q|2. Otherwise, the game is over and the utility of
the MCBS becomes zero. The maximization problem of the
MCBS thus can be formulated as

max
zMC,q|2

XMC,q|2 (29)

= max
zMC,q|2

ψMC (pa|2 ·zMC,q|2 + pr|2 · 0) ,

where pa|2 and pr|2 are the probabilities that AV i accepts
and rejects zMC,q|2, respectively. We have

pa|2 = Pr {Ci,q − CMC,q ≥ zMC,q|2}

=
Pi,q|2 − CMC,q −zMC,q|2

Pi,q|2 − CMC,q
. (30)

Combining (29) and (30), the maximization problem becomes

max
zMC,q|2

XMC,q|2 = max
zMC,q|2

{
ψMC (31)

× Pi,q|2 − CMC,q −zMC,q|2
Pi,q|2 − CMC,q

zMC,q|2

}
.

By taking the first derivative of (31) with respect to
zMC,q|2, we have the optimal bidding strategy of the MCBS
in round two, shown as

zMC,q|2 =
Pi,q|2 − CMC,q

2
. (32)

If AV i accepts zMC,q|2, the transaction price is Pi,q =
CMC,q + zMC,q|2 and the utility of the AV in the game can
be expressed as

Xi,q|2 = ψi (Ci,q −Pi,q)

= ψi

(
Ci,q −

Pi,q|2 − CMC,q

2
− CMC,q

)
. (33)
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For the AV, as it knows that its utility is Xk,q|2 in round
two, the AV will accept zMC,q|1 in the first round if

Xi,q|2 ≤ Xi,q|1 = Ci,q −zMC,q|1 − CMC,q. (34)

Combining (33) and (34), we have

ψi

(
Ci,q −

Pi,q|2 − CMC,q

2
− CMC,q

)
≤ Ci,q −zMC,q|1 − CMC,q. (35)

Simplify (35), we can obtain the condition that AV i accepts
the proposal, shown as

Ci,q − CMC,q ≥
zMC,q|1 − ψi Pi,q|2−CMC,q2

1− ψi
. (36)

If (36) holds, the AV will accept ΓMC,q|1 in the first round.

It means that if Ci,q −CMC,q <
zMC,q|1−ψi

Pi,q|2−CMC,q
2

1−ψi , the
AV will reject ΓMC,q|1 in the first round and the game will
move to round two. In this way, we can know that the max-
imum value of Ci,q in round two estimated by the MCBS is
zMC,q|1−ψi

Pi,q|2−CMC,q
2

1−ψi . Recall that the MCBS estimates that
Ci,q follows the uniform distribution with [0,Pi,q|2−CMC,q],
we thus have

Pi,q|2 − CMC,q =
zMC,q|1 − ψi Pi,q|2−CMC,q2

1− ψi
. (37)

Simplify (37), we have the maximum price of Ci,q−CMC,q

estimated by the MCBS in round two, shown as

Pi,q|2 − CMC,q =
2ΓMC,q|1

2− ψi
. (38)

Combining (32) and (38), we have

zMC,q|2 =
zMC,q|1
2− ψi

. (39)

Based on (36) and (37), the MCBS can optimally select
zMC,q|1 to maximize its utility in the first round. The problem
is formulated as

max
zMC,q|1

XMC,q|1 = max
zMC,q|1

(
zMC,q|1 · pa|1 (40)

+ ψMCzMC,q|2 · pa|2 + pr|2 · 0

)
,

where pa|1 is the probability that the MCBS accepts zMC,q|1
in the first round. From the above analysis, we can know that
if Ci,q ≥ Pi,q|2, the AV will accept ΓMC,q|1 in the first round.
We thus have

pa|1 = Pr{Ci,q ≥ Pi,q|2}

=
Pi,q|1 − CMC,q − (Pi,q|2 − CMC,q)

Pi,q|1 − CMC,q

=
Pi,q|1 − CMC,q − 2zMC,q|1

2−ψi
Pi,q|1 − CMC,q

=
(2− ψi) (Pi,q|1 − CMC,q)− 2zMC,q|1

(2− ψi)(Pi,q|1 − CMC,q)

= 1− 2zMC,q|1
(2− ψi)(Pi,q|1 − CMC,q)

. (41)

pa|2 is the probability that the AV rejects the proposal in the
first round and accepts ΓMC,q|2 in the second round. It can
be given by

pa|2 = Pr{Ci,q < Pi,q|2}
× Pr{Ci,q − CMC,q ≥ zMC,q|2}

=
Pi,q|2 − CMC,q

Pi,q|1 − CMC,q
× Pi,q|2 − CMC,q −zMC,q|2

Pi,q|2 − CMC,q

=
Pi,q|2 − CMC,q −zMC,q|2

Pi,q|1 − CMC,q

=

2zMC,q|1
2−ψi − zMC,q|1

2−ψi
Pi,q|1 − CMC,q

=
zMC,q|1

(2− ψi)(Pi,q|1 − CMC,q)
. (42)

By substituting (41) and (42) into (40), the maximization
problem is changed by

max
zMC,q|1

XMC,q|1 = max
zMC,q|1

{(Pi,q|1 − CMC,q)zMC,q|1

−2zMC,q|12

2− ψi
+ ψMC

zMC,q|12

(2− ψi)2

}
. (43)

By taking the first derivative of (43) with respect to zMC,q|1,
we have the optimal strategy of the MCBS in the first round,
shown as

zMC,q|1 =
Pi,q|1 − CMC,q
4

2−ψi − ψMC
2

(2−ψi)2
. (44)

The theorem is proved. �

APPENDIX C
PROOF OF THEOREM 3

From (34)-(39), the AV can know the optimal strategy of the
MCBS in round two, i.e., zMC,q|2 =

zMC,q|1
2−ψi . In addition, we

can know from (36) and (37) that the AV will accept zMC,q|1
in the first round if

Ci,q − CMC,q ≥ Pi,q|2 − CMC,q. (45)

Combining (38) and (45), the condition that the AV accepts
zMC,q|1 in the first round becomes

Ci,q − CMC,q > Pi,q|2 − CMC,q

=
2

2− ψi
Pi,q|1 − CMC,q
4

2−ψi − ψMC
2

(2−ψi)2

=
Pi,q|1 − CMC,q

2− ψMC
1

(2−ψi)
. (46)

Namely, we have Ci,q =
Pi,q|1−CMC,q
2−ψMC 1

(2−ψi)
+CMC,q. The theorem

is proved. �

APPENDIX D
PROOF OF THEOREM 4

From theorem 2, we can know that the proposal of the
MCBS in the second round is related to that in the first round,
namely,

zMC,q|2 =
zMC,q|1
2− ψi

. (47)
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By substituting (44) into (47), the optimal strategy of the
MCBS in the second round can be expressed as

zMC,q|2 =
zMC,q|1
2− ψi

=
1

2− ψi
Pi,q|1 − CMC,q
4

2−ψi − ψMC
2

(2−ψi)2

=
Pi,q|1 − CMC,q

4− ψMC
2

(2−ψi)
. (48)

The theorem is proved. �

APPENDIX E
PROOF OF THEOREM 5

In the second round of the bargaining game, if the AV rejects
zMC,q|2, its utility will be zero. Therefore, the condition that
the AV accepts zMC,q|2 is

Ci,q − CMC,q > zMC,q|2. (49)

Combining (48) and (49), the condition that the AV accepts
zMC,q|2 becomes

Ci,q − CMC,q > zMC,q|2

=
Pi,q|1 − CMC,q

4− ψMC
2

(2−ψi)
. (50)

From (50), we have Ci,q =
Pi,q|1−CMC,q
4−ψMC 2

(2−ψi)
+ CMC,q. The

theorem is proved. �
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