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Abstract—Erroneous local geometric realizations in some parts
of the network due to their sensitivity to certain distance mea-
surement errors is a major problem in wireless sensor network
localization. This may in turn affect the localization of either
the entire network or a large portion of it. This phenomenon
is well-described using the notion of “flip ambiguity” in rigid ‘ _ o @ ®) _
graph theory. In this paper we analytically derive an expression Fig- 1. Flip ambiguity: Reflecting) through a mirror formed by neighbors,
for the flip ambiguity probabilities of arbitrary neighborhoods ?a)n ;e:\ﬂ’pn:ﬂ'éiégﬁwnl)mI‘:}g?gtﬁmego\tlvgro%u;|;I?ilgiténtg1nt2:rl(;:i$g%?1 cz)br;s't:rleilil)nts.
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sensor finds the probability of flip ambiguity on its location relaxed form of global rigidity is rigidity. If a framework

estimate larger than a predefined threshold, it may choose not (G,P) is rigid but not globally rigid, there exist two types of
to localize itself 2) Every known neighbor can be assigned discontinuous deformations that can prevent a represemtat
with a confidence factor to its estimated location, reflecting of (¢ consistent wittp, i.e., a representatiofG, p, ) satisfying
the probability of flip ambiguity; a sensor with an initially Ip(@) — 5G|l = B, () — B, (j)| for any vertex paiti, j € V
unknown location can then choose only those known neighbors ' L L . B :
with a confidence factor greater than a predefined threshold. A which are conr.lec.ted by an edge i from being un!que (in
recent study by co-authors have shown that the performancefo the sense that it differs from other such representationsoat
sequential and cluster based localization schemes in the litera- by translation, rotation or reflection) [3]: flip and discimitous
ture can be significantly improved by correctly identifying and  flex ambiguities. In this paper we focus on flip ambiguities.
removing neighborhoods with possible flip ambiguities from the In flip ambiguities iNR2, at least a vertex (sensor nodehas

localization process. One motivation of this paper is to enhance . . . . o
the performance of the robustness criterion presented in that its all neighbors collinear, which leads to the possibility

study by accurately identifying the flip ambiguity probabilities ~neighbors forming a mirror through whiehcan be reflected.
of arbitrary neighborhoods. The various simulations done in this Fig. 1(a) depicts an example of flip ambiguity.
study show that our analytical calculations of the probability In real-life sensor networks, the measured distances are
of flip ambiguity matches with the simulated detection of the o gneous and flip ambiguity may occur even in a network
probabilty very accuratey with globally rigid underlying graph [6] with near collinea
. INTRODUCTION ) . . e
neighbors (Fig. 1(b)) depending on the sensitivity of those

A fundamental problem in distance-based sensor netwq{kar collinear neighborhoods to such measurement errors.
localization is whether a given sensor network with a set of At the first few iterations of an incremental localization
known distances is uniquely localizable. In a graph théakt zgorithm [7]-[9], only known neighboring nodes for an un-
framework, a sensor network can be represented by a gra@iwn sensor are the anchor nodes (sensors with known global
G = (V, E) with a vertex set and an edge séf, where each |gcation information). Availability of these anchor nodis
vertexi € V' is uniquely associated with a sensor neden the  |arge numbers are severely limited by the associated costs.
network, and each edde j) € E corresponds to a sensor paifrhys the probability of the occurrence of flip ambiguity at
si, s; for which the inter-sensor distandg; is known [1]-[5].  the initial iterations is very high. The number of neighbors
The planar location information about the sensors cormeO with initially known location or known estimated location
to a2—dimensionafepresentation of the representative graph.j| generally increase with the number of iterations as enor
which is a mappingp : V — R?, assigning a location in and more sensors are localized at each iteration. However,
R? to each vertex inV. Given a graphG' = (V,E) and & qccurrences of flip ambiguities affect not only the location
representation of it, the pai7,p) is called aframework. estimate of the associated nodes, but will degrade theidocat

A particular graph property associated with unique lQsstimates of other nodes in the subsequent iterations, evhos
calizability of sensor networks iglobal rigidity [4]-[6]. A known neighborhood include one or more of those nodes

2 . , with flip ambiguities in their location estimates. This ingpa
NICTA is funded by the Australian Government as representedhb

Department of Broadband, Communications and the Digital Emyrand the €N Propagate in an avalanche fashion for several itesation
Australian Research Council through the ICT Centre of Heoek program. degrading location estimates of more and more nodes, as




Fig. 2. Initially, locations ofA, B, C, P andQ are known andD, E, F',  Fig. 3. Location estimate ab considering two neighbord, B and a chosen
G, H and I are unknown. At the first iteration)) and E uses locations of error bound at a time. Flip occurs with respectAd® if D = (xp,yp) €
collinear neighbors4, B, C' and localize itself atD’ and E’ respectively RAB andD = (2,9) € RAB or vice versa

1 ’ 2 ’

due to flip ambiguity. In the second iteratiof, uses locations of neighbors . .
A, C., D and localize itself aF". are composed of four sensors which are neighbors of each

demonstrated in Fig. 2. Similar phenomenon is also seeter, i.e. the distance between any pair is measurable. For
in cluster localizations [9], [10]. Further details aboutck any given sensor pai(X,Y), dxy and dxy are used to
phenomenon can be found in [9]. Thus identifying nodes wifenote, respectively, the true distance and measurechdista
flip ambiguities at each iteration and removing them from tHeetweenX andY. Consider an ordered FCQBCD where
localization procedure will significantly improve the om#tr the locations(za,y4), (z5,ys) and (zc,yc) of sensorsA,
performance of a sensor network localization algorithm. B, C and the corresponding measured inter sensor distances
There exist a number of approaches in the literature doip, dgp anddcp from sensorD to sensors4, B and C
the flip ambiguity problem in different perspectives. Thé&re known. Assuming the distance measurement error has a
studies [1], [2], [11], [12] have approached this problerfnown Gaussian distribution with a zero mean anstandard
by exploring the graph structure. The algorithms in [1], [2qieviation [14], a threshold > 0 can be chosen such that the
require a dense network in order to maintain global rigjditpbsolute value of the distance measurement error is smaller
to deal with flip ambiguity problem. Global rigidity is only than the threshold with a certain probability. For example,
a sufficient condition for unique localization of a sensdf € = 3o, then the probability of the absolute value of the
network. However, in some cases a priori information magistance measurement error is less thas 99%. For a given
compensate the need of global rigidity [6]. The algorithr, the relationships between the true distanégs, dpp and
in [11] uses the principle of Voronoi diagrams and Delaunagycp and the measured distancésp, dgp anddcp are,
graphs to localize the sensors at the boundaries in order to
mitigate flip ambiguities, which also requires the sensors t _ o .
be sufficiently dense at the boundaries to maintain theitjgid dep € [‘fBD —&dpp + ¢l
of the Delaunay graph. When the network is sparse, algorithms dop € [dep —€dep +7¢ 1)
in [12], [13] suggest to record all possible estimates othea
sensor and eliminate incompatible estimates wheneveii-po
ble, which, in the worst case, recording all possible edtia
could result in an explosion in the state space. The stuflies [

. e o I, y) = (z4,y4)|| — dap |< € and
[10] have approached this problem by identifying possibje fl Rthc a {(%y) : { (@1 — (25 y5)] —@sn <z and}

dap € [dap —€dap +7

%xploiting (1), we can assert the following constraint oe th
timated locatiorD) = (z,4) of sensorD:
D e Rp© @)

>

ambiguities in neighborhoods and take necessary actions
eliminate such flip ambiguities. Both these studies assume

that the true location and the pOSSible fllpped location are|nstead, if we on|y consider constraints imposed by two

symmetrical with respect to a pair of neighboring nodes hSugeighboring sensord and B, without loss of generality, we
assumption causes false alarms in the identification ofilpless gptain the relaxed constraint

flip ambiguitiis(.j I? this papelr, yvel remove tr;e a;sumpéio;l_of D € RAP 3)

symmetry and define an analytical equation for the prokigbili - _

of flip ambiguity of a given neighborhood. Rp? {(x,y) : {' (@ y) — (@, y)ll - %AD Ei and}
Any prevailing distance based localization algorithm coul @ y) = (@5, yp)ll - dep |< €

use these results in two ways: 1) If an unknown sensorhis region is the intersection of two rings

finds the probability of flip ambiguity on its location estitea | |(z,y) — (xa,ya)| —dap| < €and

with respect to its known neighborhood to be more than a | (z,y) — (zB,yB)|| —dsp | < ¢ (4)

predefined threshold value, it may choose not to localizfits ) B AB o i

in that iteration 2) Every known neighbor could be assigne@nd is made of twgBreglogng "jr;d Rp, asin Fig. 3, i.e.,

with a confidence factor to its location estimate, reflectimg Rp~ = Rp, URD, ©)

probability of flip ambiguity; a sensor whose location is ® b Fig. 3 also illustrates that if the estimalgis generated based
estlma_ted can then choose only those kpown neighbors W&I‘?justEAD anddzp, a flip ambiguity is possible with respect
a confidence factor greater than a predefined thresholdglurig the Jine AB. Also note that, depending on the locations of
its localization. A, B, the corresponding measured distandas,, dzp and
Il. PROBLEM FORMULATION the threshold valug, the regionsk AP and R4 may be joint.
To keep the analysis simple, we consider sensor neighbbr-such situations, the boundary separating the two regions
hoods in the form of fully connected quadruples (FCQSs) thﬁgf’ and Rgf is taken as the lined B.

| I(z,y) = (zc,yc)ll — dep |[< €

[I>



« Group 3: D € RA5C such thap, g, r € {1, 2} andp+
R q+r =4; (xp,yp) and(z, ) are inR;PC and RAPC
- respectively causing possible flip ambiguities with respec
R to any one line only:AB or AC or BC.

Fig. 4. Possible regions for the location of sengdibased on considering

two neighbors and a chosen error bound at a timgB - Possible region

for D given A, B, dap, dgp. & RAC - Possible region foD given A,

C.dap,dcp, €& REC - Possible region foD given B, C, dgp, dcp, &
Similarly, we can consider constrains imposed by neighbor-

ing sensor pair¢A, C) and(B, C) to define regions?4¢ and

RBC respectively (See Fig. 4) as

_ _4q <€

RAC 2 (a4 {| Iz, y) = (za,y4)ll = dap |< € and
| ||(x7y)_('xcyyc)“_ch |§E L1
(Group 0)

= Rp, URp, 6)
(Group 3)
x,y) — (zB, —d <€ and
R (R (b e It
’ ’ - Fig. 5. Venn Diagram representation of (8).

= RpY URpY 7

Out of the eight possible regiod%gffr in (9), at-least one of

them should be a non-empty region to accommodate the true

location of D. If all but one possible region are null regions,

RABC _  pAB | pAC - pBC the_n there is a unique region possible to accom_m_o_date the
= Pe PP e e e pe estimated locationD, and there would be no possibility for

(Rp, URDp, )N (Rp, URp,)N(Rp, URD,) flip realization. But, if two or more regions are non-empty
By applying De-Morgan’s rule to (8), it follows tha®#>¢ then there is a non-zero probability for the estimated iooat

With these definitions, if we consider the constraints ingabs
by all three neighbors, (2) can be written as
D e Rp°° ®

is composed of the following eight disjoint regions: D to be located inside any of those non-empty regions thereby
Rgffr - Rgf n Réf NREC; p,q,r € {1,2} (9) creating a flip ambiguity problem. Our goal in the next settio

. o _is to find the probability of havingD in each of Groupl,
Note that the true locatio® has to lie in only one of the eight Group2 and Group3 flip ambiguity cases.

disjoint regions formulated in (9). Without loss of genéyal

let us assume that IIl. DERIVATION OF FLIP AMBIGUITY PROBABILITIES
ABC AB AC BC i i I i i
D e RpPY, = R N RET N RES (10) In this section, we derive an analytical equation for the

) _ _ ) ) probability of D lying in various regions defined in section II
Then the eight possible regions given in (9) can be repredent g responding to flip ambiguity. Firstly, we derive an atias

by a Venn diagram as in Fig. 5. This Venn diagram consisggytion for the case where flip ambiguity occurs only aceoss
of three mutually intersecting disks representing thea®si gingle line AB. We then extend the derivation to all different
RpY. Ry, and RES. Note that existence ob in the set groups of flip ambiguities mentioned in section 1.
represented by any of these three disks corresponds to edlipp | et ys first define the probability spade containing all
realization. For exampld) € Rf—‘,f jmplies that there is a flip possible events regarding location estimates- (z, §):
ambiguity in the location estimat® with respect to the line

AB. Similarly with the help of Fig.5, it is easily seen that the Q= {(%,9) € RpY URpY (11)
possible location estimates can be grouped into the fofigwi and with the assumptio® ¢ Rg{g made in (10), an event

four groups. R _ set(ap C Q containing the location estimation events corre-
« Group 0: D € R3¢ (wp,yp) and(i,7) are both in - gponding to the flipped realization as
R{PC | causing no flip ambiguity. o B
e Group 1: D € RAPC: (xp,yp) and (&,7) are in Cap = 1(2,9) € Rp,
RAPC and RAPC, respectively causing possible flip  Our aim is to find an expression for the probabily¢ 4 |
ambiguities with respect to all three linesB, AC and A, B, C, D) and then marginalize this probability over all pos-
BC. R sible locations of D to find the probabilit(C45 | A, B, C).
« Group 2: D € RjPC such thap, ¢, r € {1, 2} andp+ _
g+r = 5: (xD,yD)'aynd(i:,y) are ian-‘,ffl andR’Bff,,, A. Calculation of P(Cap | A, B,C, D)
respectively causing possible flip ambiguities with respec Let H- denote the open half plane with border liAés that
to any two lines only:AB and AC or BC and AC or containsC, and D be the complimentary half plane on the
AB and BC. other side ofAB. Assuming thatA, B, C are non-collinear,

12)



ZLgag(.B%r;eDiffies;r(;fZg? in location estimation when circle8(A,dap) 2967 When circle€C(A, dp) andC(B, dpp) do not intersectDc =
Hc and Hz are well defined. The two circle§(A,dap) that these Gaussian measurement noises are independent of
and C(B,dgp) centered atd and B with radiusd,p and each other, we have the probability distribution functions
dpp at two pointsD¢, Dg, one of which is inHc and the f(dap) £ f(dap | A,B,C,D), f(dgp) 2 f(dpp |

other in Hz as shown in Fig. 6. Without loss of generality,4, B, C, D) and f(dcp) £ (dCD | A, B, C, D) independent

let Do € Hc and D5 € Hs. When considering only two of each other. Therefore defining the blnary functions

distance measurememﬁiD andEBD, both pointsD¢ and D 1 If RAB  H-

will be possible candidates for the location estimatewith dcp = { 0 If Rgb c He
(dop—dap)?+(dgp—dpp)?* = 0. When the third distance "Dy .
measurementl¢p is included in the localization process, a Iop = { 1 1If dep € [0,min(Ac, R)]
new candidate forD can be obtained as the minimizer of 0 Otherwise

J(D) £ (dAD_dAD) +(dBD_dBD) +(dCD_dCD) . we have

We obtain the following results: R P(Cas | A, B,C,D) = P(Cas | A, B,C, D)
Proposition 1: Let A4, B, C be non-collinear. TheiD* £ min(Ac,R)
arg min J (D) satisfies the following: = 5CD/ / / f(dep)d(dep)f(dep)d(dep)
D
i D* € He when0 < dep < Ac J(dap)d(dap)
ii D*e Hf WhenAC < dCD < R 1 _5CD / / / dCD)d(E D)
WhereAC = M min(Ac,R) o
Proof: Noting thatdcp, < dcp_, it can be easily seen h o f(dzp)d(dsp) f(dap)d(dap)
that| dop, —dep |<| depg, — dcp | is always equivalentto  _— / / / ((6CDICD) ((1—édcp)(1 — ICD)))
dep < Ao, and| dopg — dCD >| dep,, — dep | is always o Jo A\
equivalent todcp > A¢. Hence: f(dep)d(dep) f(dsp)d(dsp) f(dap)d(dap) (15)

i When0 < dcp < Ac, we have| dop,. — dep |<| Note that the disc transmission model used in the analysis
dCDC —dcp |- Assume, to obtain contradiction, thatbounds the true inter-sensor distance tocb®&, which in turn
D* € Hg. There exists a poinD; € Hc which is  bounds the measured distancesOas. dap, dpp, dop <
symmetrlc of D* with respect toAB. It can be easily 2+ 30 with 99% probability. To keep the equations simple,
seen that/(D3) < J(D*), which contradicts with the an approximation to these bounds has been made<ad.1p,
definition of D*. dpp, dcp < R. Due to this truncation of the measured
i When \c < dop < R, we have| dop, — dop |>| dlstances any caICLiIateoLplobabilijy ShOUJd be ngrmdlkzye
dop, — dop |- Following exactly the same steps ady’ [ [ F(dep) F(dpp) f(dap)d(dep)d(dsp)d(dap)
in part (i), we show thatD* cannot be inflc. Hence  Also note that, if the circle€(A,dap) andC(B,dpp) do
D* e He. not intersect as shown in Fig. 7, the poidbs and D will
coincide with each other and be the mid-point of the line
segment PQ)]. Thus the above analysis holds for both cases,

With the assumptioD € RAZ in (10), a flipped realization = . .
P by In (10) PP C(A,dap) andC(B,dpp) intersect and do not intersect.

occurs when

i D* € He andRP € Hg B. Calculation of P(Ca5 | A, B,C)
i D* € Hz andRpP € He In this section, we find the probabilit(Cap | A, B,C)
With this information, we can define two support spaces f& marginalizing the analytical expression obtained irtisec
events defined in (11) and (12): [lI-A over all possible locations in the planar are® where
Q' = {dap,dsp,dep € [0,R] | A, B,C, D} (13) D can be placed. ThuB ({45 | 4, B,C) can be written as,
{dap,dsp € (0.8, dop € [0.0c]| A, B,C,D}  PCas|ABC) = [ [Pan|AB.COfDIAB.0) aD) a9)

AB a
when kp,” C Hg Using the fact that the sensors are assumed to have a disc

Cap = (14) " transmission model, for a gi i
S — - , given neighborhod®C, sensor
{dap,dsp € [0 R] dep € [Ac, B]| A, B,C, D} D could only be placed inside a regighdefined by,
WhenR C He
. . l(@p,yp) — (za,y4)| < R* and
Considering the measured distances as the actual distanceg; — {(xD,yD) { \(xp,yp) — (z5,ys)| < R® and }
blurred by Gaussian noise as stated in Section Il and asgumin |(zp,yp) — (zc,yo)|| < R?



If the sensors are distributed uniformly thetf(D | the probabilityP((ap | A, B, C, D) obtained via simulations
A, B,C) = Ai, where Ag is the area of the regio§ which as Ps(Cap | A, B, C, D) and via our analytical results as
can be calculated as described in the Appendix. Defining Pa({ap | A, B, C, D) respectively. Then foiV; = 1000, we

1e(D) - 1 Des can defineA; as
o “ | 0 otherwise A >N, | Ps(Cap | A,B,C,D) — Pa(Can | A, B,C,D) |
L=
Ny
L The results shows that the analytical results detects the
P(an | A B,C) = TS,/Rz / P(Can | 4, B,C,D)Is(D)d(D) (A7) probability of flip ambiguity accurately.

which can be combined with (15) to get 004

(21)
we have

P(Cap | A,B,C,D) = -
Ais /Rz / i /OR /oR /oR(((SCDICD) + (1 =dcp)(1 - ICD))) F oo

f(dep)d(dep)f(dep)d(dep)f(dap)d(dap)d(D)  (18)

0.1 0.2 0.3 0.4 05
The above processing order of the inter-sensor measurement 6 _ e simul o B | 4. B, C, D)
3 =5 5 . : Fig. 8. omparison of the simulation resu ¢AB , B, C, D
dap, dpp, _dCD has been_ used without loss of generality, anv(\zllith our analytical result®4 (Cap | A, B, C, D) for differento. Here the
the analyS|S below applles to any other order as well W|U@rtica| lines represent the standard error bar\gf.
appropriate index modifications. Thus it can be generalized

i,j,k € {A,B,C} andi # j # k. If we look atd,plp +  ALGORITHMS USING THE FLIP AMBIGUITY PROBABILITY
(1-0rp)(1—Ixp), it represents a three dimensional indicator |, this section we use the probability of flip ambiguity
function calculated using our analytical expression to enhance the
I o— { 1 D is a flipped realization with respect to ling performance of the sequential localization algorithm [3],
G =1 0 otherwise where at each iteration, all unknown nodes with minimum
three known neighbors are localized. These known neighbors
Thus for¢ € {Cij, Cij NGk, Gij NGk, Gik NGk Gij NGk NGk} can be anchors or some nodes defining the local coordinate
(18) can be generalized as .
system. When unknown nodes are localized, they are elevated
P(C| A, B,C) = to anchor status, thereby increasing the chances of unknown
1 RopRo R - = - nodes being localized in the subsequent iterations.
As /Rz /IS/O /0 /0 Ief(dep)d(don)f(dpo)d(dsp) The localization algorithms in [7], [8] take any FCQ to do
f(dap)d(dap)d(D) (19) trilateration. Instead, we use the probability of flip ambiy
to select the robust FCQ in a particular way as follows: If an
unknown node with neighborhoodV; has|N;| neighbors, we
obtain setsCLl,N’i‘ of all possible FCQs with noded, B,C ¢

where ICij = (5kDIkD =+ (1 — 61@D)(1 — IkD)y ICijﬂCz‘k =
I, Ie, and e, ncine, = e e Ic;, for any permutation

of i,j,k € {4,B,C} andi # j # k. With the help of the N; and i, and find the FCQ with the least probability of flip

Venn diagram in Fig. 5, conditional probabilities for Greup - . - . -
0 — 3 introduced in Section Il can be calculated based on tﬁgqblguny out of all FCQs with a probability of flip ambiguity

above explanation. For examplé&(Group 1 | A, B,C) = lesli tr;?ge:hEtzoth(re(\elzruoallttjev?fl\l:ae Ii:,‘(z‘t)rmance enhancemaft
P(CapNCacNi¢pc | A, B,C) P ,

different simulated sensor networks witi0 randomly dis-
IV. NUMERICAL ANALYSIS tributed nodes are constructed each with different random

We test our analytical solution by comparing the resul&eid' Sler:js.or_godt(ajs. n each of ;ﬁesensor netwc;rk? are
with various simulation results. In our comparison, fullypMformly distributed in a region of00m x 100m. The first
connected sensor quadruples used are selected from a poolloosfensor nodes are chosen as anchor nodes and are initialized
4-nodes sensor networks composed of nodes that are uryforPN|t,h rgndoZm qoorﬁlnates wﬁhm the bounda(rjy.l The. Gausf3|an
distributed in a region 0100m x 100m with a transmission M01S€ 1N (20) is ¢ osen o have = 02m and locations of
range of10m. The measured distance between the neighb%'?'fnown nodes are estimated by minimizing the cost function

J(D).

nodes is blurred by a Gaussian noise [14] as ) o
= = The number of nodes are kept fixed and the transmission

djs = dij=dj +N(0,0° 20 X i . ) .
! T (0,0%) B (20) range is adjusted in the simulations such that the average
where the Gaussian noise is truncated such@h@td;; < R node degree varies betweér 25. The average mean squared

ando is varied from0.1m to 0.5m. error in location estimates is calculated and normalizethéo
Since the basic building block of all probabilitiesP{( 45 | transmission rang® as:
A, B,C,D) and due to space limitations, we are only com- 1 50 inew (zi — &:)% + (yi — 9:)?

- i MSE = — ——
paring the results ofP(Cap | A, B,C, D) with respect to {nlVi £ 0] Z

Va R?
arbitrarily placed sensor neighborhoods B, C and D. Let Val#0 v



where(z;,9;) and(z;, y;) are the estimated and true locatiorestimate that has been accurately calculated using ouytanal

of sensor node, V,, is the set of nodes localized in thé"

sensor network, anfd/,| is the number of nodes if,.
To compare different scenarios, FCQs used in trilateration
are chosen in four different ways: |

i Any FCQ of N;.

ii Most robust FCQ ofN; by criterion [9]

iii Most robust FCQ ofN; by criterion in [10].

iv. Most robust FCQ ofV; with probability of flip less thari5%.

From Fig. 9 it can be seen that the average numbers &
localized nodes with neighbor selection method (i) anddng) (4
more than (ii) and (iii) while the average estimation errb(ip
is much larger than (ii), (iii) and (iv). As expected, seient

(2]

(5]
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Fig. 9.

method (iv) produced more number of localized nodes wi}
less estimation errors. Due to the threshold valuel &,
some miss-detected flipped realization have caused thagever
estimation errors to be slightly higher than (ii) and (iii). [11]
Since the reliability of the location estimates is an abso-

lute requirement of any localization algorithm, a robuste(12]
criterion for the neighborhood selection to remove thoge fli
ambiguities is essential. For a robustness criterion to he;
effective, it needs to detect as much flip ambiguities asipless
while making as little number of false alarms as possiblg,,
From these aspects, the above simulation results show yhat b
choosing a suitable threshold value for (19), the perfogean
can be optimized.

By

Calculation of Ag:
by dividing S into triangle and/or circular segments. For a

V1. CONCLUSION AND FUTURE WORK

A recent work of co-authors have well demonstrated that
identifying the likelihood of flip ambiguities in locationsg-
mates and taking proper action will enhance the performance
of localization algorithms significantly.

In this paper we have developed an analytical expression
to calculate the probability of flip ambiguity for arbitrary
neighborhoodsA BC'. This probability can be used either to

ical results, to enhance their performance.
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APPENDIX

The areaAs can be calculated

eliminate neighborhoods which are likely to cause flip ambiig a1, The areads where D can be placed for a gived, B andC.
guity from the localization process or to decide on configenc
factors for the location estimates reflecting the likelidlaaf given neighborhood in Fig. A.14s can be calculated as
flip ambiguities associated with it in order to improve lecald¢s = A; + A, + A; + A, where A;=area of circular
ization performance. Accuracy of our analytical expressis segmentP;Q; = RZsin~! d’;}?l — R; sin(2sin~! d’}%),
well as the performance enhancement via using this expressiy, =area of circular segmenf;R; = RZsin™! d%% _
in robust localization algorithm based on elimination op fli R

R2 sin~! o B gin(2gin~! 200) and A,=area of

d
sin(2sin~! “91), Az=area of circular segmer®, R, =
ambiguities are well demonstrated via simulations.
dQlRl )(S — dP1R1) where

As a future work, localization algorithms in the literature POR 2R 2 i
can be incorporated with confidence factors reflecting ti% 13’?}@ 1+_Q }?/isp_n P )(s
. . . . agn . . 11 1-°t] 1-°t]
likelihood of flip ambiguities associated with each locatio® = 2




