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Abstract—Erroneous local geometric realizations in some parts
of the network due to their sensitivity to certain distance mea-
surement errors is a major problem in wireless sensor network
localization. This may in turn affect the localization of either
the entire network or a large portion of it. This phenomenon
is well-described using the notion of “flip ambiguity” in rigid
graph theory. In this paper we analytically derive an expression
for the flip ambiguity probabilities of arbitrary neighborhoods
in two dimensional sensor networks. This probability can be
used to mitigate flip ambiguities in two ways: 1) If an unknown
sensor finds the probability of flip ambiguity on its location
estimate larger than a predefined threshold, it may choose not
to localize itself 2) Every known neighbor can be assigned
with a confidence factor to its estimated location, reflecting
the probability of flip ambiguity; a sensor with an initially
unknown location can then choose only those known neighbors
with a confidence factor greater than a predefined threshold. A
recent study by co-authors have shown that the performance of
sequential and cluster based localization schemes in the litera-
ture can be significantly improved by correctly identifying and
removing neighborhoods with possible flip ambiguities from the
localization process. One motivation of this paper is to enhance
the performance of the robustness criterion presented in that
study by accurately identifying the flip ambiguity probabilities
of arbitrary neighborhoods. The various simulations done in this
study show that our analytical calculations of the probability
of flip ambiguity matches with the simulated detection of the
probability very accurately.

I. I NTRODUCTION

A fundamental problem in distance-based sensor network
localization is whether a given sensor network with a set of
known distances is uniquely localizable. In a graph theoretical
framework, a sensor network can be represented by a graph
G = (V,E) with a vertex setV and an edge setE, where each
vertexi ∈ V is uniquely associated with a sensor nodesi in the
network, and each edge(i, j) ∈ E corresponds to a sensor pair
si, sj for which the inter-sensor distancedij is known [1]–[5].
The planar location information about the sensors corresponds
to a2−dimensionalrepresentation of the representative graph,
which is a mappingp : V → R2, assigning a location in
R2 to each vertex inV . Given a graphG = (V,E) and a
representation of it, the pair(G, p) is called aframework.

A particular graph property associated with unique lo-
calizability of sensor networks isglobal rigidity [4]–[6]. A
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Fig. 1. Flip ambiguity: ReflectingD through a mirror formed by neighbors,
a new realizationD′ is obtained without violating the distance constraints.
(a) Flip ambiguity in rigid but not globally rigid underlyinggraph. (b) Flip
ambiguity in globally rigid underlying graph with near collinear neighbors.

relaxed form of global rigidity is rigidity. If a framework
(G, p) is rigid but not globally rigid, there exist two types of
discontinuous deformations that can prevent a representation
of G consistent withp, i.e., a representation(G, p1) satisfying
‖p(i)− p(j)‖ = ‖p1(i)− p1(j)‖ for any vertex pairi, j ∈ V ,
which are connected by an edge inE, from being unique (in
the sense that it differs from other such representations atmost
by translation, rotation or reflection) [3]: flip and discontinuous
flex ambiguities. In this paper we focus on flip ambiguities.
In flip ambiguities inR2, at least a vertex (sensor node)v has
its all neighbors collinear, which leads to the possibilityof
neighbors forming a mirror through whichv can be reflected.
Fig. 1(a) depicts an example of flip ambiguity.

In real-life sensor networks, the measured distances are
erroneous and flip ambiguity may occur even in a network
with globally rigid underlying graph [6] with near collinear
neighbors (Fig. 1(b)) depending on the sensitivity of those
near collinear neighborhoods to such measurement errors.

At the first few iterations of an incremental localization
algorithm [7]–[9], only known neighboring nodes for an un-
known sensor are the anchor nodes (sensors with known global
location information). Availability of these anchor nodesin
large numbers are severely limited by the associated costs.
Thus the probability of the occurrence of flip ambiguity at
the initial iterations is very high. The number of neighbors
with initially known location or known estimated location
will generally increase with the number of iterations as more
and more sensors are localized at each iteration. However,
occurrences of flip ambiguities affect not only the location
estimate of the associated nodes, but will degrade the location
estimates of other nodes in the subsequent iterations, whose
known neighborhood include one or more of those nodes
with flip ambiguities in their location estimates. This impact
can propagate in an avalanche fashion for several iterations
degrading location estimates of more and more nodes, as
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Fig. 2. Initially, locations ofA, B, C, P andQ are known andD, E, F ,
G, H and I are unknown. At the first iteration,D andE uses locations of
collinear neighborsA, B, C and localize itself atD′ and E′ respectively
due to flip ambiguity. In the second iteration,F uses locations of neighbors
A, C, D and localize itself atF ′.
demonstrated in Fig. 2. Similar phenomenon is also seen
in cluster localizations [9], [10]. Further details about such
phenomenon can be found in [9]. Thus identifying nodes with
flip ambiguities at each iteration and removing them from the
localization procedure will significantly improve the overall
performance of a sensor network localization algorithm.

There exist a number of approaches in the literature to
the flip ambiguity problem in different perspectives. The
studies [1], [2], [11], [12] have approached this problem
by exploring the graph structure. The algorithms in [1], [2]
require a dense network in order to maintain global rigidity,
to deal with flip ambiguity problem. Global rigidity is only
a sufficient condition for unique localization of a sensor
network. However, in some cases a priori information may
compensate the need of global rigidity [6]. The algorithm
in [11] uses the principle of Voronoi diagrams and Delaunay
graphs to localize the sensors at the boundaries in order to
mitigate flip ambiguities, which also requires the sensors to
be sufficiently dense at the boundaries to maintain the rigidity
of the Delaunay graph. When the network is sparse, algorithms
in [12], [13] suggest to record all possible estimates of each
sensor and eliminate incompatible estimates whenever possi-
ble, which, in the worst case, recording all possible estimates
could result in an explosion in the state space. The studies [9],
[10] have approached this problem by identifying possible flip
ambiguities in neighborhoods and take necessary actions to
eliminate such flip ambiguities. Both these studies assume
that the true location and the possible flipped location are
symmetrical with respect to a pair of neighboring nodes. Such
assumption causes false alarms in the identification of possible
flip ambiguities. In this paper, we remove the assumption of
symmetry and define an analytical equation for the probability
of flip ambiguity of a given neighborhood.

Any prevailing distance based localization algorithm could
use these results in two ways: 1) If an unknown sensor
finds the probability of flip ambiguity on its location estimate
with respect to its known neighborhood to be more than a
predefined threshold value, it may choose not to localize itself
in that iteration 2) Every known neighbor could be assigned
with a confidence factor to its location estimate, reflectingthe
probability of flip ambiguity; a sensor whose location is to be
estimated can then choose only those known neighbors with
a confidence factor greater than a predefined threshold during
its localization.

II. PROBLEM FORMULATION

To keep the analysis simple, we consider sensor neighbor-
hoods in the form of fully connected quadruples (FCQs) that
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Fig. 3. Location estimate ofD considering two neighborsA, B and a chosen
error bound at a time. Flip occurs with respect toAB if D = (xD, yD) ∈
RAB

D1
andD̂ = (x̂, ŷ) ∈ RAB

D2
or vice versa.

are composed of four sensors which are neighbors of each
other, i.e. the distance between any pair is measurable. For
any given sensor pair(X,Y ), dXY and dXY are used to
denote, respectively, the true distance and measured distance
betweenX andY . Consider an ordered FCQABCD where
the locations(xA, yA), (xB , yB) and (xC , yC) of sensorsA,
B, C and the corresponding measured inter sensor distances
dAD, dBD and dCD from sensorD to sensorsA, B and C

are known. Assuming the distance measurement error has a
known Gaussian distribution with a zero mean andσ standard
deviation [14], a thresholdǫ > 0 can be chosen such that the
absolute value of the distance measurement error is smaller
than the threshold with a certain probability. For example,
if ǫ = 3σ, then the probability of the absolute value of the
distance measurement error is less thanǫ is 99%. For a given
ǫ, the relationships between the true distancesdAD, dBD and
dCD and the measured distancesdAD, dBD anddCD are,

dAD ∈ [dAD − ǫ, dAD + ǫ]

dBD ∈ [dBD − ǫ, dBD + ǫ]

dCD ∈ [dCD − ǫ, dCD + ǫ] (1)

Exploiting (1), we can assert the following constraint on the
estimated location̂D = (x̂, ŷ) of sensorD:

D̂ ∈ R
ABC
D (2)

R
ABC
D ,

{

(x, y) :







| ‖(x, y) − (xA, yA)‖ − dAD |≤ ǫ and
| ‖(x, y) − (xB , yB)‖ − dBD |≤ ǫ and
| ‖(x, y) − (xC , yC)‖ − dCD |≤ ǫ

}

Instead, if we only consider constraints imposed by two
neighboring sensorsA andB, without loss of generality, we
obtain the relaxed constraint

D̂ ∈ R
AB
D (3)

R
AB
D ,

{

(x, y) :

{

| ‖(x, y) − (xA, yA)‖ − dAD |≤ ǫ and
| ‖(x, y) − (xB , yB)‖ − dBD |≤ ǫ

}

This region is the intersection of two rings
| ‖(x, y) − (xA, yA)‖ − dAD | ≤ ǫ and

| ‖(x, y) − (xB , yB)‖ − dBD | ≤ ǫ (4)

and is made of two regionsRAB
D1

andRAB
D2

as in Fig. 3, i.e.,
R

AB
D = R

AB
D1

∪ R
AB
D2

(5)

Fig. 3 also illustrates that if the estimatêD is generated based
on justdAD anddBD, a flip ambiguity is possible with respect
to the lineAB. Also note that, depending on the locations of
A, B, the corresponding measured distancesdAD, dBD and
the threshold valueǫ, the regionsRAB

D1
andRAB

D2
may be joint.

In such situations, the boundary separating the two regions
RAB

D1
andRAB

D2
is taken as the lineAB.
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Fig. 4. Possible regions for the location of sensorD based on considering
two neighbors and a chosen error bound at a time.RAB

D - Possible region
for D given A, B, dAD , dBD , ǫ; RAC

D - Possible region forD given A,
C, dAD , dCD , ǫ; RBC

D - Possible region forD givenB, C, dBD , dCD , ǫ;

Similarly, we can consider constrains imposed by neighbor-
ing sensor pairs(A,C) and(B,C) to define regionsRAC

D and
RBC

D respectively (See Fig. 4) as

R
AC
D ,

{

(x, y) :

{

| ‖(x, y) − (xA, yA)‖ − dAD |≤ ǫ and
| ‖(x, y) − (xC , yC)‖ − dCD |≤ ǫ

}

= R
AC
D1

∪ R
AC
D2

(6)

R
BC
D ,

{

(x, y) :

{

| ‖(x, y) − (xB , yB)‖ − dBD |≤ ǫ and
| ‖(x, y) − (xC , yC)‖ − dCD |≤ ǫ

}

= R
BC
D1

∪ R
BC
D2

(7)

With these definitions, if we consider the constraints imposed
by all three neighbors, (2) can be written as

D̂ ∈ R
ABC
D (8)

R
ABC
D = R

AB
D ∩ R

AC
D ∩ R

BC
D

= (RAB
D1

∪ R
AB
D2

) ∩ (RAC
D1

∪ R
AC
D2

) ∩ (RBC
D1

∪ R
BC
D2

)

By applying De-Morgan’s rule to (8), it follows thatRABC
D

is composed of the following eight disjoint regions:
R

ABC
Dp,q,r

= R
AB
Dp

∩ R
AC
Dq

∩ R
BC
Dr

; p, q, r ∈ {1, 2} (9)

Note that the true locationD has to lie in only one of the eight
disjoint regions formulated in (9). Without loss of generality,
let us assume that

D ∈ RABC
D1,1,1

= RAB
D1

∩ RAC
D1

∩ RBC
D1

(10)

Then the eight possible regions given in (9) can be represented
by a Venn diagram as in Fig. 5. This Venn diagram consists
of three mutually intersecting disks representing the regions
RAB

D2
, RAC

D2
, and RBC

D2
. Note that existence of̂D in the set

represented by any of these three disks corresponds to a flipped
realization. For example,̂D ∈ RAB

D2
implies that there is a flip

ambiguity in the location estimatêD with respect to the line
AB. Similarly with the help of Fig.5, it is easily seen that the
possible location estimates can be grouped into the following
four groups.

• Group 0: D̂ ∈ RABC
D1,1,1

; (xD, yD) and (x̂, ŷ) are both in
RABC

D1,1,1
causing no flip ambiguity.

• Group 1: D̂ ∈ RABC
D2,2,2

; (xD, yD) and (x̂, ŷ) are in
RABC

D1,1,1
and RABC

D2,2,2
respectively causing possible flip

ambiguities with respect to all three linesAB, AC and
BC.

• Group 2: D̂ ∈ RABC
Dp,q,r

such thatp, q, r ∈ {1, 2} andp+

q+r = 5; (xD, yD) and(x̂, ŷ) are inRABC
D1,1,1

andRABC
Dp,q,r

respectively causing possible flip ambiguities with respect
to any two lines only:AB and AC or BC and AC or
AB andBC.

• Group 3: D̂ ∈ RABC
Dp,q,r

such thatp, q, r ∈ {1, 2} andp+

q+r = 4; (xD, yD) and(x̂, ŷ) are inRABC
D1,1,1

andRABC
Dp,q,r

respectively causing possible flip ambiguities with respect
to any one line only:AB or AC or BC.

(Group 0) 

(Group 1) 

(Group 2) 

(Group 2) 

(Group 2) 

(Group 3) 

(Group 3) 
(Group 3) 

ABC

D
R

1,1,2

ABC

D
R

1,2,2

ABC

D
R

2,2,2
ABC

D
R

2,1,2

ABC

D
R

2,1,1

ABC

D
R

2,2,1

ABC

D
R

1,2,1

ABC

D
R

1,1,1

AB

D
R

2

AC

D
R

2

BC

D
R

2

ABC

D
R

Fig. 5. Venn Diagram representation of (8).

Out of the eight possible regionsRABC
Dp,q,r

in (9), at-least one of
them should be a non-empty region to accommodate the true
location ofD. If all but one possible region are null regions,
then there is a unique region possible to accommodate the
estimated locationD̂, and there would be no possibility for
flip realization. But, if two or more regions are non-empty
then there is a non-zero probability for the estimated location
D̂ to be located inside any of those non-empty regions thereby
creating a flip ambiguity problem. Our goal in the next section
is to find the probability of havingD̂ in each of Group1,
Group2 and Group3 flip ambiguity cases.

III. D ERIVATION OF FLIP AMBIGUITY PROBABILITIES

In this section, we derive an analytical equation for the
probability of D̂ lying in various regions defined in section II
corresponding to flip ambiguity. Firstly, we derive an analytical
solution for the case where flip ambiguity occurs only acrossa
single lineAB. We then extend the derivation to all different
groups of flip ambiguities mentioned in section II.

Let us first define the probability spaceΩ containing all
possible events regarding location estimatesD̂ = (x̂, ŷ):

Ω = {(x̂, ŷ) ∈ RAB
D1

∪ RAB
D2

} (11)

and with the assumptionD ∈ RAB
D1

made in (10), an event
set ζAB ⊂ Ω containing the location estimation events corre-
sponding to the flipped realization as

ζAB = {(x̂, ŷ) ∈ RAB
D2

} (12)

Our aim is to find an expression for the probabilityP (ζAB |
A,B,C,D) and then marginalize this probability over all pos-
sible locations of D to find the probabilityP (ζAB | A,B,C).

A. Calculation of P (ζAB | A,B,C,D)

Let HC denote the open half plane with border lineAB that
containsC, andDC be the complimentary half plane on the
other side ofAB. Assuming thatA,B,C are non-collinear,
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HC and HC are well defined. The two circlesC(A, dAD)
and C(B, dBD) centered atA and B with radius dAD and
dBD at two pointsDC , DC , one of which is inHC and the
other in HC as shown in Fig. 6. Without loss of generality,
let DC ∈ HC and DC ∈ HC . When considering only two
distance measurementsdAD anddBD, both pointsDC andDC

will be possible candidates for the location estimateD̂ with
(dAD̂ −dAD)2 +(dBD̂ −dBD)2 = 0. When the third distance
measurementdCD is included in the localization process, a
new candidate forD̂ can be obtained as the minimizer of
J(D̂) , (dAD̂ − dAD)2 + (dBD̂ − dBD)2 + (dCD̂ − dCD)2.
We obtain the following results:

Proposition 1: Let A, B, C be non-collinear. Then̂D∗ ,

arg min
D̂

J(D̂) satisfies the following:

i D̂∗ ∈ HC when0 ≤ dCD < λC

ii D̂∗ ∈ HC whenλC < dCD ≤ R

whereλC =
dCDC

+dCD
C

2 .
Proof: Noting thatdCDC

≤ dCDC
, it can be easily seen

that | dCDC
− dCD |<| dCDC

− dCD | is always equivalent to
dCD < λC , and | dCDC

− dCD |>| dCDC
− dCD | is always

equivalent todCD > λC . Hence:

i When 0 ≤ dCD < λC , we have| dCDC
− dCD |<|

dCDC
− dCD |. Assume, to obtain contradiction, that

D̂∗ ∈ HC . There exists a point̂D∗
2 ∈ HC which is

symmetric ofD̂∗ with respect toAB. It can be easily
seen thatJ(D̂∗

2) < J(D̂∗), which contradicts with the
definition of D̂∗.

ii When λC < dCD ≤ R, we have| dCDC
− dCD |>|

dCDC
− dCD |. Following exactly the same steps as

in part (i), we show thatD̂∗ cannot be inHC . Hence
D̂∗ ∈ HC .

With the assumptionD ∈ RAB
D1

in (10), a flipped realization
occurs when

i D̂∗ ∈ HC andRAB
D1

⊂ HC

ii D̂∗ ∈ HC andRAB
D1

⊂ HC

With this information, we can define two support spaces for
events defined in (11) and (12):

Ω′ = {dAD, dBD, dCD ∈ [0, R] | A, B, C, D} (13)

ζ
′
AB =























{dAD, dBD ∈ [0, R], dCD ∈ [0, λC ] | A, B, C, D}
whenRAB

D1
⊂ HC

{dAD, dBD ∈ [0, R], dCD ∈ [λC , R] | A, B, C, D}
whenRAB

D1
⊂ HC

(14)

Considering the measured distances as the actual distances
blurred by Gaussian noise as stated in Section II and assuming

A B

C

C
CD

d

P Q

AD
d

BD
d

CD
d

)( ,
AD

dAC

)( ,
BD

dBC

)( ,
CD

dCC

CC DD

Fig. 7. When circlesC(A, dAD) andC(B, dBD) do not intersect,DC ≡
D

C
.

that these Gaussian measurement noises are independent of
each other, we have the probability distribution functions
f(dAD) , f(dAD | A,B,C,D), f(dBD) , f(dBD |
A,B,C,D) andf(dCD) , f(dCD | A,B,C,D) independent
of each other. Therefore defining the binary functions

δCD =

{

1 If RAB
D1

⊂ HC

0 If RAB
D1

⊂ HC

ICD =

{

1 If dCD ∈ [0,min(λC , R)]
0 Otherwise

we have

P (ζAB | A, B, C, D) = P (ζ′
AB | A, B, C, D)

= δCD

∫ R

0

∫ R

0

∫ min(λC ,R)

0

f(dCD)d(dCD)f(dBD)d(dBD)

f(dAD)d(dAD)

+(1 − δCD)

∫ R

0

∫ R

0

∫ R

min(λC ,R)

f(dCD)d(dCD)

f(dBD)d(dBD)f(dAD)d(dAD)

=

∫ R

0

∫ R

0

∫ R

0

(

(δCDICD) + ((1 − δCD)(1 − ICD))

)

f(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD) (15)

Note that the disc transmission model used in the analysis
bounds the true inter-sensor distance to be≤ R, which in turn
bounds the measured distances as0 ≤ dAD, dBD, dCD ≤
R + 3σ with 99% probability. To keep the equations simple,
an approximation to these bounds has been made as0 ≤ dAD,
dBD, dCD ≤ R. Due to this truncation of the measured
distances, any calculated probability should be normalized by
∫ R

0

∫ R

0

∫ R

0
f(dCD)f(dBD)f(dAD)d(dCD)d(dBD)d(dAD)

Also note that, if the circlesC(A, dAD) andC(B, dBD) do
not intersect as shown in Fig. 7, the pointsDC andDC will
coincide with each other and be the mid-point of the line
segment[PQ]. Thus the above analysis holds for both cases,
C(A, dAD) andC(B, dBD) intersect and do not intersect.

B. Calculation of P (ζAB | A,B,C)

In this section, we find the probabilityP (ζAB | A,B,C)
by marginalizing the analytical expression obtained in section
III-A over all possible locationsD in the planar areaS where
D can be placed. ThusP (ζAB | A,B,C) can be written as,

P (ζAB | A, B, C) =

∫

S

∫

P (ζAB | A, B, C, D)f(D | A, B, C) d(D) (16)

Using the fact that the sensors are assumed to have a disc
transmission model, for a given neighborhoodABC, sensor
D could only be placed inside a regionS defined by,

S =

{

(xD, yD) :







‖(xD, yD) − (xA, yA)‖ ≤ R2 and
‖(xD, yD) − (xB , yB)‖ ≤ R2 and
‖(xD, yD) − (xC , yC)‖ ≤ R2

}



If the sensors are distributed uniformly then,f(D |
A,B,C) = 1

AS
, whereAS is the area of the regionS which

can be calculated as described in the Appendix. Defining

IS(D) =

{

1 D ∈ S

0 otherwise

we have

P (ζAB | A, B, C) =
1

AS

∫

R2

∫

P (ζAB | A, B, C, D)IS(D) d(D) (17)

which can be combined with (15) to get

P (ζAB | A, B, C, D) =

1

AS

∫

R2

∫

IS(D)

∫

R

0

∫

R

0

∫

R

0

(

(δCDICD) + ((1 − δCD)(1 − ICD))

)

f(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD)d(D) (18)

The above processing order of the inter-sensor measurements
dAD, dBD, dCD has been used without loss of generality, and
the analysis below applies to any other order as well with
appropriate index modifications. Thus it can be generalized
to get P (ζij | A,B,C) with appropriate index selection of
i, j, k ∈ {A,B,C} and i 6= j 6= k. If we look at δkDIkD +
(1−δkD)(1−IkD), it represents a three dimensional indicator
function

Iζij
=

{

1 D̂ is a flipped realization with respect to lineij
0 otherwise

Thus forζ ∈ {ζij , ζij ∩ζik, ζij ∩ζjk, ζik ∩ζjk, ζij ∩ζik ∩ζjk},
(18) can be generalized as

P (ζ | A, B, C) =

1

AS

∫

R2

∫

IS

∫ R

0

∫ R

0

∫ R

0

Iζf(dCD)d(dCD)f(dBD)d(dBD)

f(dAD)d(dAD)d(D) (19)

where Iζij
= δkDIkD + (1 − δkD)(1 − IkD), Iζij∩ζik

=
Iζij

Iζik
and Iζij∩ζik∩ζjk

= Iζij
Iζik

Iζjk
for any permutation

of i, j, k ∈ {A,B,C} and i 6= j 6= k. With the help of the
Venn diagram in Fig. 5, conditional probabilities for Groups
0− 3 introduced in Section II can be calculated based on the
above explanation. For example,P (Group 1 | A,B,C) =
P (ζAB ∩ ζAC ∩ ζBC | A,B,C)

IV. N UMERICAL ANALYSIS

We test our analytical solution by comparing the results
with various simulation results. In our comparison, fully
connected sensor quadruples used are selected from a pool of
4-nodes sensor networks composed of nodes that are uniformly
distributed in a region of100m × 100m with a transmission
range of10m. The measured distance between the neighbor
nodes is blurred by a Gaussian noise [14] as

dji = dij = dji + N (0, σ
2) (20)

where the Gaussian noise is truncated such that0 ≤ dji ≤ R

andσ is varied from0.1m to 0.5m.
Since the basic building block of all probabilities isP (ζAB |

A,B,C,D) and due to space limitations, we are only com-
paring the results ofP (ζAB | A,B,C,D) with respect to
arbitrarily placed sensor neighborhoodsA, B, C andD. Let

the probabilityP (ζAB | A, B, C, D) obtained via simulations
as PS(ζAB | A, B, C, D) and via our analytical results as
PA(ζAB | A, B, C, D) respectively. Then forNt = 1000, we
can define∆1 as

∆1 =

∑

Nt
| PS(ζAB | A, B, C, D) − PA(ζAB | A, B, C, D) |

Nt

(21)

The results shows that the analytical results detects the
probability of flip ambiguity accurately.
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Fig. 8. Comparison of the simulation resultsPS(ζAB | A, B, C, D)
with our analytical resultsPA(ζAB | A, B, C, D) for different σ. Here the
vertical lines represent the standard error bar of∆1.

V. PERFORMANCE ENHANCEMENT OF LOCALIZATION

ALGORITHMS USING THE FLIP AMBIGUITY PROBABILITY

In this section we use the probability of flip ambiguity
calculated using our analytical expression to enhance the
performance of the sequential localization algorithm [7],[8],
where at each iteration, all unknown nodes with minimum
three known neighbors are localized. These known neighbors
can be anchors or some nodes defining the local coordinate
system. When unknown nodes are localized, they are elevated
to anchor status, thereby increasing the chances of unknown
nodes being localized in the subsequent iterations.

The localization algorithms in [7], [8] take any FCQ to do
trilateration. Instead, we use the probability of flip ambiguity
to select the robust FCQ in a particular way as follows: If an
unknown nodei with neighborhoodNi has|Ni| neighbors, we
obtain setsC|Ni|

3 of all possible FCQs with nodesA,B,C ∈
Ni and i, and find the FCQ with the least probability of flip
ambiguity out of all FCQs with a probability of flip ambiguity
less than the threshold value of15%.

In order to evaluate the performance enhancement,50
different simulated sensor networks with100 randomly dis-
tributed nodes are constructed each with different random
seed. Sensor nodes in each of the50 sensor networks are
uniformly distributed in a region of100m × 100m. The first
10 sensor nodes are chosen as anchor nodes and are initialized
with random coordinates within the boundary. The Gaussian
noise in (20) is chosen to haveσ = 0.2m and locations of
unknown nodes are estimated by minimizing the cost function
J(D̂).

The number of nodes are kept fixed and the transmission
range is adjusted in the simulations such that the average
node degree varies between4−25. The average mean squared
error in location estimates is calculated and normalized tothe
transmission rangeR as:

MSE =
1

|{n|Vn 6= ∅}|

50
∑

n=1
|Vn|6=0

1

|Vn|

∑

i∈Vn
(xi − x̂i)

2 + (yi − ŷi)
2

R2



where(x̂i, ŷi) and(xi, yi) are the estimated and true location
of sensor nodei, Vn is the set of nodes localized in thenth

sensor network, and|Vn| is the number of nodes inVn.
To compare different scenarios, FCQs used in trilateration

are chosen in four different ways:
i Any FCQ of Ni.

ii Most robust FCQ ofNi by criterion [9]
iii Most robust FCQ ofNi by criterion in [10].
iv Most robust FCQ ofNi with probability of flip less than15%.

From Fig. 9 it can be seen that the average numbers of
localized nodes with neighbor selection method (i) and (iv)are
more than (ii) and (iii) while the average estimation error of (i)
is much larger than (ii), (iii) and (iv). As expected, selection
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Fig. 9. Performance of different neighbor selection methods (i) to (iv).

method (iv) produced more number of localized nodes with
less estimation errors. Due to the threshold value of15%,
some miss-detected flipped realization have caused the average
estimation errors to be slightly higher than (ii) and (iii).

Since the reliability of the location estimates is an abso-
lute requirement of any localization algorithm, a robustness
criterion for the neighborhood selection to remove those flip
ambiguities is essential. For a robustness criterion to be
effective, it needs to detect as much flip ambiguities as possible
while making as little number of false alarms as possible.
From these aspects, the above simulation results show that by
choosing a suitable threshold value for (19), the performance
can be optimized.

VI. CONCLUSION AND FUTURE WORK

A recent work of co-authors have well demonstrated that
identifying the likelihood of flip ambiguities in location esti-
mates and taking proper action will enhance the performance
of localization algorithms significantly.

In this paper we have developed an analytical expression
to calculate the probability of flip ambiguity for arbitrary
neighborhoodsABC. This probability can be used either to
eliminate neighborhoods which are likely to cause flip ambi-
guity from the localization process or to decide on confidence
factors for the location estimates reflecting the likelihood of
flip ambiguities associated with it in order to improve local-
ization performance. Accuracy of our analytical expression as
well as the performance enhancement via using this expression
in robust localization algorithm based on elimination of flip
ambiguities are well demonstrated via simulations.

As a future work, localization algorithms in the literature
can be incorporated with confidence factors reflecting the
likelihood of flip ambiguities associated with each location

estimate that has been accurately calculated using our analyt-
ical results, to enhance their performance.
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APPENDIX

Calculation of AS : The areaAS can be calculated
by dividing S into triangle and/or circular segments. For a
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Fig. A.1. The areaAS whereD can be placed for a givenA, B andC.

given neighborhood in Fig. A.1,AS can be calculated as
AS = A1 + A2 + A3 + A4 where A1=area of circular
segmentP1Q1 = R2 sin−1 dP1Q1

2R
− R2

2 sin(2 sin−1 dP1Q1

2R
),

A2=area of circular segmentQ1R1 = R2 sin−1 dQ1R1

2R
−

R2

2 sin(2 sin−1 dQ1R1

2R
), A3=area of circular segmentP1R1 =

R2 sin−1 dP1R1

2R
− R2

2 sin(2 sin−1 dP1R1

2R
) and A4=area of

△P1Q1R1 =
√

s(s − dP1Q1
)(s − dQ1R1

)(s − dP1R1
) where

s =
dP1Q1

+dQ1R1
+dP1R1

2


