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distance measurements which leads to large location estimation errors. These errors and

the possible propagation of these errors to the entire network or a large portion of it,

thereby causing larger estimation errors for some sensors’ locations, is a major problem

in localization. This phenomenon is well described in rigid graph theory, using the

notion of “flip ambiguity”. This paper considers arbitrary sensor neighborhoods of two

dimensional sensor networks and formulates an analytical expression for the probability

of occurrence of the flip ambiguity. Based on the derived probability expression, a

methodology is proposed to make the localization algorithms robust by calculating

such flip ambiguity probabilities and eliminating potentially poor location estimates

as well as assigning confidence factors to the estimated locations to prevent them from

ruining the subsequent localization steps. The efficiency of the proposed methodology

is demonstrated via a set of simulations.

Keywords Flip Ambiguities · Robust Localization

1 Introduction

Distance based sensor network localization schemes estimate the locations of sensors

using inter-sensor distance measurements, which may contain noises, and the a priori

known locations of a specific subset of sensors, often termed as anchors. Rigid graph

theory [1–5] is a useful framework for analyzing the characteristics of such schemes,

which represents the sensor network by an underlying graph G = (V, E) with vertex

set V and edge set E, and uniquely associates each sensor sX with a vertex X ∈ V and

each sensor pair (sX , sY ) with known inter-sensor distance with an edge (X, Y ) ∈ E. A

2- dimensional representation of the underlying graph G = (V, E) is a mapping p : V →

R2, which assigns a location in R2 to each vertex in V , where ‖p(X) − p(Y )‖ denotes
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the distance between the two locations p(X), p(Y ) of the vertices X, Y ∈ V . The pair

(G, p) representing a given underlying graph G = (V, E) and the representation p is

called a 2-dimensional framework.

A necessary and sufficient condition for unique localization of a sensor network

modeled as above is global rigidity [1, 5]. A framework (G, p) is globally rigid if every

framework (G, p1) satisfying ‖p(X) − p(Y )‖ = ‖p1(X) − p1(Y )‖ for any vertex pair

X, Y ∈ V where (X, Y ) ∈ E also satisfies the same equality for any other vertex pairs

that are not connected by a single edge. A relaxed form of global rigidity is rigidity:

A framework (G, p) is rigid if there exists a sufficiently small positive constant ǫ such

that every framework (G, p1) satisfying (i) ‖p(X) − p1(X)‖ < ǫ for all X ∈ V and (ii)

‖p(X)− p(Y )‖ = ‖p1(X)− p1(Y )‖ for any vertex pair X, Y ∈ V , which are connected

by an edge in E, also satisfies the equality in (ii) for any other vertex pairs that are

not connected by a single edge.

In order to have a finite number of solutions, rigidity is needed. A rigid framework

(G, p) without global rigidity may suffer from flip and discontinuous flex ambiguities,

making the representation of G inconsistent with p, in the sense that it differs from other

such representations at most by translation, rotation or reflection [3,4]. This paper only

focuses on flip ambiguities. Flip ambiguity occurs when a vertex (sensor) X of a rigid

but not globally rigid underlying graph is reflected across a set of collinear neighbors

with the possibility of forming a mirror without violating any distance constraints as

shown in Fig. 1(a).

For a globally rigid underlying graph, depending on sensitivity of the near collinear

neighborhood to the corresponding distance measurement errors, such a reflection of

a vertex (sensor) X can still occur across its near collinear neighborhood [5] as shown

in Fig. 1(b).
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Fig. 1 Flip ambiguity: Reflecting p(D) through a mirror formed by neighbors, a new re-

alization p̂(D) is obtained without violating the distance constraints. (a) Flip ambiguity in

rigid but not globally rigid underlying graph. (b) Flip ambiguity in globally rigid underlying

graph due to the near collinear neighborhood and its sensitivity to the corresponding distance

measurement errors.

An empirical study in [6] demonstrates that increasing the number of known neigh-

bors in a neighborhood is able to reduce but not fully eliminate flip ambiguities. More-

over, anchors are the only location known neighbors at the initial iteration of a lo-

calization algorithm [4, 7–14] and are limited in number due to the associated cost,

causing more frequent occurrences of flip ambiguities at the early iterations. The usage

of these erroneous location estimates may continue to degrade the location estimates

of the subsequent iterations [6], and propagate in an avalanche fashion for several iter-

ations affecting the location estimates of either the entire network, or a large portion

of it. Many localization algorithms in the literature, including both centralized and

distributed algorithms, show the traces of this avalanche error propagation behavior

one of which is shown in Fig. 2.

Almost collinear placement of the three anchors marked as anchor 1, 2 and 3 in Fig.

2 causes a large number of sensors (shown within the rectangle in Fig. 2), which may not

necessarily be the one-hop neighbors of these three anchors, to be flipped to incorrect
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Fig. 2 Avalanche error propagation of flip ambiguity seen in a centralized localization algo-

rithm presented in [15], [16].

positions. A detailed description of flip ambiguities and the resulting avalanche error

propagation effects are presented in [6,16].

Flip ambiguities do not necessarily occur in every sensor network, but when they

occur, the performance of localization can be significantly degraded as shown in Fig.

2. Thus, identification and mitigation of flip ambiguities is essential in improving the

reliability of the sensor network localization algorithm.

This paper derives an analytical equation for the probability of flip ambiguities

of arbitrary sensor neighborhoods. The significance of this derivation is two folds: (i)

The derived probability expression can be used for stochastic analysis of localization

processes that are affected by flip ambiguities, such as the ones mentioned above.

(ii) This expression can be used, as a filtering tool integrated with the localization

algorithm, to identify neighborhoods with higher probabilities of flip ambiguity than

a predefined threshold value, and eliminate them from being used in the localization

process. The integration can be done for both centralized and distributed distance
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based localization algorithms to improve the accuracy and reliability of their location

estimates. This paper chooses to focuss on the performance of distributed sequential

localization algorithms as an example [7–11].

The calculated probability of flip ambiguity may also be used in assigning confidence

factors to the location estimates such that estimates obtained using a neighborhood

with a larger probability of flip ambiguity will have a lower confidence factor and vice

versa. Confidence factor assignment and its usage are beyond the scope of this paper.

We refer interested readers to [17] and references therein for detailed discussion on the

topic.

The rest of the paper is organized as follows: Section 2 presents the recent relevant

works. Section 3 formulates the problem by analyzing the effects of distance mea-

surement errors on flip ambiguities. Section 4 derives an analytical equation for the

probability of flip ambiguity. Analytical probabilities are compared against simulated

counterparts in Section 5. Section 6 presents an analysis of substantial and negligible

flip ambiguities. Section 7 demonstrates the performance enhancement by the usage

of probability of flip ambiguities in sequential localization algorithm. This paper is

concluded in Section 8, together with intended future work.

2 Related Work

The researchers have approached the flip ambiguity problem in a number of differ-

ent perspectives in the literature. The studies in [1, 2, 18, 19] explored the underlying

representative graph structure of the sensor network. The work in [1, 2] claimed that

maintaining a global rigidity in the networks is a way of mitigating flip ambiguities

from the localization algorithms in those networks. Global rigidity is however a suffi-
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cient condition for unique localization which is often met only in a denser network. In

some underlying graph structures, the need for global rigidity may be compensated by

a priori information [5].

The algorithm in [18] approached the problem of flip ambiguity in two steps. This

algorithm firstly identified the sensors at the boundary using the boundary detection

algorithms in the literature and mitigated flip ambiguities in their location estimates

using the principle of Voronoi diagram and Delaunay graph. Then the algorithm used

the boundary sensors as anchors to mitigate flip ambiguities from rest of the network

localization. The study by the same authors in [20] replaced the need for the boundary

detection algorithm by an incremental landmark selection algorithm, which selects

landmarks incrementally in a distributed manner until the global rigidity property of

the Delaunay graph and the coverage property of not being far from the embedded

Delaunay complex are met.

It is non-trivial to design an efficient distributed algorithm for testing global rigidity

as neither rigidity nor connectivity can be tested locally by nature [21]. The distributed

nature and the easily implementable characteristic of trilateration [4, 7, 8, 12, 22, 23]

makes it an attractive choice of localization method. The study in [21] pointed out

that only a subset of localizable sensors with globally rigid underlying graphs are

localized using trilateration. This study also noted trilateration as a special case of

wheel graphs, a globally rigid graph structure, and claimed that using wheel graphs in

localization algorithms instead may improve the number of localized nodes.

The theory of graph realization does not account for inter-sensor measurement

errors of real applications [22]. The algorithms in [19,24] recorded all possible location

estimates of sensors during the localization process and eliminated the incompatible

estimates whenever possible, which is computationally not practical.
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Localization algorithms in [4, 6, 16, 22, 23] identified possible flip ambiguities and

took necessary actions to mitigate them from the localization process. These algorithms

considered a quadruple of sensors sA, sB , sC , sD with known locations p(A), p(B),

p(C) and inter-sensor distance measurements dAD, dBD, dCD from sensors sA, sB ,

sC to sensor sD as a fully connected sensor quadruple. They formulated robustness

criteria to identify possible flip ambiguities in the location estimate of sensor sD with

respect to the ordered sensor quadruple sAsBsCsD. Only those sensor quadruples that

are identified as robust (not suffering from possible flip ambiguities) are then used in

the localization process.

The work in [4] formulated the robustness criterion to identify possible flip ambi-

guities in fully connected sensor quadruples based on the following generic localization

method:

Step 1. Use distance measurements dAD, dBD together with known locations p(A),

p(B) to find the two possible locations p̂(D) and p̂′(D) of sensor sD as inter-

section points of the circles C(p(A), dAD) with center p(A) and radius dAD and

C(p(B), dBD) with center p(B) and radius dBD. Note: locations p̂(D) and p̂′(D)

are symmetrical across the line joining the points p(A) and p(B).

Step 2. Use distance measurement dCD together with known location p(C) to de-

cide on which of p̂(D) and p̂′(D) to choose as the location estimate of sensor sD

satisfying the distance constraints.

It was noted in [6,22] that [4] chose information from sensors sA, sB in the first step

and used the information from sensor sC in the second step. If instead, information

from sensors sA, sC are chosen in the first step and the information from sensor sB is

used in the second step, it may result in a different value of the robustness criterion



9

and may affect localization performance. Such dependency is eliminated in [6, 22] by

including all three permutation (sA, sB, sC), (sA, sC , sB) and (sB , sC , sA) as the

order of choice of the neighbors in the corresponding robustness criterion.

The study in [23] provided a formal geometric analysis of flip ambiguity problem

using similar notions as those in [4,22]. It developed a generic formal method for quan-

tifying the likelihood of flip ambiguities for arbitrary sensor neighborhood geometries.

Specifically, for a fully connected sensor quadruple sAsBsCsD with known node lo-

cations sA and sB , a possible region for the location of sC is determined such that

the sensor sD can be uniquely localized. Thus, in an arbitrary sensor neighborhood

sAsBsC , for any pair of anchors sA and sB , if the location of the third anchor sC

is not contained within the possible region identified for the location of sC , then the

location estimate of the sensor sD in the fully connected sensor quadruple sAsBsCsD

is tagged as likely to have flip ambiguity.

The analysis in [4, 22, 23] has been conducted under the assumption of unknown

sensor sD having access to inter sensor distance measurement from all three of its

neighbors, where, only one distance measurement used in Step 2 is considered to be

erroneous while the other two distance measurements used in Step 1 are considered

accurate.

In contrast to studies in [4,22] and [23] which considered unique localizability with

only one erroneous distance measurement while the other two distance measurements

are considered accurate, references [6, 16] accommodated the errors in one or more

inter-sensor distance measurements and established a robustness criterion to identify

possible flip ambiguities. References [6,16] enhanced the performance of previous works

by noting that the two possible location estimates p̂(D) and p̂′(D) of sensor sD obtained

in Step 1 are in fact inside two intersection regions of the annul: R(sA, dAD+ǫ, dAD−ǫ)
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and R(sB , dBD + ǫ, dBD − ǫ) rather than at the two intersection points of the circles

C(sA, dAD) and C(sB, dBD) where ǫ represents an error bound in distance measurement

errors, C(sX , dXD) denotes the circle with center sX and radius dXD and R(sX , dXD+

ǫ, dXD − ǫ) denotes the annulus in between C(sX , dXD + ǫ) and C(sX , dXD − ǫ) for

X ∈ {A, B}. It is worth noting here that, this analysis still maintain the assumption of

symmetry in its analysis by only considering point pairs p̂(D) and p̂′(D) where p̂(D)

is in one intersection region of the annul and p̂′(D) is a symmetrical point in the other

intersection region of the annul, where the intersection regions are symmetrical to the

line connecting p(A) and p(B). The analysis did not let the points p̂(D) and p̂′(D)

move independently inside the intersection regions of the annul independently in order

to find the best location estimate.

The assumption of true location and the possible flipped location are symmetri-

cal with respect to a pair of neighboring nodes may however cause false alarms in the

identification of possible flip ambiguities. In this paper, this assumption of symmetry is

removed by independently considering all possible locations p̂(D) and p̂′(D) within the

corresponding intersections of the annul without considering any relationship between

the two locations p̂(D) and p̂′(D) and an analytical equation for the probability of flip

ambiguity for a given neighborhood is defined. This paper also enhances the perfor-

mance of the recent study by the co-authors in [6,16] by replacing the need of making

a binary decision of accepting or rejecting a neighborhood made by the robustness

criterion with a soft decision based on the probabilities of flip ambiguities in arbitrary

sensor neighborhoods. The derived flip ambiguity probability can be applied to identify

neighborhoods having higher probabilities of flip ambiguity than a predefined threshold

value, and eliminate these neighborhoods from being used in the localisation process.

The same flip ambiguity probability may also be used in assigning confidence factors to
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the location estimates such that estimates obtained using a neighborhood with larger

probability of flip ambiguity have a lower confidence factor and vice versa.

All the techniques presented in this related work and this paper aims to achieve

good mitigation of flip ambiguity in each location estimate and consider the estimated

locations are accurate when iteratively proceed to localize the location unknown nodes.

But if flip ambiguity was not mitigated efficiently at any step of the localisation process,

it is possible to have an avalanche error propagation as explained in Section 1.

3 Problem Formulation

In this section, the probability of flip ambiguity is formulated for sensor neighborhoods

in the form of fully connected quadrilaterals (FCQs), quadruple of sensors all of which

are neighbors of each other, i.e., the distance between any pair is known or measurable.

Using the same notations as in Graph theory, for any sensor pair sX and sY in (G, p),

‖p(X) − p(Y )‖ and dXY denote the true and measured distances between sensors sX

and sY respectively.

The analysis uses a disc transmission model of radius R around each sensor sX ,

where

Assumption 1 Two sensors sX , sY are said to be neighbors of each other and are able

to measure their inter-sensor distance to each other if and only if ‖p(X)− p(Y )‖ ≤ R.

An additive Gaussian distribution with zero mean and a variance σ2 has been widely

used to model the distance measurement errors [25] as

dXY = dY X = ‖p(X) − p(Y )‖ + N (0, σ
2) (1)

and the analysis in this paper uses an additive truncated Gaussian distribution for the

inter-sensor distance measurement errors, where
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Assumption 2 For every neighbor node pair sX and sY , the absolute value of the

distance measurement error satisfies,

| ‖p(X) − p(Y )‖ − dXY | ≤ ǫ (2)

with certain probability for a given threshold ǫ > 0.

For example, the absolute value of the distance measurement error is ≤ 3σ with a

probability of 99% and is ≤ 2σ with a probability of 66%.

Let sAsBsCsD be an ordered FCQ with known locations p(A), p(B), p(C) and

measured inter-sensor distances dAD, dBD and dCD. Using Assumption 2, it can be

stated that

dAD ∈ [‖p(A) − p(D)‖ − ǫ, ‖p(A) − p(D)‖ + ǫ],

dBD ∈ [‖p(B) − p(D)‖ − ǫ, ‖p(B) − p(D)‖ + ǫ] and

dCD ∈ [‖p(C) − p(D)‖ − ǫ, ‖p(C) − p(D)‖ + ǫ] (3)

or, equivalently,

‖p(A) − p(D)‖ ∈ [dAD − ǫ, dAD + ǫ],

‖p(B) − p(D)‖ ∈ [dBD − ǫ, dBD + ǫ] and

‖p(C) − p(D)‖ ∈ [dCD − ǫ, dCD + ǫ] (4)

Exploiting (4), the following constraint on the estimated location p̂(D) = (x̂, ŷ) of

sensor sD can be asserted:

p̂(D) ∈ R
ABC
D , where region (5)

R
ABC
D ,

{

p(D) :



























| ‖p(A) − p(D)‖ − dAD |≤ ǫ and

| ‖p(B) − p(D)‖ − dBD |≤ ǫ and

| ‖p(C) − p(D)‖ − dCD |≤ ǫ

}
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which is formed by the intersection of three rings

| ‖p(A) − p(D)‖ − dAD |≤ ǫ,

| ‖p(B) − p(D)‖ − dBD |≤ ǫ and

| ‖p(C) − p(D)‖ − dCD |≤ ǫ (6)

as shown in Fig. 3(a). Instead, if consideration is given to constraints asserted by only

two neighboring sensors sA and sB , then the constraints on the estimated location

p̂(D) = (x̂, ŷ) of sensor sD is given by

p̂(D) ∈ R
AB
D , where region (7)

R
AB
D ,

{

p(D) :











| ‖p(A) − p(D)‖ − dAD |≤ ǫ and

| ‖p(B) − p(D)‖ − dBD |≤ ǫ

}

which is formed by the intersection of two rings

| ‖p(A) − p(D)‖ − dAD | ≤ ǫ and

| ‖p(B) − p(D)‖ − dBD | ≤ ǫ (8)

The region RAB
D can also be written as (see Fig. 3(b))

R
AB
D = R

AB
D1

∪ R
AB
D2

(9)

It can be easily seen from Fig. 3(b) that, by considering constraints imposed only

by measured distances from a single neighboring sensor pair (sA, sB), the location of

sensor sD can be estimated either in the region RAB
D1

or in the region RAB
D2

contributing

to a possible flip ambiguity with respect to the line AB joining the sensor locations SA

and SB .

It should be pointed out that the regions RAB
D1

and RAB
D2

have been shown as

disjoint in Fig. 3(b) for simplicity. Depending on the locations p(A) and p(B), the
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Fig. 3 Possible regions for the location estimate of sensor sD based on different constraints.

(a) Possible region for p̂(D) constrained by measured distances from all three neighbors sA,

sB and sC ; (b) Possible region for p̂(D) constrained by measured distances from only two

neighbors sA, sB; (c) Possible region for p̂(D) constrained by measured distances from only

two neighbors sB , sC ; (d) Possible region for p̂(D) constrained by measured distances from

only two neighbors sA, sC .

corresponding measured distances dAD, dBD and the threshold value ǫ, these regions

may be joint as illustrated in Fig. 4. In such situations, the boundary separating the

two regions RAB
D1

and RAB
D2

is taken as the line AB joining the sensor locations SA and

SB .
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Fig. 4 Examples of possible joint regions RAB
D1

and RAB
D2

.

Similarly, the regions RAC
D and RBC

D can be defined using the constraints imposed

by neighboring sensor pairs (sA, sC) and (sB , sC) respectively (See Fig. 3(c) and (d))

as

R
AC
D ,

{

p(D) :











| ‖p(A) − p(D)‖ − dAD |≤ ǫ and

| ‖p(C) − p(D)‖ − dCD |≤ ǫ

}

= R
AC
D1

∪ R
AC
D2

(10)

R
BC
D ,

{

p(D) :











| ‖p(B) − p(D)‖ − dBD |≤ ǫ and

| ‖p(C) − p(D)‖ − dCD |≤ ǫ

}

= R
BC
D1

∪ R
BC
D2

(11)

Using the definitions of the regions RAB
D , RAC

D , RBC
D and Fig. 3, the region RABC

D

in (5) can be written as,

R
ABC
D = R

AB
D ∩ R

AC
D ∩ R

BC
D

= (RAB
D1

∪ R
AB
D2

) ∩ (RAC
D1

∪ R
AC
D2

) ∩ (RBC
D1

∪ R
BC
D2

)

(12)

From De-Morgan’s rule, RABC
D can be decomposed into the following eight disjoint

regions:

R
ABC
Dp,q,r

= R
AB
Dp

∩ R
AC
Dq

∩ R
BC
Dr

; p, q, r ∈ {1, 2} (13)
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which can be represented by a Venn diagram as shown in Fig. 5. In this Venn diagram,

the regions RAB
D2

, RAC
D2

and RBC
D2

are represented by three mutually intersecting discs.
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D
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1,1,1

Group 0

ABC
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2,1,1

Group 3
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1,1,2
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Group 3
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Group 1
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1,2,2
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Group 2

ABC

D
R

2,2,1

Group 2
AC

D
R

2

AB

D
R

2

BC

D
R

2

ABC

D
R

Fig. 5 Venn Diagram representation of (12).

Note that, due to the disjoint nature of the possible eight regions in (13), the true

location p(D) of sensor sD can only be in one of these possible eight regions. Let the

regions of intersections (RAB
D1

, RAB
D2

), (RBC
D1

, RBC
D2

) and (RAC
D1

, RAC
D2

) are defined such

that

p(D) ∈ R
AB
D1

p(D) ∈ R
AC
D1

p(D) ∈ R
BC
D1

(14)

giving

p(D) ∈ R
ABC
D1,1,1

= R
AB
D1

∩ R
AC
D1

∩ R
BC
D1

(15)

Then, existence of the estimated location p̂(D) in a set represented by any of the three

mutually intersecting discs in the Venn diagram corresponds to a flipped realization.
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With the help of Fig.5, the possible location estimates can be divided into following

four groups.

i) Group 0: p̂(D) ∈ RABC
D1,1,1

; p(D) and p̂(D) are both in RABC
D1,1,1

causing no flip am-

biguity.

ii) Group 1: p̂(D) ∈ RABC
D2,2,2

; p(D) and p̂(D) are in RABC
D1,1,1

and RABC
D2,2,2

respectively

causing possible flip ambiguities with respect to all three lines AB, AC and BC.

iii) Group 2: p̂(D) ∈ RABC
Dp,q,r

such that p, q, r ∈ {1, 2} and p + q + r = 5; p(D) and

p̂(D) are in RABC
D1,1,1

and RABC
Dp,q,r

respectively causing possible flip ambiguities with

respect to any two lines only: AB and AC or BC and AC or AB and BC.

iv) Group 3: p̂(D) ∈ RABC
Dp,q,r

such that p, q, r ∈ {1, 2} and p + q + r = 4; p(D) and

p̂(D) are in RABC
D1,1,1

and RABC
Dp,q,r

respectively causing possible flip ambiguities with

respect to any one line only: AB or AC or BC.

By the definition in (14), the region RABC
D1,1,1

will always be a non-empty region.

If all other seven possible regions RABC
Dp,q,r

in (13) are null regions, then the estimated

location p̂(D) can only be located in the unique non-empty region RABC
D1,1,1

, and there

will be no possibility for a flipped realization. But, if there are one or more non-empty

regions other than RABC
D1,1,1

, then the estimated location p̂(D) can be located in anyone of

those non-empty regions, thereby creating possible flipped realization. The next section

finds the probability of p̂(D) in each of the non-empty regions and then calculates the

probability of flip ambiguities for each group defined above.
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4 Derivation of Flip Ambiguity Probabilities

This section focuses on deriving analytical equations for the probability of the estimated

location p̂(D) to be in various non-empty regions defined in Section 3.

The subsections below derived an analytical solution for the probability of flip

across a single line AB. Then the derivation is extended to find the probability of flip

ambiguities for all different groups.

Let the probability space containing all possible location estimates p̂(D) = (x̂, ŷ)

be Ω, where

Ω , {p̂(D) ∈ R
AB
D1

∪ R
AB
D2

} (16)

From definition (14), let us define an event set containing all possible events of p̂(D) =

(x̂, ŷ) corresponding to the flipped realization denoted by ζAB ⊂ Ω where the event

that the estimated location p̂(D) is located in RAB
D2

.

ζAB = {p̂(D) ∈ R
AB
D2

} (17)

The aim is to find an expression for the probability P (ζAB | p(A), p(B), p(C), p(D)) and

then marginalize this probability over all possible locations of D to find the probability

P (ζAB | p(A), p(B), p(C)). Following the detailed analysis presented in Appendix A,
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the probability P (ζAB | p(A), p(B), p(C), p(D)) is derived as follows:

P (ζAB | p(A), p(B), p(C), p(D)) = P (ζ′AB | p(A), p(B), p(C), p(D))

=

R+ǫ
∫

0

R+ǫ
∫

0

min(λC ,R+ǫ)
∫

0

δCDf(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD)

+

R+ǫ
∫

0

R+ǫ
∫

0

R+ǫ
∫

min(λC ,R+ǫ)

(1 − δCD)f(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD)

=

R+ǫ
∫

0

R+ǫ
∫

0

R+ǫ
∫

0

(

(δCDICD) + ((1 − δCD)(1 − ICD))

)

f(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD)

(18)

Note that the inter-sensor distances are always positive, the disc transmission model

of Assumption 1 bounds the true inter-sensor distances to be ≤ R and the Gaussian

noise model of Assumption 2 bounds the measurement errors (with 99% probability)

to be ≤ ǫ = 3σ. Thus, the inter-sensor measured distances are bounded as 0 ≤ dAD ,

dBD, dCD ≤ R + ǫ, and any calculated probability is normalized by

R+ǫ
∫

0

R+ǫ
∫

0

R+ǫ
∫

0

f(dCD)f(dBD)f(dAD)d(dCD)d(dBD)d(dAD) (19)

Calculation of P (ζAB | p(A), p(B), p(C)):

This section uses marginalization of the analytical expression (18) over all possible

locations p(D) to find the probability P (ζAB | p(A), p(B), p(C)).

Using Assumption 1, sensor sD with neighbors sA, sB and sC can only be placed

inside a planar region S defined by

S =

{

p(D) :



























‖p(D) − p(A)‖ ≤ R and

‖p(D) − p(B)‖ ≤ R and

‖p(D) − p(C)‖ ≤ R

}
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If the sensors are distributed uniformly over the sensor network, then the probability

density function of the placement of sensor sD for a given sensor neighborhood sAsBsC

can be written as

f(p(D) | p(A), p(B), p(C)) =
1

AS
(20)

where AS is the area of the planar region S calculated as described in Appendix B.

Thus, (18) can be marginalized over all possible location p(D) of the planar area S

where sensor sD can be placed, as

P (ζAB | p(A), p(B), p(C))

=

∫ ∫

S

P (ζAB | p(A), p(B), p(C), p(D))f(D | p(A), p(B), p(C))d(D)

=
1

AS

∫ ∫

S

P (ζAB | p(A), p(B), p(C), p(D))d(D) (21)

Defining

IS(D) =











1 D ∈ S

0 otherwise

(21) can be written as

P (ζAB | p(A), p(B), p(C)) =

1

AS

∫∫

R2

P (ζAB | p(A), p(B), p(C), p(D))IS(D) d(D)

(22)

and combined with (18) to get

P (ζAB | p(A), p(B), p(C)) =

1

AS

∫∫

R2

IS(D)

R+ǫ
∫

0

R+ǫ
∫

0

R+ǫ
∫

0

(

(δCDICD) + ((1 − δCD)(1 − ICD))

)

f(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD)d(D) (23)
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Note that appropriate changes to IS(D) will let the analysis extend to any transmission

model instead of the uniform transmission model of Assumption 1.

The above analysis, without loss of generality, used the processing order of the

inter sensor measurements: dAD , dBD, dCD. Instead, it can be used in any order

with appropriate index modification. Thus, appropriate index selection of X, Y, Z ∈

{A, B, C} and X 6= Y 6= Z together with the above analysis will give a general-

ized analytical solution of the probability P (ζXY | p(A), p(B), p(C)). A closer look at

δZDIZD +(1− δZD)(1− IZD), reveals that it represents a three dimensional indicator

function

IζXY
=











1 Flipped realization with respect to line XY

0 otherwise

Thus for

ζ ∈ {ζXY , ζXY ∩ ζXZ , ζXY ∩ ζY Z , ζXZ ∩ ζY Z , ζXY ∩ ζXZ ∩ ζY Z}

(23) can be generalized as

P (ζ | p(A), p(B), p(C)) =

1

AS

∫∫

R2

IS

R+ǫ
∫

0

R+ǫ
∫

0

R+ǫ
∫

0

Iζf(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD)d(D) (24)

where

IζXY
= δZDIZD + (1 − δZD)(1 − IZD)

IζXY ∩ζXZ
= IζXY

IζXZ

IζXY ∩ζXZ∩ζY Z
= IζXY

IζXZ
IζY Z

for any permutation of X, Y, Z ∈ {A, B, C} and X 6= Y 6= Z.
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The implementation of

P (ζ | p(A), p(B), p(C), p(D)) =

R+ǫ
∫

0

R+ǫ
∫

0

R+ǫ
∫

0

Iζf(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD) (25)

is given in ??.

Note that the analytical expression (24) together with the information present in

the Venn diagram (Fig. 5) help to find the conditional probabilities of Groups 0 −

3 introduced in Section 3. For example, the conditional probability of Group 1 flip

ambiguity can be calculated as

P (Group 1 | p(A), p(B), p(C))

= P (ζAB ∩ ζAC ∩ ζBC | p(A), p(B), p(C)) (26)

and the conditional probability of Group 2 flip ambiguity can be calculated as

P (Group 2 | p(A), p(B), p(C))

= P (ζAB ∩ ζAC | p(A), p(B), p(C))

+P (ζAB ∩ ζBC | p(A), p(B), p(C))

+P (ζAC ∩ ζBC | p(A), p(B), p(C))

−2P (ζAB ∩ ζAC ∩ ζBC | p(A), p(B), p(C)) (27)

5 Numerical Analysis

This section validates the correctness of the analytical solution against the flip ambi-

guity probabilities obtained using various simulation results.

In order to facilitate the above test, sensors with a transmission range of 10m

are uniformly distributed over a region of 100m by 100m. For a sensor network with
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a large number of sensor nodes, it is reasonable to assume sensor distribution to be

uniform and such assumption has been widely used in the area [4, 5, 7, 13]. Changing

the sensor distribution method may only affect the frequency of collinear placement

of sensor nodes. The focus of this paper is on identifying possible flip ambiguities

by neighborhood geometries once the sensor nodes are placed and eliminate them

from the localization process and thus, this numerical analysis only consider uniformly

distributed sensor networks to demonstrate the correctness of the analytical solution.

If the true distance | p(Y ) − p(X) | between any two nodes sY and sX is smaller

than the transmission range R, then the nodes are set to be neighbors. A Gaussian

noise satisfying Assumption 2 and with a mean of zero and variance σ2, where σ varies

from 0.1m to 0.5m, is used to blur the true inter-sensor distances to represent the

measured inter-sensor distances as in (1). FCQs for the comparisons are selected from

a pool of 4-node subnetworks of the above network.

Since all the generalized equations of the probabilities are built upon the probability

analysis of P (ζAB | p(A), p(B), p(C), p(D)) and P (ζAB | p(A), p(B), p(C)), only the

results of P (ζAB | p(A), p(B), p(C), p(D)) and P (ζAB | p(A), p(B), p(C)) with respect

to arbitrarily placed sensor neighborhoods are presented in this section.

Denote the probabilities P (ζAB | p(A), p(B), p(C), p(D)) and P (ζAB | p(A), p(B), p(C))

obtained via simulations as PS(ζAB | A, B, C, D) and PS(ζAB | A, B, C), and via the

analytical results as PA(ζAB | A, B, C, D) and PA(ζAB | A, B, C) respectively. Define

the average difference between the analytical and simulated flip ambiguity probabilities

as,

∆1 =

∑

Nt

| PS(ζAB | A, B, C, D) − PA(ζAB | A, B, C, D) |

Nt

(28)
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∆2 =

∑

Nt

| PS(ζAB | A, B, C) − PA(ζAB | A, B, C) |

Nt

(29)

where Nt = 1000 is the number of FCQs used in the calculation of the probability of

flip ambiguities.

0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

σ

∆ 1

0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

σ

∆ 2

(a) Results of (28) (b) Results of (29)

Fig. 6 Comparison of the simulation results PS(ζAB | A, B, C, D) and PS(ζAB | A, B, C)

with the results obtained using the analytical expressions PA(ζAB | A, B, C, D) and PA(ζAB |

A, B, C) respectively for different values of σ. The vertical line segments represent the standard

error bars of ∆1 and ∆2.

Fig. 6(a) and (b) respectively show the deviation of ∆1 and ∆2 with respect to σ.

From both results it can be seen that the derived analytical expressions of the probabil-

ities match with the probability of flip ambiguity accurately.

6 Substantial and Negligible Flip Ambiguities

In the previous analysis, a location estimate p̂(D) is considered a flipped realization

with respect to the line XY when the location estimate p̂(D) and the true location

p(D) of the sensor sD are on different sides of the line XY , where XY is the line

joining any two neighbors sX , sY ∈ {sA, sB , sC}. But not all such flipped realizations

may cause large estimation errors.
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The generic task of sensor localization is to estimate the location of each sensor

such that the magnitude of the corresponding estimation error is less than or equal

to a predefined accuracy level δS > 0, when the corresponding absolute measurement

errors are less than a predefined error bound ǫ > 0. Hence an error caused by a flip

ambiguity where ‖p(D) − p̂(D)‖ < δS is not substantial in terms of the localization

task. To take this observation into consideration, a substantial flip ambiguity is defined

as a flip ambiguity where the distance between the true location p(D) and the possible

location estimate p̂(D) is at least δS . A flip ambiguity which is not a substantial flip

ambiguity is called a negligible flip ambiguity.

( )p X

( )p Y

( )p Z

( )
XY

Z
p D

( )
XY

Z
p D

Z
H

Z
H

( )p D

S

( )p X ( )p Y

( )p Z

( )
XY

Z
p D

( )
XY

Z
p D

Z
H

Z
H

( )p D

S

(a) (b)

Fig. 7 Comparison of ‖p(D) − pXY
Z

(D)‖, ‖p(D) − pXY

Z
(D)‖ and ‖pXY

Z
(D) − pXY

Z
(D)‖ with

respect to δS .

In a localization problem with two possible location estimates pXY
Z (D) ∈ HZ and

pXY

Z
(D) ∈ H

Z
as in Fig 7, (see Section 4 and Fig. 6 for details of notions) pXY

Z (D)

can be treated as the correct location estimate and pXY

Z
(D) as the flipped location

estimate.
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In a localization case with flip ambiguity, the smallest and largest possible estima-

tion errors are defined by the smallest and largest distances between two points one

of which is in RXY
D1

and the other in RXY
D2

(see Fig.8). Therefore, flip ambiguity is

substantial if

‖pXY
Z (D) − p

XY

Z
(D)‖ ≥ δS + 4ǫ (30)

and is negligible if

‖pXY
Z (D) − p

XY

Z
(D)‖ < δS + 4ǫ (31)

(31) directly implies the following result:

Proposition 1 Assume that δS ≥ 8ǫ, then for any case where RXY
D1

and RXY
D2

are

joint, the flip ambiguity is negligible.

Proposition 1 implies that a substantial flip ambiguity occurs only when the regions

RXY
D1

and RXY
D2

are disjoint as in Fig. 8. With this information, all groups of flip

ambiguities defined in the Venn Diagram (Fig. 5) are analyzed below to see which

groups are subject to substantial flip ambiguities and which groups are not.

In Group 2 and Group 3 flip ambiguities, the estimated location do not flip across

at least one line XY ∈ {AB, AC, BC}. When the estimated location does not flip

across a line XY , using definition in (14), it can be stated that the true location p(D)

and the estimated location p̂(D) both lie inside RXY
D1

with respect to the line XY as

shown in Fig. 8. In Assumption 2, if the threshold value ǫ is considered small, then the

non-empty region RXY
D1

can be approximated by a square of side 2ǫ (see Fig. 8). Thus,

the maximum distance between the true location p(D) and the estimated location p̂(D)

can only be the diagonal length 2
√

2ǫ of the square. For a predefined measurement error

threshold ǫ, it is reasonable to predefine a location estimation accuracy level δs > 2
√

2ǫ.
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( )p Y

2
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XY

D
R
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XY

D
R

Fig. 8 Illustration of disjoint regions RXY
D1

and RXY
D2

.

Even without this approximation, it can be easily shown that the distance between p(D)

and p̂(D) needs to be less than 4ǫ, which is comparable to the measurement error. Thus,

Group 2 and Group 3 flip ambiguities in a localization task can be treated as negligible

flip ambiguities, and the only substantial flip ambiguity need to be considered in a

localization task is the Group 3 flip ambiguities when RXY
D1

, RXY
D2

are disjoint for all

p(X), p(Y ) ∈ {p(A), p(B), p(C)}.

7 Performance Enhancement of Localization Algorithms Using the Flip

Ambiguity Probability

Large number of tiny sensors are randomly distributed over large regular shaped areas

in applications like bushfire surveillance, water quality surveillance and precision irriga-

tion and are stationary after being deployed. In such networks, a sequential algorithm

is sufficient and thus the performance enhancement of sequential localization algorithm

using the probability of flip ambiguity calculated via (26) is presented in this section.

A sequential localization algorithm performing in an iterative manner is consid-

ered where at each iteration all sensors with unknown location which have three or

more neighbors with known location information are localized. These location known
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neighbors can either be anchors or some sensors defining a local coordinate system.

When a sensor get localized, it is elevated to anchor status, thereby increasing the

chances of the other sensors with unknown location being localized in the subsequent

iterations [7–11].

Simulations: To evaluate the performance enhancement using the derived flip

ambiguity expressions, we have performed a sequence of simulations deploying 100 dif-

ferent simulated sensor networks, in which different random seeds are used to uniformly

distribute 100 sensors in each sensor network covering a region of 100m by 100m. Ten

percent of these sensors are randomly selected and designated as anchors.

The inter-sensor measured distances between neighboring nodes are obtained using

(1) and Assumptions 1, 2, where σ is chosen as 0.2m. The location of the sensors with

unknown locations are estimated by minimizing the cost function (A.2).

In the simulations, the transmission range of the sensor network is adjusted while

keeping the number of the sensors fixed, in order to vary the average node degree

between 4−25. The average mean squared error in location estimates is calculated and

normalized to the transmission range R as:

MSE =
1

|{n|Vn 6= ∅}|

50
∑

n=1
|Vn|6=0

1

|Vn|

∑

i∈Vn
(xi − x̂i)

2 + (yi − ŷi)
2

R2

where (x̂i, ŷi) and (xi, yi) are respectively the estimated and true location of sensor i,

Vn is the set of nodes localized in the nth sensor network, and |Vn| is the number of

nodes in Vn.

The traditional sequential localization algorithms [7–11] uses any FCQ to do trilat-

eration. Instead, this paper uses the analytically calculated probability of flip ambiguity

to select the robust FCQ that does not suffer from flip ambiguity problems. To com-
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pare different scenarios, sensor networks are simulated in two different ways, where

FCQs with A, B, C ∈ NX and X are chosen differently as described below:

Case 1: i Any FCQ.

ii Any FCQ with probability of flip less than 40%.

iii Any FCQ with probability of flip less than 25%.

iv Any FCQ with probability of flip less than 15%.

v Any FCQ with probability of flip less than 7%.

vi Most robust FCQ by criterion [6]

vii Most robust FCQ by criterion in [4].

Case 2: i Any FCQ.

ii Most robust FCQ with probability of flip less than 40%.

iii Most robust FCQ with probability of flip less than 25%.

iv Most robust FCQ with probability of flip less than 15%.

v Most robust FCQ with probability of flip less than 7%.

vi Most robust by criterion [6]

vii Most robust by criterion in [4].

Simulation results of Case 1 and Case 2 are shown in Fig. 9 and Fig. 10 respectively.

From these figures, it can be seen that average numbers of localized nodes as well as

the average estimation error decrease as the neighbor selection method move from (i)

to (vii). This clearly indicates that when the threshold of acceptable probability of flip

ambiguity is relaxed, the number of localized nodes is increasing, however due to more

miss-detected flipped realization the average estimation error is increasing as well. The

figures also clearly show that the average estimation error is much smaller in Case 2

than in Case 1 due to the selection of the most robust FCQ for the localization process.
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Fig. 9 Performance of different neighbor selection methods (i) to (vii) in Case 1 simulations.

(a) Average nodes localized. (b) Average estimation error

This can be explained by the fact that Case 1 is based on random choices of an FCQ

each time from the group of FCQs with a probability of flip ambiguity less than the

given threshold, while Case 2 uses the most robust FCQ from the same group of FCQs

with a probability of flip ambiguity less than the given threshold.

An efficient robustness check must be able to detect as many flip ambiguities as

possible while making as few false alarms as possible. From these aspects, the above

simulation results demonstrate that by choosing a suitable threshold value for (24), the

localization performance can be optimized using a flip ambiguity detection criterion
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Fig. 10 Performance of different neighbor selection methods (i) to (vii) in Case 2 simulations.

(a) Average nodes localized. (b) Average estimation error



31

based on (25), and a performance better than [4,6] in terms of the nodes localized, yet

having a comparable performance in terms of average estimation error.

8 Conclusion and Future Work

The co-authors of this paper have well demonstrated in a recent work [6, 16] that the

identification of the likelihood of flip ambiguities in location estimates and rectifica-

tion of such flip ambiguities from the localization process enhance the performance of

localization algorithm significantly.

To help such identification and rectification tasks, an analytical expression to cal-

culate the probability of flip ambiguities in an arbitrary neighborhood sAsBsC is pre-

sented in this paper. This probability can be used to improve the performance of

localization algorithms either by using it to eliminate neighborhoods from the localiza-

tion process which are likely to cause flip ambiguity or by using it to assign confidence

factors reflecting the likelihood of flip ambiguities associated with the location esti-

mates.

The simulations show that the probability of flip ambiguity calculated using the

analytical expression derived in the paper for the flip ambiguity probability for a given

node neighborhood, i.e. FCQ, matches accurately with the probability of flip ambiguity

obtained using simulation. This paper has also demonstrated performance enhancement

of localization algorithms via the usage of the analytical expression derived in the

paper for the flip ambiguity probability for a given node neighborhood, i.e. FCQ, on

elimination of flip ambiguities in the localization process.

As a future work, confidence factors can be calculated using the analytical expres-

sion derived in the paper for the flip ambiguity probability for a given node neighbor-
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hood, i.e. FCQ, and reflecting the likelihood of flip ambiguities of each location estimate

can be incorporated with the localization algorithms to enhance the performance.

A Calculation of P (ζAB | p(A), p(B), p(C), p(D))

)(Ap
)(Bp

)(Cp

)(Dp
AB

C

)(Dp
AB

C

)),(( ADdApC )),(( BDdBpC

C
H

C
H

Fig. A.1 Division of the plane into two open halves HC and H
C

with respect to the three

known neighbor locations p(A), p(B) and p(C).

Denote by HC the open half plane containing the sensor sC , bordered by the line AB as

shown in Fig. A.1, then the complementary half plane on the other side of line AB can be

denoted by H
C

. For a non-collinear neighborhood ND = {sA, sB, sC}, HC and H
C

are well

defined. Denote by pAB
C

(D) and pAB

C
(D) the intersection points of the two circles C(p(A), dAD)

and C(p(B), dBD). Without loss of generality, let pAB
C

(D) ∈ HC , which will leave the other

intersection point pAB

C
(D) ∈ H

C
as shown in Fig. A.1.

When considering distance measurements from only two neighboring sensors sA and sB,

both points pAB
C

(D) and pAB

C
(D) are possible candidates for the location estimate p̂(D) of

sensor sD with (‖p(A) − p̂(D)‖ − dAD)2 + (‖p(B) − p̂(D)‖ − dBD)2 = 0. When the third

distance measurement from the neighboring sensor sC is included in the localization process,

a new candidate for the location estimate p̂(D) considering the third distance measurement

dCD is obtained as

p̂(D) , arg min
p̂∗(D)∈RAB

D

J(p̂∗(D)) (A.1)
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where the cost function J(p̂∗(D)) is defined as

J(p̂∗(D)) , (‖p(A) − p̂∗(D)‖ − dAD)2

+(‖p(B) − p̂∗(D)‖ − dBD)2

+(‖p(C) − p̂∗(D)‖ − dCD)2 (A.2)

Proposition A.1 With non-collinear neighbors sA, sB, sC , the location estimate p̂(D) sat-

isfies the following:

i p̂(D) ∈ HC if 0 ≤ dCD < λC − 2ǫ

ii p̂(D) ∈ H
C

if λC + 2ǫ < dCD ≤ R + ǫ

where λC =
‖p(C)−pAB

C
(D)‖+‖p(C)−pAB

C
(D)‖

2
.

Proof: Because of Assumption 2, we have (i) D ∈ RAB
D

= RAB
D1

∪ RAB
D2

and (ii) D lies in the

annulus with center C and radii dCD ± ǫ. Denote the intersection regions of this annulus with

RAB
D

∩ HC and RAB
D

∩ H
C

by SC1
and S

C1

respectively; and the reflections of SC1
and S

C1

with respect to AB by S
C2

and SC2
respectively. Let SC = SC1

∪ SC2
and S

C
= S

C1

∪ S
C2

.

Note that SC ⊂ RAB
D

∩ HC and S
C

⊂ RAB
D

∩ H
C

and that neither SC nor S
C

is empty set

since each of them contains either D or the reflection of D with respect to AB. The value of

p̂∗(D) minimizing (A.1) lies in either SC or S
C

since (i) at least one of the three quadratic

components of J(p̂∗(D)) is larger than ǫ2 and hence J(p̂∗(D)) > ǫ2 outside SC ∪ S
C

and (ii)

SC ∪ S
C

contains points p̂∗(D) at which J(p̂∗(D)) ≤ ǫ2 (the intersection points of the circles

C(A, dAD), C(B, dBD), C(C, dCD)).

First consider the case 0 ≤ dCD < λC − 2ǫ. Noting that ‖p(C) − pAB
C

(D)‖ < λC <

‖p(C) − pAB

C
(D)‖ and analyzing all possible values of dCD < λC − 2ǫ, it can be established

that

|‖p(C) − pAB
C (D)‖ − dCD | < |‖p(C) − pAB

C
(D)‖ − dCD | − 4ǫ (A.3)

For each point p̂∗(D) ∈ S
C

, the reflection p̂∗2(D) ∈ SC of p̂∗(D) with respect to AB satisfies

‖p(A) − p̂∗(D)‖ = ‖p(A) − p̂∗2(D)‖

‖p(B) − p̂∗(D)‖ = ‖p(B) − p̂∗2(D)‖
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Hence we have

J(p̂∗(D)) − J(p̂∗2(D))

= (‖p(C) − p̂∗(D)‖ − dCD)2 − (‖p(C) − p̂∗2(D)‖ − dCD)2 (A.4)

Furthermore, since p̂∗(D) ∈ S
C

⊂ RAB
D

∩ H
C

and p̂∗2(D) ∈ SC ⊂ RAB
D

∩ HC , we have

|‖p(C) − p̂∗(D)‖ − ‖p(C) − pAB

C
(D)‖| ≤ 2ǫ

|‖p(C) − p̂∗2(D)‖ − ‖p(C) − pAB
C (D)‖| ≤ 2ǫ

which, respectively imply

|‖p(C) − p̂∗(D)‖ − dCD | ≥ |‖p(C) − pAB

C
(D)‖ − dCD | − 2ǫ (A.5)

|‖p(C) − p̂∗2(D)‖ − dCD | ≤ |‖p(C) − pAB
C (D)‖ − dCD | + 2ǫ (A.6)

Combining (A.5), (A.6) with (A.3) we obtain

|‖p(C) − p̂∗2(D)‖ − dCD | < |‖p(C) − p̂∗(D)‖ − dCD | (A.7)

(A.4) and (A.7) imply that p̂(D) cannot be in H
C

, i.e. p̂(D) ∈ HC .

The case λC + 2ǫ < dCD ≤ R + ǫ can be analysed similarly to obtain that in this case

p̂(D) ∈ H
C

. This completes the proof of Proposition A.1.

In (14), it is defined that p(D) ∈ RAB
D1

and, thus, a flipped realization occurs when

i p̂(D) ∈ HC and RAB
D1

⊂ H
C

ii p̂(D) ∈ H
C

and RAB
D1

⊂ HC

With this information, two support spaces can be defined for the events defined in (16)

and (17) as:

Ω′ = {p̂(D) ∈ HC ∪ H
C
}

, {dAD , dBD , dCD ∈ [0, R + ǫ] | p(A), p(B), p(C), p(D)} (A.8)

ζ′AB =







{p̂(D) ∈ HC} when RAB
D1

⊂ H
C

{p̂(D) ∈ H
C
}when RAB

D1
⊂ HC

(A.9)
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Using Proposition A.1 and assuming that ǫ is sufficiently small, (A.9) can be approximated

by

ζ′AB
∼=



































































{dAD , dBD ∈ [0, R + ǫ],

dCD ∈ [0, λC ] | p(A), p(B), p(C), p(D)}

when RAB
D1

⊂ H
C

{dAD , dBD ∈ [0, R + ǫ],

dCD ∈ [λC , R + ǫ] | p(A), p(B), p(C), p(D)}

when RAB
D1

⊂ HC

(A.10)

The measured distances dAD, dBD and dCD are respectively the true distances ‖p(A) −

p(D)‖, ‖p(B) − p(D)‖ and ‖p(C) − p(D)‖ blurred by additive Gaussian measurement errors

N (0, σ2) as in (1). Thus, the probability density functions f(dAD | p(A), p(B), p(C), p(D)),

f(dBD | p(A), p(B), p(C), p(D)) and f(dCD | p(A), p(B), p(C), p(D)) of the measured dis-

tances dAD , dBD and dCD can be written as

f(dAD | p(A), p(B), p(C), p(D)) = f(dAD | p(A), p(D))

= N (‖p(A) − p(D)‖, σ2)

f(dBD | p(A), p(B), p(C), p(D)) = f(dBD | p(B), p(D))

= N (‖p(B) − p(D)‖, σ2)

f(dCD | p(A), p(B), p(C), p(D)) = f(dCD | p(C), p(D))

= N (‖p(C) − p(D)‖, σ2)

(A.11)
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and are independent of each other. In order to keep the equations simple, the probability

density functions are re-named as follows:

f(dAD) , f(dAD | p(A), p(B), p(C), p(D))

f(dBD) , f(dBD | p(A), p(B), p(C), p(D))

f(dCD) , f(dCD | p(A), p(B), p(C), p(D))

Due to the independent nature of the probability density functions f(dAD), f(dBD) and

f(dCD), define two binary functions δCD and ICD as

δCD =







1 If RAB
D1

⊂ H
C

0 If RAB
D1

⊂ HC

ICD =







1 If dCD ∈ [0,min(λC , R)]

0 Otherwise

which let the probability P (ζAB | p(A), p(B), p(C), p(D)) to be expressed as

P (ζAB | p(A), p(B), p(C), p(D)) = P (ζ′AB | p(A), p(B), p(C), p(D))

=

R+ǫ
∫

0

R+ǫ
∫

0

min(λC ,R+ǫ)
∫

0

δCDf(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD)

+

R+ǫ
∫

0

R+ǫ
∫

0

R+ǫ
∫

min(λC ,R+ǫ)

(1 − δCD)f(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD)

=

R+ǫ
∫

0

R+ǫ
∫

0

R+ǫ
∫

0

(

(δCDICD) + ((1 − δCD)(1 − ICD))

)

f(dCD)d(dCD)f(dBD)d(dBD)f(dAD)d(dAD)

(A.12)

B Calculation of AS

The neighbor geometry p(A)p(B)p(C) and the transmission range R determines the area AS

where the sensor sD could be placed. The possible neighbor geometry p(A)p(B)p(C) could be

divided into two groups as shown in Fig. B.1. The following calculation of AS considered the

neighbor geometries p(A)p(B)p(C) in the group ‖p(C)−P1‖ < R. The same argument can be

applied to the neighbor geometries p(A)p(B)p(C) in the other group ‖p(C) − P1‖ ≥ R. The
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(a) ‖C − P1‖ < R (b) ‖C − P1‖ ≥ R

Fig. B.1 The area in which sensor sD can be placed such that D is a neighbor to all three

sensors sA, sB and sC . Here P1 and P2 are the intersection points of circles C′(p(A), R) with

center p(A) and radius R and C′(p(B), R) with center p(B) and radius R.

area AS for placement of sensor sD can be divided into three circle segments and a triangle

as illustrated in the Fig. B.1(a) and calculated as

(i) A1=area of segment P1Q1

= R2 sin−1 ‖P1−Q1‖
2R

− R2

2
sin(2 sin−1 ‖P1−Q1‖

2R
)

(ii) A2=area of segment Q1R1

= R2 sin−1 ‖Q1−R1‖
2R

− R2

2
sin(2 sin−1 ‖Q1−R1‖

2R
)

(iii) A3=area of segment P1R1

= R2 sin−1 ‖P1−R1‖
2R

− R2

2
sin(2 sin−1 ‖P1−R1‖

2R
)

(iv) A4=area of △P1Q1R1

=
√

s(s − ‖P1 − Q1‖)(s − ‖Q1 − R1‖)(s − ‖P1 − R1‖)

where s =
‖P1−Q1‖+‖Q1−R1‖+‖P1−R1‖

2

Thus the possible area for placement of D

AS = A1 + A2 + A3 + A4 (B.1)
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