
Received March 14, 2017, accepted April 13, 2017, date of publication April 26, 2017, date of current version June 7, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2696745

Unbalanced Expander Based Compressive Data
Gathering in Clustered Wireless Sensor Networks
XIANGLING LI1, (Student Member, IEEE), XIAOFENG TAO1, (Senior Member, IEEE),
AND GUOQIANG MAO2, (Senior Member, IEEE)
1National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing 100876, China
2School of Computing and Communications, University of Technology Sydney and National ICT Australia, Sydney, NSW 1466, Australia

Corresponding author: Xiaofeng Tao (taoxf@bupt.edu.cn)

This work was supported in part by the Natural Science Foundation of China under Grant 61325006 and Grant 61461136002, in part by the
Beijing Training Project for the Leading Talents in S & T under Grant Z141101001514026, and in part by the 111 Project of China under
Grant B16006.

ABSTRACT Conventional compressive sensing-based data gathering (CS-DG) algorithms require a large
number of sensors for each compressive sensing measurement, thereby resulting in high energy consumption
in clustered wireless sensor networks (WSNs). To solve this problem, we propose a novel energy-efficient
CS-DG algorithm, which exploits the better reconstruction accuracy of the adjacency matrix of an unbal-
anced expander graph. In the proposed CS-DG algorithm, each measurement is the sum of a few sensory
data, which are jointly determined by random sampling and random walks. Through theoretical analysis, we
prove that the constructedM × N sparse binary sensing matrix is the adjacency matrix of a (k, ε) unbalanced
expander graph whenM = O (k logN/k) and t = O (Nc/(kq)) for WSNs with Nc clusters, where 0 ≤ q ≤ 1
and Nc > k . Simulation results show our proposed CS-DG has better performance than existing algorithms
in terms of reconstruction accuracy and energy consumption. When hybrid energy-efficient distributed
clustering algorithm is used, to achieve the same reconstruction accuracy, our proposed CS-DG can save
energy by at least 27.8%.

INDEX TERMS Compressive sensing, data gathering, unbalanced expander graph, sparse binary matrix,
wireless sensor networks.

I. INTRODUCTION
Reducing energy consumption during data gathering is
important in wireless sensor networks (WSNs). To achieve
this objective, energy-efficient data gathering (DG) has been
widely studied in the past several years, by which the sensory
data can be transmitted to the sink. Compressive sensing
(CS) [1] is an important technique which has been employed
in DG. It can decrease the energy consumption by reducing
the number of redundant transmissions and the amount of
transmitted data. CS utilizes a random matrix (named as
the sensing matrix) to map the high-dimensional sensory
data into the low-dimensional compressed data (named as
measurements). The measurements are the weighted sums of
the sensory data of sensors collected along energy-efficient
paths to the sink. An accurate reconstruction of the sensory
data can be obtained at the sink as long as the sensory data
are sparse or compressible in some transform domain.

Various approaches were applied into the compressive
sensing based data gathering (CS-DG) to save energy, such

as the improvement of reconstruction accuracy [2], [3],
the employment of cooperative transmission [4], [5] and
the construction of the sensing matrix [8]–[14], [17]–[22].
The sensing matrix is closely related to the reconstruction
accuracy and the routes to obtain the measurements. The non-
zeros in the sensing matrix indicate which sensors should
be on the routes and whose sensory data are added into the
measurements. In this paper, to reduce the network energy
consumption and improve the CS reconstruction accuracy,
we develop the CS-DG algorithm based on the construction
of the sensing matrix.

The theoretical analysis results in [6] and [7] show that
either Gaussian random matrix or Bernoulli random matrix
can be used as a good candidate for the dense sensing matrix.
In [8] and [9], the authors proposed the compressive data
gathering schemes by jointly utilising the dense sensing
matrix and the traditional routing tree structure. In [8], the
CS coding was employed by all sensors in the network. Each
sensor delivered the same number of measurements to the
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sink which was large enough for an accurate reconstruction at
the sink. To further save energy for sensors far away from the
sink, the authors in [9] proposed the hybrid CS aggregation,
in which the CS coding was conducted only when the number
of the received sensory data was larger than the number of
measurements. Otherwise, the original sensory data would be
routed along the paths to the sink.

Compared with the dense sensing matrix, the sparse sens-
ing matrix requires a smaller number of sensors to obtain
the measurements and generates a smaller number of data
transmissions between sensors. Wang et al. [10], Sartipi and
Fletcher [11], Chou et al. [12], Ebrahimi and Assi [13], [14]
focused on the CS-DG based on the sparse sensing matrix to
save energy.

Wang et al. [10] proposed a novel distributed algorithm
based on a sparse random sensing matrix, and stated that the
sparse random sensing matrix can perform as well as a dense
one, if designed correctly. In [12], the sparse sensing matrix
and the energy-efficient routing paths were jointly optimized
utilising the Bayesian compressive sensing algorithm [15].
Each row vector of the sparse sensing matrix was chosen
iteratively with the aim of maximizing the information gain
per energy expenditure. In [13], a sparse sensing matrix, in
which each row vector had the same number of non-zeros and
none of the column vectors had all zero entries, was applied.
To save energy and distribute the energy load, a number of
minimum spanning trees were built, each rooted at a ran-
domly chosen encoding node, based on which the sensory
data were separatively collected and compressed according
to the relative row of the sparse sensing matrix.

The above works were proposed for WSNs adopting tree-
based routing algorithms (tree-type WSNs). It is shown
in [16] that clustering has better performance than the tree-
based routing algorithms in terms of energy consumption and
traffic load balancing. So far, in clustered WSNs, there exists
a few works on the CS-DG based on the construction of the
dense or sparse sensing matrix [17]–[22].

Xie and Jia [17] proposed a clustering method that used
hybrid CS with a dense sensing matrix. Within a cluster, the
sensors transmitted the original sensory data to the cluster
head (CH). The CHs obtained the measurements by using
CS coding and then sent the measurements to sink. The
routing trees of CHs are similar to the ones in [8]. Each
CH also transmitted the same number of measurements. The
theoretical analysis results in [18] and [19] show that block
diagonal matrix (BDM) can be used as a good candidate for
the sparse sensing matrix. The CS-DG algorithms based on
BDM were proposed in [20] and [21]. In [21], the sparse one
considered in [13] was employed as the sub-matrix of BDM,
and the energy-efficient routing trees were formed to gather
the sensory data in each cluster. In [22], the combination of
clusters was used in the recovery process, i.e., each measure-
ment was obtained with the uniformly selected w clusters.
The sensing matrix can be a BDM or a full Gaussian matrix
by separatively setting w = 1 or w = Nc, where Nc denotes
the number of clusters.

It is shown in [23] that if a sparse binary sensing matrix is
the adjacency matrix of an unbalanced expander graph, then
linear programming (LP) decoding procedure can be used for
reconstructing sparse approximations. In [25] and [26], the
sparse binary sensing matrix, which could be the adjacency
matrix of an unbalanced expander graph, was constructed
with a flexible data gathering algorithm based on random
walks1 in the tree-type WSNs. In this paper, we extend the
works for the tree-type WSNs into the ones for clustered
WSNs leveraging on the significant advantage of unbal-
anced expander graph in terms of the reconstruction accu-
racy. We propose a novel energy-efficient CS-DG algorithm
based on random sampling and random walks and prove
that the constructed sparse binary sensing matrix is the adja-
cency matrix of an unbalanced expander graph under certain
conditions.

The main contributions of this paper are summarized as
follows:

1) A novel energy-efficient CS-DG algorithm is proposed
for clustered WSNs, in which random sampling and
random walks are jointly applied to construct a sparse
binary sensing matrix. During the data gathering pro-
cess, the CS coding is performed on the sensory data
of partial sensors. Random walks are implemented to
visit some clusters and the partial sensors are ran-
domly sampled from the visited clusters under a certain
probability.

2) The theoretical analysis shows that the sparse binary
sensing matrix constructed by our proposed CS-DG is
the adjacency matrix of an unbalanced expander graph
under certain conditions. The conditions are closely
related to such parameters as the length of randomwalk
and the probability of random sampling, the number of
measurements, the number of clusters and the number
of sensors.

3) The simulation results show that the reconstruction
accuracy can be improved by increasing the length
of walks and appropriately selecting the probabil-
ity of random sampling. Our proposed CS-DG has
better performance than existing algorithms based
on dense random matrix and BDM, in terms of
reconstruction accuracy and energy consumption.
When the well known Hybrid Energy-Efficient Distri-
buted (HEED) [27] clustering algorithm is used, to
achieve the same reconstruction accuracy, our proposed
CS-DG can save energy by at least 27.8% for a network
with 1000 sensors organized into 160 clusters.

A. OUTLINE OF THE PAPER
The rest of this paper is organized as follows. Section II
introduces the basic concepts of CS theory and unbalanced
expander graph. In Section III, the CS-DG with random

1A random walk of length t is started at any node which is selected
uniformly at random from nodes in the network. The next hop of each random
walk is selected randomly from the set of its neighbors. After (t − 1) hops,
the random walk is stopped.
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TABLE 1. Main notations for Section III and Appendix.

sampling and random walks is described, and then the con-
structed sparse binary sensing matrix and its connection with
unbalanced expander graph are analyzed. The proofs are
included in Section IV. Section V reports our experiment and
simulation results. In Section VI, the conclusions are drawn.

B. NOTATION
Throughout this paper, normal letters are used for scalars.
The finite-dimensional vectors and matrices are indicated
with lowercase and uppercase respectively by boldface. [·]T

indicates the transpose operator and [·]† is theMoore-Penrose
pseudoinverse. For a set, | · | denotes the number of elements
in the set. In the vector domain, the concept of `p-norm is
defined as ‖x‖p =

(∑n
i=1 |xi|

p)1/p, where |xi| is the absolute
value of xi. Rn means the n-dimensional real coordinate
space. The main notations used in Section III and Appendix
are listed in Table 1.

II. PRELIMINARIES
A. CS BASICS
In this section, we review some fundamental principles of
CS. The theory of CS states that, under certain conditions,
instead of directly obtaining the signal x ∈ RN , we collect the
measurements y ∈ RM byCS coding, and then reconstruct the
signal with the measurements, whereM � N . The measure-
ments are the weighted sums of the signal. The matrix form
of CS coding can be represented as y = Bx, where B denotes
the sensing matrix.

In order to accurately reconstruct the signal using the
collected fewer measurements, the signal should be sparse

or compressible (approximate sparse). If the number of non-
zeros in x is smaller than k (k � N ), the signal is k-sparse.
If the number of large coefficients in x is than k and the
remaining coefficients are small, the signal is compressible.

The other key factor in CS is the sensing matrix B. The
Restricted Isometry Property (RIP) and the mutual coherence
are two features that must be satisfied by the sensing matrix.
Both are used extensively in formulating the performance
guarantees of the CS reconstruction performance. For the def-
inition of RIPp,k,δ [23], it is said that B satisfies the RIPp,k,δ
condition with parameter δ if, for any k-sparse vector x, we
have

‖x‖p ≤ ‖Bx‖p ≤ (1+ δ) ‖x‖p . (1)

The signal could be sparse or compressible in some trans-
form domain. That is, if D is a transform matrix and
θ = D†x is sparse, the measurements can be represented as
y = Bx = BDθ . If B is a random sensing matrix satisfying
the RIP in (1), then in many cases so is the product matrix
8 = BD [24]. Consequently, CS does not rely on assump-
tions about the domain in which the signal is compressible.

The mutual coherence is defined as

µ(8) = max
i6=j,1≤i,j≤N

∣∣φTi φj∣∣
‖φi‖2

∥∥φj∥∥2 , (2)

where φi ∈ RM is the column vector in8 [28]. Both Gaussian
random matrix and Bernoulli random matrix satisfy RIP and
have a large incoherence with any transform basis, so either
of them can be used as a good candidate for the sensing
matrix B [6], [7].
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Given a sufficient number of measurements, the sparse
or compressive signal can be reconstructed by using the
`1-minimization decoding algorithms, such as Dantzig selec-
tor (DS) [29] and basis pursuit denoising (BPDN) [30].
We briefly review the `1-minimization decoding algorithms.
DS finds a reconstructed signal x̂ of x to the `1-minimization
problem

min
x,r
‖x‖1 subject to ‖BT r‖∞ < η, r = y− Bx. (3)

BPDN can recover x from the measurements y by solving

min
x,r

γ ‖x‖1 +
1
2
‖r‖22 subject to r = y− Bx. (4)

η and γ are both the user-selected parameters related
to the noise power. It has been shown that the above
`1-minimization problem can be solved with the LP
techniques [1].

B. EXPANDER GRAPH
In this section, the definition of an unbalanced expander
graph is given and the relationships between an unbalanced
expander graph and CS are described in details. According to
the descriptions in this section, we show that the adjacency
matrix of an unbalanced expander can provide another con-
venient way to obtain the sensing matrix.

1) DEFINITION (UNBALANCED EXPANDER)
A (k, ε) unbalanced expander is a bipartite graph
G = (X ,Y ,E) with |X | = N left nodes, |Y | = M right nodes
and regular left degree τ (i.e., each node in X is connected
to τ nodes in Y ) such that for any set S ⊂ X with |S| ≤ k ,
the set of neighbors N (S) of S (i.e., the nodes in Y that are
connected to nodes in S) has size |N (S)| ≥ (1− ε)τ |S|, for
all 0 < ε < 1.
|E(S)| = τ |S| is the number of links that go from S to the

nodes in Y .E denotes the set of edges where an edge connects
a node in X with a node in Y . No edges exist between two
nodes in X or two nodes in Y . The structure of the graph
G can be equivalently represented by the M × N adjacency
matrix B, where the entry bi,j = 1 if the edge exists and
bi,j = 0 otherwise. It is shown in [23] that B satisfies RIPp,k,δ
property for 1 ≤ p ≤ 1+ O(1)/logN if the matrix B is the
adjacency matrix of an unbalanced expander graph. It also
showed that a RIPp,k,δ matrix and the adjacency matrix of
an unbalanced expander are essentially equivalent. Thus, the
adjacencymatrix of an unbalanced expander provides another
convenient way to obtain the sensing matrix.

The analytical results in [25] show that if B is the adja-
cency matrix of an irregular unbalanced expander graph (the
degree τ of the nodes on the left-hand side does not need
to be constant), then LP decoding procedure can be used for
recovering sparse approximations. Let τmin and τmax denote
theminimum andmaximumof the left degree (i.e. the degrees
of nodes in X), respectively. If B is the adjacency matrix of a
(2k, ε) irregular unbalanced expander, the viability of using

the `1-minimization decoding algorithms for reconstruction
is shown below.
Theorem 1( [25]): Given y = Bx, we can recover x̂ from y

using the `1-minimization decoding algorithms such that∥∥x− x̂∥∥1 ≤ c (ε) ‖x− xS‖1 (5)

as long as τmin > 6ετmax, where c(ε) =
2τmin−4ετmax
τmin−6ετmax

and S is
the set of k largest coefficients of x.
In this paper, we utilize the adjacency matrix of an unbal-

anced expander as a new feature to characterize the sensing
matrix. We design a novel CS-DG and prove that the con-
structed sparse binary sensing matrix with the novel CS-DG
is the adjacency matrix of an unbalanced expander.

III. DESIGN
In this section, the network model is given. Then, the reasons
that HEED can be used as the clustering algorithm and the
eigenvectors of the graph Laplacian can be used to construct
an orthonormal basis are analyzed. After that, the proposed
CS-DG based on random sampling and random walks is
introduced in details and then the constructed sparse binary
sensing matrix and its connection with unbalanced expander
graph are analyzed.

A. NETWORK MODEL
Assume that there are a large number of sensors uniformly
and densely deployed in clustered WSNs and the sensory
data are spatially correlated. The sensors are organized into
the non-overlapping clusters using the traditional clustering
algorithms, such as HEED [27]. In this paper, we develop
a routing algorithm based on random walks implemented
on a graph consisting of the CHs. The analytical result for
HEED [27] shows that the probability that two sensors within
each other’s cluster radius are both CHs is small, i.e., CHs
are even-distributed, where sensors are the members of the
same cluster when the distances between the sensors and
its CH are smaller than the cluster radius. Thus, we model
the network consisting of the CHs as a random geometric
graph (RGG) G(2,Nc, rc),2 where Nc represents the number
of clusters and rc denotes the transmission range of the CHs
used for the intercluster communication. Our analytical result
is obtained according to the property of the random walks
implemented on a RGG. Set rc =

√
c logNc/(πNc), where

c > 1, so that the graph G(2,Nc, rc) is connected with high
probability [31], [32].

HEED periodically selects CHs considering both the sen-
sor residual energy and the average minimum reachability
power (AMRP). Assume that each sensor within a cluster
can use power control mechanism to adjust the transmis-
sion power according to the transmission distance. Set the
transmission range of the sensors used for the intracluster

2A random geometric graphG = G(2,N , r0) in two dimensions is defined
as follows: Sample N nodes V independently and uniformly at random from
a unit square area. The node set |V | = N . r0 denotes the transmission range.
For v, u ∈ V , the edge e = (v, u) ∈ E if and only if the Euclidean distance
d (v, u) ≤ r0.
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communication to be equal to the cluster radius. Thus, the
cluster members (CMs) can directly communicate with their
CH. Before a node starts executingHEED, each sensor selects
itself as a tentative CH with the probability, expressed as
CHp = Cp

Eres
E0

, where Cp is the initial probability of becom-
ing a tentative CH, Eres is the estimated residual energy
and E0 is the initial energy. The AMRP of a tentative
CH is defined as the mean square distance from all nodes
within its cluster radius to the tentative CH, expressed as

AMRP =
∑Q

i=1 d
2
i

Q , where Q is the number of sensors within
the cluster radius and di denotes the distance between the
tentative CH and the i-th sensor within its cluster radius. Each
sensor select its CH to be the tentative CH with the smallest
AMRP in the set of the tentative CHs. The number of selected
CHs by HEED varies according to the cluster radius.

We construct a graph G = (V ,E) representing spatial
correlations. The node set V contains all the sensors. For
v, u ∈ V , the edge e = (v, u) ∈ E if and only if the distance
d (v, u) ≤ r . If the range r is too large, spatial correlations
will be reduced. In this paper, the range r is set to be equal
to the cluster radius. Because of the spatial correlations, the
sensory data can be compressible in some transform domain.
Although the deployment of the sensors is irregular, the
sensors, which are geographically close to each other, are
more likely to have similar sensory data. The sensory data
are smooth on the graph G = (V ,E) and can be represented
sparsely in a Laplacian eigenvector basis [33]. We construct
an orthonormal basis using the eigenvectors of the graph
Laplacian (EGL) to approximately sparsify the sensory data.
Let N represent the number of sensors in clustered WSNs.
Let ni denote the number of sensors in the i-th cluster and
N =

∑Nc
i=1 ni. Let Vi =

{
vi,1, vi,2, · · · , vi,ni

}
represent the set

of sensors in the i-th cluster, where vi,1 denotes the CH
and vi,g denotes the CMs, 1 ≤ i ≤ Nc and 2 ≤ g ≤ ni. The
Laplacian Matrix L of the graph G = (V ,E) is defined as
follow [34]:

L =


−1, if

(
vi,g, vj,h

)
∈ E

τ (vi,g), if i = j, g = h
0, otherwise

(6)

where τ (vi,g) is the degree of vi,g, for vi,g, vj,h ∈ V
(1 ≤ i, j ≤ Nc, 1 ≤ g ≤ ni and 1 ≤ h ≤ nj).

B. CS-DG WITH RANDOM SAMPLING
AND RANDOM WALKS
TheCS-DGwith sparse sensingmatrix generates the CSmea-
surements which are the weighted sums of the sensory data of
a small fraction of sensors. The generated measurements are
transmitted to the sink and used to reconstruct all the original
sensory data. We propose a novel CS-DG with sparse binary
sensing matrix, where random sampling and random walks
are jointly employed to determine a small fraction of sensors
in clustered WSNs. An illustration of our proposed CS-DG is
depicted in Fig. 1, which consists of two layers, i.e., sensor
layer and cluster head layer.

FIGURE 1. Illustration of the CS-DG with random sampling and random
walks.

In the cluster head layer, the routing strategies based
on random walks and minimal spanning trees are respec-
tively implemented to generate the measurements and to
send the measurements to the sink. We consider a net-
work which consists of the CHs, and represent the network
with a graph GCH =

(
V ′,E ′

)
. V ′ =

{
v1,1, v2,1, · · · , vNc,1

}
denotes the set of CHs and E ′ denotes the set of all direct
communication links between two CHs, respectively. Both
random walks and minimal spanning trees are constructed
in the graph GCH = (V ′,E ′). Each sensor can obtain its
own location information by GPS or other localization tech-
niques [35], [36], the sensors list within its cluster radius r ,
and their locations by periodically exchanging beacon mes-
sages [37]. Specially, each CH can obtain the CHs list within
its transmission range rc, and their locations.

To generate a measurement with a random walk con-
structed in the graph GCH = (V ′,E ′), a random walk of
length t is started from a randomly selected CH, named as the
source node, and stopped at the CH, named as the destination
node, after t − 1 hops. The next hop of each CH is randomly
selected from the CHs in its range rc. In this paper, if a random
walk visits a CH, we also say that the random walk visits
its cluster. Meanwhile, a measurement will be initialized at
the beginning of each walk, be transmitted and be updated
on the walk. To initialize the measurement, the source node
randomly samples the partial sensors in its cluster with prob-
ability q and the initial value of the measurement is the
sum of their sensory data. Similarly, to update the measure-
ment, when a CH is visited by the random walk for the first
time, the partial sensors in its cluster are randomly sampled
with probability q and their sensory data are added into the
measurement.

When the random walks are stopped, the obtained mea-
surements are the sums of the sensory data of the sampled
sensors in the visited clusters. The destination nodes of ran-
dom walks transmit the measurements to the sink via the
routing strategy based on minimal spanning tree. At sink,
the original sensory data can be reconstructed with sufficient
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Algorithm 1 CS-DG with random sampling and random
walks

1. Sensors in each cluster transmit their sensory data to
the CH

2. Initialization
FOR m = 1 TO m = M
1) select one source node vi,1 ∈ V ′

2) vi,1 performs random sampling with probability q
3) vi,1 generates the packet

r(m).a1 = t
r(m).a2 = i
r(m).a3 = bmi xi

END
3. Synchronously data gathering with random sampling
and random walks
FOR m = 1 TO m = M
1) vi,1 randomly chooses vj,1 ∈ V ′ from 0(vi,1) and

transmits its packet to vj,1
2) vj,1 performs random sampling with probability q
3) vj,1 updates the achieved packet

r(m).a1 = r(m).a1− 1
IF vj,1 is visited by them-th random walk for the first
time
r(m).a3 = r(m).a3+ bmj xj
END

4) replace vi,1 with vj,1, then repeat step 1)-3) and update
the packet

5) stop the iteration from 1)-4) when r(m).a1 = 1 and
obtain ym = r(m).a3

6) send the packet containing ym to the sink via the
routing strategy based on minimal spanning tree

END

number of measurements by solving the `1-minimization
problem, such as DS and BPDN.

Random sampling with probability q can be performed
before or after data transmission to the CH. Both cases are
considered in this paper. In Case 1, all the sensory data are
directly transmitted to the CHs before the implementation of
random walks. Once a CH is visited by one random walk for
the first time, the CH will randomly sample the sensory data
from the received data with probability q. In Algorithm 1,
the proposed CS-DG with Case 1 is described in details.
In this case, the energy consumption will not be varied with
probability q.
In Case 2, the sampled sensory data are transmitted to

the CH during the implementation of random walks. Once
a CH is visited by one random walk for the first time, the
CH samples partial sensors with probability q and sends the
requests to the sampled sensors. The sampled sensors receive
the requests, and then directly send their sensory data to
the CH. In this case, the sensory data may be transmitted
more than once because a CH may be visited by multiple

random walks. The energy consumption will be affected by
probability q.
Assume that M measurements are large enough for an

accurate reconstruction of the sensory data. Because a mea-
surement is obtained by one random walk, M independent
random walks are performed to generate M measurements.
We take the m-th random walk of length t as an example
to explain the details of the random walk constructed in the
graphGCH , the selection of the source node, the initialization
and update of the packet, where 1 ≤ m ≤ M . Let bmi be
the row vector indicating whether the sensory data in the i-th
cluster are sampled with probability q. The entry bmi,g ∈ b

m
i is

an i.i.d binary variable indicating whether the sensory data of
vi,g ∈ Vi are sampled with probability q, where i ≤ Nc and
1 ≤ g ≤ ni. If the sensory data of vi,g are sampled, bmi,g = 1.
Otherwise, bmi,g = 0. Obviously, bmi,g can be expressed as

bmi,g =

{
+1, with probability q
0, with probability 1− q

(7)

1) A random walk constructed in the graph
GCH = (V ′, E ′). A random walk of length t is started
at a source node vi,1, 1 ≤ i ≤ Nc. vi,1 generates a
packet and injects the values into its packet for the
initialization. Let 0(vi,1) = {vj,1 ∈ V ′ :

(
vi,1, vj,1

)
∈

E ′} denote the neighbor set of vi,1, consisting of the
CHs within its transmission range rc. For one hop, vi,1
randomly selects a CH vj,1 from its neighbor set0(vi,1),
and sends the packet to vj,1. After the reception of the
packet, vj,1 updates the packet and selects a CH from
the set 0(vj,1) for the next hop. After (t − 1) hops, the
random walk is stopped. If rc is large enough to ensure
the connectivity of GCH = (V ′,E ′), the neighbor sets
consisting of the CHs can not be empty. If the neighbor
set 0(vi,1) is empty, the random walk will be stopped
at vi,1 and the obtained measurement will be discarded
and not be sent to the sink.

2) Selection of the source node. Because M may be
larger than Nc, we have M = MiNc +Mr , where Mr
denotes the remainder after division of M by Nc. Mi
andMr are the positive integer, and 0 ≤ Mr ≤ Nc − 1.
The selection methods of the source nodes for MiNc
random walks and Mr random walks are different.
When Mi 6= 0, each CH is selected as the source node
by Mi independent random walks. The source nodes
for Mr random walks are randomly selected from the
set V ′.

3) Initialization of the packet. Before the implementation
of randomwalk, the source node vi,1 generates a packet,
denoted as r(m). In the packet, r(m).a1 = t denotes
the hop counter, r(m).a2 = i denotes the identifica-
tion (ID) of the cluster whose CH is selected as the
source node and r(m).a3 denotes the initial value of
a measurement. Let the column vector xi denote all
the sensory data in the i-th cluster. The initial value of
a measurement is the sum of the sensory data of the
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sampled sensors, denoted as

r(m).a3 = bmi xi. (8)

4) Update of the packet. Once vj,1 receives the packet, two
values in the packet will be updated. The value of the
hop counter is decreased as r(m).a1 = r(m).a1−1. The
update of the packet and the selection of the neighbor
are repeated until r(m).a1 = 1. The random walk and
the update of the measurement should be stopped when
r(m).a1 = 1. Let the column vector xj denote all the
sensory data in the j-th cluster. The sampled sensory
data in the j-th cluster are added into the measurement,
expressed as

r(m).a3 = r(m).a3+ bmj xj. (9)

If vj,1 is revisited by the same random walk, the mea-
surement r(m).a3 should not be updated. If vj,1 is vis-
ited by different random walks, vj,1 generates bmj and
selects the neighbor for each random walk, separately.

For a full and accurate reconstruction, the measurements
should contain the information of all the sensory data. That
is to say, the measurements should be obtained by linear
combinations of all the sensory data. The obtained sensing
matrix should have no column vectors with all zeros. Thus,
all the clusters should be visited by the random walks and
all the sensors should be sampled at least once, which can
be obtained by increasing the values of parameters, i.e.,
M , t and q. However, the energy consumption rises as the
values of parameters are increased. The values of parameters
should be set to obtain the accurate reconstruction and the low
energy consumption. If the sensing matrix is the adjacency
matrix of an unbalanced expander graph, then LP decoding
procedure can be used for recovering sparse approximations.
In this paper, the conditions about the parameters, i.e., M , t
and q, will be given, under which the obtained sensing matrix
is the adjacency matrix of an unbalanced expander graph.

C. THE CONSTRUCTED SPARSE BINARY MATRIX
The measurements obtained by the proposed CS-DG are the
sums of the sensory data of a small fraction of sensors.
The partial sensors are determined by random sampling and
random walks. Only when the CH of the i-th cluster is visited
by the m-th random walk and the g-th sensory data xi,g in the
i-th cluster are randomly sampled by the CH, xi,g can be added
into the measurement ym. Let�m denote the set of cluster IDs
whose CHs are visited by them-th walk, where |�m| ≤ t . The
measurement obtained by the m-th walk is

ym =
∑

i∈�m
bmi xi

=

∑
i∈�m

∑Q

g=1
bmi,gxi,g. (10)

Let x =
[
xT1 , x

T
2 , · · · , x

T
Nc

]T
∈ RN denote the sensory data

in clustered WSNs. By performing M independent random

walks of length t constructed in the graph GCH , the CS mea-
surement vector y = [y1, . . . yM ]T ∈ RM is given by

y = Bx. (11)

The achieved sensing matrix B ∈ RM×N consists of the ran-
dom row vectors, in which the entries satisfy (7). So, the
constructed sensing matrix B is the sparse binary matrix.
For example, B shown in (12) is generated by random

walks with t = 2,M = 6 and Nc = 4, where the row vectors
generated by the source nodes are marked in red. Due to
Mi = 1 andNc = 4, the source nodes for the first four random
walks are four CHs, respectively. Due toMr = 2, the last two
random walks are started from randomly selected CHs.

B =



b11 0 0 b14
0 b22 b23 0

b31 0 b33 0

0 b42 0 b44
0 0 b53 b54
b61 0 b63 0

, (12)

where 0 denotes zero vector where each component is zero.
Assume that the number of sensors in each cluster is 3 and
N=12. The entry bmi,g ∈ b

m
i is an i.d.d binary variable satis-

fying (7), where 1 ≤ i ≤ 4, 1 ≤ g ≤ 3 and 1 ≤ m ≤ 6. The
details of (12) are given as follow.

B =


1 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 0 1 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0

,
(13)

When the length t and the probability q is large enough,
the CH in each cluster can be visited by random walks and
more sensors can be sampled. So there will be no column
vectors with all zeros. When t = 1, the measurements are
provided by the randomly selected CHs. When M ≥ Nc and
t = 1, the achieved sensing matrix B will be similar to BDM.
The algorithm in [21] can be seen as a special case of our
proposed CS-DG. When Nc = N , the tree-type WSNs can be
obtained where only one sensor exits in each cluster. When
Nc = N and q = 1, the sensor must be sampled when it is
visited by one random walk for the first time. The algorithm
in [25] can be seen as a special case of our proposed CS-DG
with Nc = N and q = 1.
To reconstruct the original sensory data, the sink needs to

know the sensing matrix B, which is determined by random
sampling and random walks. If the IDs of sensors selected
via random sampling and the clusters IDs of the CHs visited
by random walks are injected into the packets, the length
of the packet will be increased, leading to additional energy
consumption. To solve this problem, we can adopt the fol-
lowing approach. Before the implementation of the CS-DG
algorithm, each CH generates two random seeds and sends
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them to the sink. One random seed can be used to perform
random sampling through a pseudo-random number gener-
ator. The other random seed can be used to determine the
IDs of clusters visited by random walks. Finally, the sink can
know the IDs of sensors selected via random sampling and the
clusters IDs of the CHs visited by random walks according
to the seeds and the cluster ID of source node in the packet.
Then, the sink can obtain the sensing matrix B.

D. CONNECTION BETWEEN UNBALANCED EXPANDER
AND SPARSE BINARY MATRIX
According to Theorem 1, if the sensing matrix is the adja-
cency matrix of an unbalanced expander, the sparse signal
can be reconstructed with `1 minimization decoding algo-
rithm. Thus, we utilize the adjacency matrix of an unbal-
anced expander as a new feature to characterize the sens-
ing matrix. We prove that the sensing matrix constructed
by random sampling and random walks is the adjacency
matrix of a (k, ε) unbalanced expander. The result is shown
below.
Theorem 2: Performing random sampling with probabil-

ity q and taking M = O (k log (N/k)) independent random
walks of length t satisfying

t =


O
(
Nc
kq

)
, Nc > k

O
(

1[
1−(1−q)k/Nc

]) , Nc ≤ k,
(14)

the sensing matrix B constructed from random sampling and
random walks will be a (k, ε) unbalanced expander with
ε > 1− 1−ε′

β(1+ε′) , where 0 ≤ q ≤ 1, ε′ > 0 and 0 < β < 1.
The method, which proves the expansion property of

random matrix according to the definition of unbalanced
expander in [25], is adapted to obtain Theorem 2. It showed
that the random matrix was an adjacency matrix of a bipartite
graph, and then proved that an unbalanced expander was the
bipartite graph with |N (S)| ≥ (1− ε) |E(S)|.
Firstly, we show the sensing matrix B is the M × N adja-

cency matrix of a bipartite graph. In the bipartite graph, the
sensory data form the left node set X with |X | = N , and are
divided into Nc clusters. The measurements form the right
node set Y with |Y | = M . Obviously, no edges exist between
two nodes in X or two nodes in Y. A node in X connects
to a node in Y if and only if a random walk visits a cluster
and a sensory data in the visited cluster are sampled, which
is different from the work in [25]. Figure 2 illustrates an
example, which is a bipartite graph represented by the sensing
matrix (13).

For simplicity of the analysis, we assume that any set
S ⊂ X with |S| = k . In this paper, we analyze a special case of
unbalanced expander, where the nodes in the set S are equally
distributed in l clusters, where 1 ≤ l ≤ min{k,Nc}, which is
also different from the work in [25]. The set S can be denoted
as S = {S1, S2, · · · , Sl}, where Sj represents the j-th subset
contained in a cluster. In Fig.2, the subsets in S = {S1, S2, S3}
are indicated by the dotted oval.

FIGURE 2. The bipartite graph corresponding to the sensing matrix B
in (13). The nodes on the lefthand side are divided into 4 clusters which
are indicated by the medium sized oval. The subsets in S = {S1,S2,S3}

are indicated by the dotted oval.

Let BS denote the M × k submatrix of B drawn from
the corresponding columns of S. |E(S)| represents the total
number of links between nodes in S and nodes in Y , which
also represents the total number of non-zeros in BS . |N (S)|
represents the total number of nodes in Y that are connected
to any nodes in S, which also represents the number of non-
all-zero rows inBS . According to the definition of unbalanced
expander, we prove that a (k, ε) unbalanced expander can be
constructed from random sampling and randomwalks, which
is a bipartite graph with |N (S)| ≥ (1− ε) |E(S)|. The proofs
of Theorem 2 are included in Appendix.

IV. EXPERIMENTAL RESULTS
In this section, experiments are implemented to validate the
performance of our proposed CS-DG, in terms of reconstruc-
tion quality and energy consumption. Firstly, the analytical
results are verified using the sparse data sets by experiment,
where orthogonal matrices (the identity matrix (IM) and
EGL) are employed as the transform matrices. Then, the per-
formance of our proposed CS-DG is evaluated with the real
data sets. The impacts of different parameters are estimated
with different types of data sets and the comparisons are made
with other approaches.

The experiments are conducted using MATLAB. For sig-
nal reconstruction, we use cvx package to solve `1 program-
ming [38]. Assume that the data gathering process is divided
into rounds. In each round, all the sensory data in the network
are compressed and delivered to the sink, and reconstructed
at the sink. Each experiment is performed 1000 rounds for the
average performance.

A. METRICS
1) RECONSTRUCTION QUALITY
To evaluate the reconstruction quality, we define the normal-
ized reconstruction error as

errorx =

∥∥x̂− x∥∥2
‖x‖2

, (15)
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where x and x̂ represents the original sensory data and the
reconstructed sensory data, respectively.

2) PROBABILITY OF SUCCESSFUL RECONSTRUCTION
We define the probability of successful reconstruction to
measure the reconstruction performance of our algorithm.
Assume that the data are reconstructed successfully if
errorx ≤ 10−3. Let n denote the number of rounds that the
experiment is executed. n0 denotes the number of rounds of
successful reconstruction. So, the probability of successful
reconstruction is defined as n0/n.

3) ENERGY CONSUMPTION
We calculate energy consumption with the model as
follows [39].

Et (L, d) = Eelec × L + εamp × L × d2 (16)

Er (L) = Eelec × L (17)

where d denotes the Euclidean distance between two con-
nected nodes. Et (L, d) represents the energy consumption
for transmitting a L-bit packet over distance d . Er (L) rep-
resents the energy consumption for receiving a L-bit packet.
Eelec is the energy consumption for transmitting or receiv-
ing one bit message, and εamp is the transmission amplifier.
We set Eelec = 50 nJ/bit and εamp = 100 pJ/bit/m2 [39],
L = 160 bit [8]. We consider that the wireless channel
obeys a square-law path loss.3 The energy consumptions of
baseband signal processing blocks such as source coding and
pulse-shaping are ignored, which are quite small compared to
that of the RF circuitry [40].

B. EXPERIMENTS ON SPARSE DATA SETS
In this section, the experiments are performed to verify
the analytical results. The k-sparse data are generated, for
which the non-zeros (i.e., +1) are randomly distributed in
the coefficients. The orthogonal matrices (IM and EGL) are
employed as the transform matrices. In clustered WSNs,
N = 1000 sensors are randomly deployed in a square area
with the size 2000 × 2000 m2, the sink being at the center.
The sensors are divided into clusters using HEED algorithms.
In each cluster, the transmission range r of the CMs is set to be
equal to the cluster radius so that the CMs can directly com-
municate with the CH. The transmission range rc for the inter-
cluster communication is set to be rc =

√
1.5 logNc/(πNc)

[31], [32].

1) DETERMINATION OF THE PROBABILITY q
M = 300 random walks are implemented, where t = 15 for
IM and t = 10 for EGL. The number of selected CHs by
HEED varies according to the cluster radius. The average
number of clusters is 100 by setting r = 134.5 m. The prob-
ability of successful reconstruction over the probability q

3The channel path loss exponent κ could usually lie in the range 2− 4 for
wireless communications channels, with κ = 2 corresponding to free space
propagation.

FIGURE 3. The probability of successful reconstruction with the different
probability q for random sampling. The identity matrix (IM) and the
eigenvectors of the graph Laplacian (EGL) are employed as the transform
matrices.

FIGURE 4. The probability of successful reconstruction with different
constants Ct for the length of random walks and the number
of clusters Nc .

for random sampling is shown in Fig. 3, where q ∈ [0, 1.0]
and k = 60. We found that a high probability of successful
reconstruction can be obtained by setting q to be the middle
value of [0, 1.0]. When EGL is used as the transform basis,
the wide range of q is available for a high probability of
successful reconstruction.

2) RELATIONSHIP BETWEEN THE PROBABILITY OF
SUCCESSFUL RECONSTRUCTION AND PARAMETERS
To verify Theorem 2, M = 1.7k log (N/k) random walks of
length t satisfying

t =

{
Ct

Nc
kq , Nc > k

Ct 1[
1−(1−q)k/Nc

] , Nc ≤ k,

are implemented, where Ct ∈ [0.5, 6], k = 60 and q = 0.5.
Figure 4 shows the probability of successful reconstruc-
tion over the constant Ct . The average number of clus-
ters is 40, 60, 80, 100 obtained by varying r in the
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FIGURE 5. The reconstruction accuracy obtained by varying the probability for random sampling q and the length of random walks t (a) M = 100,
Nc = 160. (b) M =200, Nc = 80.

FIGURE 6. The average energy consumption per round obtained by varying the probability for random sampling q and the length of random
walks t (a) M =100, Nc =160. (b) M = 200, Nc = 80.

set 228.5 m, 181 m, 153.5 m, 134.5 m. Both IM and EGL
are considered as the transform matrices. We find that the
k-sparse data can be exactly reconstructed with a high prob-
ability using `1 minimization decoding algorithm when the
parameters are set according to Theorem 2. The best values
for Ct should be larger than 2 for EGL and 5.5 for IM,
respectively.When EGL is employed as the transform basis, a
high probability of successful reconstruction can be obtained
with random walks with the short length t .

C. EXPERIMENTS ON REAL DATA SETS
To evaluate the performance of the proposed CS-DG for
the compressible signals through simulation, real data sets
are used in this paper, which are obtained from a remote
sensing system [41] to provide an uninterrupted view of
oceanmeasurements. The real data sets consist of Sea Surface

Temperature (SST) in deg C , Surface Wind Speeds (SWS) in
m/s. The employed data set of size 80×80 are measured in a
region centred at (-47.5S, 10.0E), sensed from July. 07, 2012
to Nov. 12, 2016. Assume that N = 1000 nodes are randomly
deployed in a square area with size 2000× 2000 m2, the sink
being at the center. Their sensory data are extracted from the
real data set. The EGL is employed as the transform basis.

1) IMPACT OF DIFFERENT PARAMETERS
The performance of two cases of our proposed CS-DG is
checked by considering different types of signals (SST and
SWS), where t ∈ [1, 4] and q ∈ [0, 1.0]. The sensors are
divided into Nc clusters using the HEED algorithm.

In Fig. 5, the reconstruction quality for SST and SWS is
shown by varying t and q, respectively. The reconstruction
quality can be improved by increasing t or q. When q is small,
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the reconstruction quality can be obviously improved by
increasing t . Because a small number of sensors are sampled
with small q in each hop of each walk. To obtain the sensing
matrix with no column vectors with all zeros, the length of
random walks t should be increased to sample a sufficient
number of sensors.When q is large, the reconstruction quality
cannot be obviously improved if M ≤ Nc and t ≥ 3 or if
M > Nc and t ≥ 2. So, whenM ≤ Nc, the best value for t is 3
and the best value for q is 1.0. When M > Nc, the best value
for t is 2 and the best value for q is 0.9. Because different
random walks start from the same cluster and sample all the
sensory data in the cluster by setting M > Nc and q = 1.0.
The measurements generated by different random walks may
be the same. Thus, the reconstruction quality is reduced.

In Fig. 6, the average energy consumption per round for
two cases of our proposed CS-DG is shown by varying
t and q, respectively. For Case 1, the average energy con-
sumption is not affected by the parameter q, and can be
increased when t is larger. For Case 2, the average energy
consumption can be more when t or q is larger. In Case 2, the
random sampling can be performed only when a randomwalk
visits its CH for the first time. Specially, only the sampled
sensory data are transmitted to its CH. Thus, when q is small,
a small number of sensory data can be delivered and a low
energy consumption is required. However, whenM and t are
increased, each CH may be visited more than once, causing
the energy consumption for Case 2 to be larger than that of
Case 1, as shown in Fig.6(b). Thus, whenM is small enough,
by properly selecting q and t , the energy for Case 2 can be
saved as compared to that for Case 1.

2) COMPARISON WITH DIFFERENT ALGORITHMS
The comparisons with other algorithms are implemented,
where M ∈ [100, 420]. We name the CS-DG algorithms
according to the property of the sensing matrix, i.e., Dense-
DG [17], dBDM-DG [20], sBDM-DG [21], wBDM-DG [22],
and the non-zeros in the sensing matrices satisfy Gaussian
distribution. In [20] and [21], the sub-matrices of the BDM
are dense and sparse, respectively. In [22], each measurement
is obtained from uniformly and randomly selected w clus-
ters. (In this paper, w is set to be 3 which can obtain high
reconstruction quality and save energy.) The sensingmatrix is
similar to the BDM. Because the sparse binary matrix (SBM)
is used as the sensing matrix, our proposed CS-DG is named
as SBM-DG.

The data set of SST is employed for the compari-
son of reconstruction quality. The sensors are divided into
Nc = 160 clusters. To achieve high reconstruction quality, we
set that q = 0.9 for M > Nc and q = 1.0 for M ≤ Nc, t = 2.
In Fig. 7, the reconstruction quality over the number of

measurementsM is given. The reconstruction accuracy of our
proposed CS-DG is the best of all, which can be improved by
increasing M . In Fig. 8, the average energy consumption per
round over the number of measurements M is given. When
the parameter M is the same, the energy consumption of our
proposed CS-DG is slightly larger than that of sBDM-DG,

FIGURE 7. The reconstruction accuracy obtained by varying the number
of measurements M.

FIGURE 8. The average energy consumption per round obtained by
varying the number of measurements M.

lower than that of other three algorithms. If HEED is used as
the clustering algorithm, when M = 100 for SBM-DG and
M = 340 for sBDM-DG, errorx = 0.088 can be obtained
and SBM-DG can save energy by 27.8% as compared to
sBDM-DG. Thus, to obtain the same reconstruction accuracy,
the energy consumption of our proposed CS-DG is the lowest
of all.

V. CONCLUSION
We investigated the compressive sensing based data gathering
(CS-DG) in clustered WSNs and proposed a novel CS-DG
based on random sampling and random walks to save energy.
A sparse binary sensing matrix is constructed, in which
the non-zeros are jointly determined by random sampling
and random walks. The sensory data can be added into the
measurements only when their cluster heads are visited by
random walks and the sensors are randomly sampled with
a certain probability. Theoretical analysis results show that
the constructed sparse binary matrix is the adjacency matrix
of an unbalanced expander graph when the parameters are
appropriately chosen, i.e., the length of random walk and the
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probability of random sampling, the number ofmeasurements
and the number of clusters. Experimental results show that
our proposed CS-DG has high reconstruction accuracy and
low energy consumption as compared to existing algorithms
using dense random matrix and block diagonal matrix. When
HEED is used as the clustering algorithm, to achieve the
same reconstruction accuracy, our proposed CS-DG can save
energy by at least 27.8%.

APPENDIX
PROOF OF THEOREM 2
Firstly, the number of non-all-zero rows in BS , denoted as
N (S), is obtained. This is equal to the total number of random
walks whose measurements are the sums of at least one
sensory data in the set S, denoted asH . LetHi(1 ≤ i ≤ M ) be
an independent Bernoulli random variable indicating whether
the measurement obtained by the i-th random walk is the
sum of at least one sensory data in the set S. We have
H =

∑M
i=1 Hi. By Chernoff bound, for any arbitrary small

constant ε′ > 0, we have

Pr
(
H ≤

(
1− ε′

)
E (H)

)
≤ exp

(
−
ε′
2

3
E (H)

)
, (18)

where E(H ) denotes the expected value of H .
The random walks are performed on the graph

GCH = (V ′,E ′). Let Wu′ be the random walk starting at an
arbitrary CH u′ ∈ V ′. LetAt (v′) be the event that a CH v′ ∈ V ′

is visited by the walk Wu′ by time t when t is larger than the
mixing time.4 According to the results in [25], if the graph
GCH can be modeled as a RGG, the probability of the event
At (v′), denoted as Pr

(
At
(
v′
))
, can be expressed as

(1− µ) t
2 (η + 2) cNc

≤ Pr
(
At
(
v′
))
≤
(1+ µ) t
cNc

, (19)

where η = 1
(1−µ)κ and c is a constant.

In the following, we derive the expected value E(H ),
expressed with Pr

(
At
(
v′
))
, to estimate the probability

Pr
(
H ≤

(
1− ε′

)
E (H)

)
. We have M = MiNc +Mr , where

Mi and Mr are the positive integer, and 0 ≤ Mr ≤ Nc − 1.
The selection method of the source nodes for MiNc random
walks is different from that forMr random walks. The nodes
in the set S are distributed in l clusters. Each CH in l clusters
is the source node of Mi random walks and must be visited
by Mi random walks. For the random walk starting from the
cluster containing the subset Si, let Pi denote the probability
that the measurement is not the sum of any sensory data in the
set S. For M − lMi random walks, l clusters are visited with
the probability Pr

(
At
(
v′
))
. Let Pr denote the probability that

the measurement is not the sum of any sensory data in the set
S for M − lMi random walks. We have

E(H ) = Mi

∑l

i=1
(1− Pi)+ (M − lMi)(1− Pr ). (20)

4The mixing time of a graph is the time taken by a simple random walk on
the graph to sample a node according to the steady state distribution of the
graph, which means sampling uniformly at random if the graph is regular.
If the mixing time is poly-logarithmic in the number of nodes, then we say
that the graph is rapid mixing.

For lMi random walks, the CH in one cluster must be
visited as the source of the random walk, and the CHs in
the other l − 1 clusters can be visited by the random walk
with probability Pr

(
At
(
v′
))
. Assume that the subset Si with

|Si| = ki is contained in one of l cluster. Only when the
random walk does not visit the cluster or when the random
walk visits the cluster and does not sample any sensory data
in the subset Si according to (7), the measurement obtained
by the random walk is not the sum of any sensory data in
the subset Si. Due to the CHs independently visited by the
random walk, we have

Pi = qki0
∏

i6=j

[
1− Pr

(
At
(
v′
))
+ Pr

(
At
(
v′
))
q
kj
0

]
. (21)

where q0 = 1− q. For M − lMi random walks, the CHs in
l clusters can be independently visited by the random walk
with probability Pr

(
At
(
v′
))
. We have

Pr =
∏l

i=1

[
1− Pr

(
At
(
v′
))
+ Pr

(
At
(
v′
))
qki0
]
. (22)

Then, according to (21) and (22), due to qki0 ≤ 1 − Pr
(At (v′))+ Pr(At (v′))q

ki
0 , (20) can be rewritten as

E(H ) ≤ M (1− Pr ). (23)

Suppose that each subset is composed of k/l nodes, (23) can
be rewritten as

E(H ) ≤ M
{
1−

[
1− Pr

(
At
(
v′
))
+ Pr

(
At
(
v′
))
qk/l0

]l}
Combining (18), (19), (22) and (23), taking M = Cmk log

(Ne/k) and t = C1
Nc

l[1−(1−q)k/l ] with an appropriate constant
Cm andC1,H ≤

(
1− ε′

)
M (1− Pr ) with probability at most

O
(
(eN/k)−k

)
, which can be arbitrary small when N is large.

In other words, |N (S)| ≥
(
1− ε′

)
M (1− Pr ) with high prob-

ability when N is large.
Next, the number of nonzero elements in BS , i.e., |E (S) |,

is obtained. That is the total times of sampling the sensory
data from the set S viaM independent randomwalks, denoted
as Z . Let Zi be the total times of sampling the sensory data
from the i-th subset Si viaM independent random walks. We
have Z =

∑l
i=1 Zi.

The sampling of one sensory data is effective only when
the CH in its cluster is visited by one random walk. One CH
must be the source node of Mi random walks and be visited
by M −Mi random walks with the probability Pr

(
At
(
v′
))
.

Assume that the subset Si is contained in one of l clusters.
When the CH in the cluster is visited by the random walk, the
ki sensory data in the subset Si are sampled with probability
q. So, the expected value of Zi is

E (Zi) = Miqki + (M −Mi)qki Pr
(
At
(
v′
))

(24)

and the expected value of Z is

E (Z ) =
∑l

i=1

{
Miqki + (M −Mi)qki Pr

(
At
(
v′
))}

= Miqk + (M −Mi)qk Pr
(
At
(
v′
))

≥ Mqk Pr
(
At
(
v′
))
. (25)
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By Chernoff bound, we have

Pr
(
Z ≥

(
1+ ε′

)
E (Z )

)
≤ exp

(
−
ε′
2

2
E (Z )

)
. (26)

We find that t = C1
Nc

l
[
1−(1−q)k/l

] is a monotone decreasing
function of l, obtained by calculating the second deriva-
tive of t . The parameter l is unknown because the nodes
in the set S are randomly distributed in l clusters, where
1 ≤ l ≤ min{k,Nc}. The expression about the parameter t
can be rewritten as

t =

{
Ct

Nc
kq , Nc > k

Ct 1[
1−(1−q)k/Nc

] , Nc ≤ k,
(27)

where Ct is a constant.
According to (19), (25), (26) and (27), with M = O

(k logN/k), Z ≥
(
1+ ε′

)
Mqk Pr

(
At
(
v′
))

with probability
at most O

(
(eN/k)−k

)
. In other words, |E (S) | ≤

(
1+ ε′

)
Mqk Pr

(
At
(
v′
))

with high probability when N is large.
According to the definition of unbalanced expander,

if the bipartite graph represented by the sensing matrix
B is an unbalanced expander graph, we should have
|N (S) | ≥ (1− ε) |E (S) |. Therefore, with high probability,
we should have

|N (S)| ≥
(
1− ε′

)
M(1− Pr )

≥ (1− ε)
(
1+ ε′

)
Mqk Pr

(
At
(
v′
))

≥ (1− ε) |E (S)| . (28)

(28) can be further expressed as(
1− ε′

)
(1− Pr ) ≥ (1− ε)

(
1+ ε′

)
qkPr

(
At
(
v′
))(

1− ε′
)
> (1− ε)

(
1+ ε′

)
qkPr

(
At
(
v′
))

(29)

According to (19), we know that the minimum value of
Pr
(
At
(
v′
))

is (1−µ)t
2(η+2)cNc

. Setting Ct =
2βc(η+2)

1−µ (0 < β < 1),
we have (

1− ε′
)
> β (1− ε)

(
1+ ε′

)
ε > 1−

1− ε′

β (1+ ε′)
. (30)

From the above analysis, for a certain node set S with
|S| = k , |N (S) | ≥ (1− ε) |E (S)| can be held with high
probability. Since there are at most

(N
k

)
≤
( eN
k

)k
node

sets with |S| = k , for all the node sets with |S| = k ,
|N (S) | ≥ (1− ε) |E (S)| can be held with probability
1− o (1), by a union bound. Thus, following the same argu-
ment, for all the node sets with |S| ≤ k , we have that the
bipartite graph can also hold |N (S) | ≥ (1− ε) |E (S)| when
M = O (k logN/k) and t satisfying (27).
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