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B5GCASP: Decentralized Federated Anomalous
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Abstract—As the brain of B5G networks, the core networks
enable more ubiquitous intelligent connectivity over previous
generations of mobile networks, thanks to the decentralized
user plane close to edges. As mitigation against abnormal
signaling attacks on edge core networks, signal protection
mechanisms for the user planes at the N4 interface are widely
investigated. However, the prior art fails to adequately address
the distribution characteristics of abnormal signaling at this
interface, where single-point defences are insufficient for the
complexities of beyond 5G (B5G) distributed architecture. This
article proposes a decentralized federated anomaly signaling
protection framework, called B5GCASP, based on a functionally
layered anomalous signaling detection model (FLAD). Mainly,
B5GCASP analyses abnormal signaling distribution under the
packet forwarding control protocol (PFCP) at the N4 interface,
distinguishing significant and nonsignificant anomalies. Coupled
with a decentralized, federated detection mechanism, B5GCASP
creates a comprehensive point-and-area detection architecture.
Extensive experiments on the 5GC PFCP dataset show that
B5GCASP achieves higher accuracy and faster detection of
abnormal signaling compared to single-point defending baselines,
which offer robust anomaly signaling protection for the B5G core
network.

Index Terms—Abnormal detection, beyond 5G (B5G), packet
forwarding control protocol (PFCP), point-and-area detection,
user plane.

I. INTRODUCTION

W ITH the evolution of beyond 5G (B5G) networks,
the era of ubiquitous connectivity is approaching.

B5G aims to create an integrated network that spans space,
air, oceans, and land, providing seamless global information
coverage [1]. Efforts from various countries and research
institutions are accelerating the development of B5G networks,
focusing on the core network.
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According to the third generation partnership project
(3GPP), key issues in B5G core networks include data trans-
mission security, access control, authorization, and privacy
protection [2]. One primary concern is that the high volume
of signaling traffic in IoT environments may hinder detecting
anomalous signaling attacks. Additionally, as B5G networks
incorporate technologies like network slicing, virtualization,
and software defined networking (SDN) [3], they become
more flexible and complex, introducing new attack vectors.
Adequate signaling protection is, therefore, crucial to safe-
guard critical applications, especially in scenarios requiring
real-time data integrity, such as in smart cities and remote
healthcare.

In multi-intelligent scenarios with massive user access,
attackers can easily conceal their activities by launching
abnormal signaling attacks toward the control plane from
the user plane, as illustrated in Fig. 1. The user plane func-
tion (UPF), responsible for processing and forwarding user
data to the control plane via the packet forwarding control
protocol (PFCP) over the N4 interface, becomes a critical
target for attackers. The N4 interface, therefore, represents a
key vulnerability. Robust detection and monitoring anomalous
signaling at the N4 interface are crucial to maintaining B5G
core network security and integrity. However, the complexity
of the B5G core network environment, which encompasses
technologies, such as network slicing, virtualization, and SDN,
along with diverse network architectures and functionalities,
leads to intricate interactions among network functions (NFs).
This complexity creates numerous opportunities for anomalous
signaling attacks and complicates their detection. The core
network must manage dense, high-speed, and concurrent
user plane data flows, rendering anomaly detection at the
N4 interface inherently challenging. Moreover, the stealthy
nature and the sophisticated characteristics of signaling attacks
further exacerbate this difficulty.

It is worth noting that research on detecting anomalous
signaling at the user plane N4 interface needs to be improved,
primarily due to the scarcity of datasets under the PFCP
and the challenges associated with identifying specific attack
features. Panagiotis proposed an intrusion detection system
(IDS) for the 5G core (5GC) that utilizes artificial intelli-
gence to detect potential network attacks targeting the N4
interface under PFCP [4]. This work is notable for using
a real PFCP dataset, significantly advancing 5GC anomaly
detection. However, it does not adequately address the specific
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Fig. 1. Decentralized federated learning anomaly signaling protection architecture under the B5GC consists mainly of the user and control planes. In this
architecture, 1© a single core network at the N4 interface is attacked by an attacker launching anomalous signaling attacks. 2© the attacked core network
can capture and learn some new anomaly signaling features. 3© the updated weights containing the new anomaly features are sent to other connected core
networks. Moreover, 4© when the attacker targets other core networks again, the core networks that received the new model parameters can effectively resist
the attack promptly.

attack features associated with PFCP anomalous signaling,
which limits its detection accuracy. Furthermore, by the 3GPP
standards, the B5G core network (B5GC) is anticipated to
evolve toward a more distributed architecture. This evolution
will increase the deployment of distributed core network
nodes, decentralizing critical NFs closer to the edge. Such
an architecture reduces latency, enhances performance, and
broadens the potential attack surface.

Moreover, the distributed nature of edge core networks
increases the complexity of detecting and mitigating abnor-
mal signaling attacks that can originate from compromised
edge nodes and spread across interconnected network seg-
ments [5]. Meanwhile, various radio map (RM) technologies
are introduced to address the functional degradation issues
of different types of nodes at the user plane [6]. In a
multiedge core network environment, where core functions
are distributed across geographically diverse locations, the
interactions between network segments become increasingly
complex. Attackers can exploit these interactions to initiate
attacks that propagate from one compromised edge core node
to others, potentially affecting multiple network parts. Current
defence systems are often built on isolated, point-based
detection approaches. Even though each network segment
may implement local defence mechanisms to detect abnormal
signaling, these mechanisms can only sometimes coordinate
across networks and share threat intelligence, leading to
slower detection and limited effectiveness when dealing with
attacks that span multiple nodes or networks [7]. A point-
and-area integrated defence architecture is needed to ensure
that individual detection models can be retrained or adapted to
new threats at each network point, which can address the full
scope of modern threats. In RingSFL [8], an adaptive model

splitting mechanism is utilized to efficiently distribute the
training process between the global model and multiple clients
in parallel. This refined distributed architecture effectively
reduces the latency associated with traditional approaches,
resulting in significant performance improvements. Inspired
by RingSFL, this article proposes a decentralized federated
anomaly signaling protection architecture for the B5GC to
address these challenges. This architecture is designed to
complement existing single-point protections by enabling col-
laborative, cross-network detection and defence, thus offering
a more robust and scalable solution to anomalous signaling
attacks in B5G networks.

In our proposed architecture, we introduce the func-
tional layered anomaly defense (FLAD) network as a point
defence mechanism specifically tailored to the characteristics
of anomalous signaling attacks within the PFCP framework.
The decentralized defence architecture comprises multiple
FLAD instances, each capable of updating attack parameters
in real time, providing an integrated point-and-area defence
mechanism. This design enhances anomaly detection effi-
ciency and improves the ability to sense anomalies. The main
contributions of this article are as follows.

1) We propose a hierarchical anomaly detection algorithm
to distinguish between significant and nonsignificant
anomalies in PFCP signaling attacks. This approach is
novel in categorizing these attacks into distinct feature
types. Extensive real-world testing validates the algo-
rithm’s effectiveness, improving detection accuracy and
resilience against signaling attacks.

2) Our approach addresses the challenge of knowledge
exchange among distributed core networks for anomaly
detection in signaling protection. Traditional single-point
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defence mechanisms often struggle with geographically
dispersed, homogeneous attacks. By enabling knowl-
edge sharing across networks, our method enhances the
system’s ability to detect anomalies more effectively.

3) This article presents a novel decentralized, federated
anomaly detection architecture for collaborative B5G
cloud-network environments. It combines point-and-area
detection to ensure robust protection while preserving
single-point defence capabilities. The architecture adapts
to the distributed nature of B5G networks, enabling
efficient, scalable anomaly detection while maintaining
data privacy.

The remainder of this article is organized as follows. Section II
discusses the threat modeling. Section III reviews the related
work. Section IV presents the proposed architecture. Section V
illustrates the evaluation results. Section VI concludes this
article.

II. THREAT MODELING

As outlined in the introduction, abnormal signaling attacks
have attracted considerable attention due to their potential
to disrupt communication networks and compromise system
security. Anomalous signaling attacks, in their diverse forms
and methods, significantly impact the operation of core
networks. Attackers exploit these techniques to exhaust critical
resources of the 5G core (5GC) through high-volume signaling
requests or by sending malicious signals to confuse network
protocols and traffic, obstructing normal request handling,
leading to service disruptions or increased latency. Anomalous
signaling attacks are often characterized by a high frequency
of occurrence owing to their low operational complexity.

Within our threat model, we specifically focus on the N4
interface of the core network, primarily involving the PFCP
and TCP protocol. Below is a summary of four PFCP-related
network attacks identified in our investigation as follows.

1) PFCP Session Establishment Flooding DoS Attack: This
attack aims to exhaust UPF resources by overwhelming
it with legitimate session establishment requests and
detection signal requests, hindering the 5G core network
ability to successfully establish new protocol data unit
(PDU) sessions. This exploit affects both the N4 and N6
interfaces. Connectivity can be restored by restarting the
UE or by entering another gNbs coverage range. These
actions will associate a new SEID with the UE PDU
session, effectively neutralizing the attack.

2) PFCP Session Deletion Flooding DoS Attack: This
attack aims to disconnect an UE from the DN. By send-
ing numerous session deletion request messages, this
attack depletes resources of the target UPF, impacting its
normal operations. This exploit affects both the N4 and
N6 interfaces. Connectivity can be restored by restarting
the UE or by entering another gNbs coverage range.
These actions will associate a new SEID with the UE’s
PDU session, effectively neutralizing the attack.

3) PFCP Session Modification DoS Attack (DROP): This
attack invalidates packet processing rules for specific
sessions, thereby disconnecting user equipment (UE)

from the data network (DN). During rule updates, UPF
deletes forwarding action rules (FAR) entries associated
with tunnel endpoint identifiers (TEID) and base sta-
tion IP addresses, resulting in subscriber GTP tunnels
for downlink data transmission being severed, thus
preventing DN access. However, sending data to the UPF
can restore the GTPU tunnel. It is important to note that
this exploit specifically targets client-DN PDU sessions,
without disconnecting the UE from the 5G RAN or 5GC.
Its impact is limited to the DN, and the attack occurs
via the N4 interface, affecting the N6 interface.

4) PFCP Session Modification DoS Attack (DUPL):
Exploiting the DUPL flag in the apply action field, this
attack forces UPF to replicate session rules, creating
multiple paths for a single source data. This instability
in the N6 interface can lead to DN traffic replication and
potentially be utilized for distributed Denial of Service
(DDoS) attacks against the entire DN, consuming UPF
resources.

These identified attacks underscore the critical need for
robust anomaly detection mechanisms within B5GC to ensure
resilience against malicious exploitation of PFCP vulnerabili-
ties. In response to this research demand, some literature has
proposed research directions and highlighted the importance
of the research. However, effective anomaly signaling defense
mechanisms specifically targeting the user plane N4 interface
of B5GC remain lacking.

III. RELATED WORKS

After defining the threat model, it is essential to review and
analyze the existing literature and related work pertinent to
the threat model. In this section, we review related work on
abnormal signaling attacks and detection, outlining relevant
research on abnormal signaling attacks and the application of
artificial intelligence and machine learning in anomaly sig-
naling defence. This review provides insights into the current
focus of existing research on abnormal signaling detection and
lays the groundwork for future research.

Abnormal Signaling Attack: B5G adopts an evolutionary
approach, integrating cloudification and service-oriented in a
single stride. Service orientation leverages flexible applica-
tion programming interfaces (APIs) and protocol interfaces,
enhancing the openness, flexibility, and scalability of 5G
networks [9]. However, it also inherits corresponding security
threats. The B5GC employs protocols, such as PFCP, TCP,
and HTTP2, widely used across the Internet, yet susceptible
to security vulnerabilities, such as four types of attack sig-
naling targeting the PFCP protocol [10] and the SIP IPSec
disable attack [11] occurring under the SIP protocol exploit
vulnerabilities in these protocols, allowing attackers to dis-
rupt everyday network communications by forging legitimate
signaling. Typical signaling attack methods can generally be
categorized into three forms: primarily, attackers may disguise
or conceal IP addresses, DNS names, and MAC addresses
to send abnormal signaling to the network, deceiving B5GC
NFs into carrying out malicious operations, such as falsifying
location data or manipulating authentication information [12].
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Second, attackers could exploit the most vulnerable radio
areas in the B5GC network by deploying fake base stations
to intercept communications and steal sensitive information
exchanged between parties [13]. Finally, and most critically,
attackers may attempt to incapacitate base stations or core
network systems by flooding them with a high volume of
anomalous or invalid signaling, causing the network to gen-
erate excessive signaling and rendering services unavailable
through Denial of Service (DoS) attacks that exhaust critical
resources on core network systems, such as the UPF [14].

Anomalous signaling attacks pose significant threats to
B5GC, potentially causing irreparable harm. These vulnerabil-
ities necessitate robust security measures to safeguard against
such attacks, ensuring the integrity and reliability of B5G
network operations amidst its transformative capabilities.

Abnormal Signaling Detection: Anomalous signaling detec-
tion is a technique aimed at monitoring and analyzing
signaling traffic within communication networks to identify
and detect abnormal or malicious signaling behaviors. The
process typically involves data collection, feature extraction,
anomaly detection, reporting, and response.

Most existing abnormal signaling detection methods in
networks primarily rely on traditional machine learning
techniques, utilizing mature mathematical theories and inter-
pretability to infer and classify unknown signaling, such
as support vector machines (SVMs) [15], decision trees
(DTs) [16], and random forests (RFs) [17], all of which have
notable shortcomings. SVM requires selecting appropriate
kernel functions for different data samples and may not per-
form well with large-scale data. DT are prone to overfitting and
have poor generalization performance. Although RF mitigate
overfitting by constructing multiple DT, they also increase
computational complexity. Another widely used method for
abnormal signaling detection is learning and detecting based
on the distinct distribution characteristics of different abnormal
signaling categories, such as autoencoders [18] and generative
adversarial networks (GANs) [19]. These methods rely on
the assumptions that there are significant differences between
abnormal signaling patterns and that abnormal samples are
more difficult to reconstruct than normal ones. Other pop-
ular methods include constructing long short-term memory
networks (LSTMs) [20] and convolutional neural networks
(CNNs) [21]. However, these models often face challenges,
such as insufficient feature extraction and inadequate data
processing.

Related work needs to be done to effectively research the
distribution characteristics of abnormal signaling in B5GC,
and the B5GC PFCP dataset has not been appropriately
utilized. A suitable anomalous signaling detection model must
be tailored specifically for B5G networks. Addressing this
research gap is critical for developing effective anomaly
detection systems that protect B5G networks from emerging
and sophisticated security threats. The inherent complex-
ity and diverse applications associated with B5G networks
present significant challenges that existing anomaly detection
methodologies may need to address adequately. Consequently,
there is a pressing need for a specialized model that can
effectively address these unique challenges. This article aims

to systematically investigate these challenges and propose
potential solutions, thereby advancing the field of network
security and contributing to the robustness of B5G network
infrastructures.

IV. METHODOLOGY

A. Preliminary

In the context of anomaly detection tasks in the core
network of mobile communication networks, identifying
anomalies typically involves various types of features, primar-
ily, including essential attributes, protocol attributes, and attack
behaviors. Primary attributes mainly refer to fundamental
information, such as destination address, source address, and
session duration for each sample within the mobile commu-
nication network. These features exhibit minimal differences
and high similarity during the recognition process. Protocol
attributes describe specific behaviors of each protocol within
the network and detailed data exchange models. Usually,
datasets are collected for normal and abnormal data concerning
specific protocols. Attack behaviors manifest as anomalous
characteristics when attacks are launched against particular
protocols. Most anomaly categories exhibit high variability in
protocol attributes and attack behaviors, making them rela-
tively easier to detect. Conversely, other anomaly categories
exhibit high similarity in features, posing more incredi-
ble difficulty for detection. Simultaneously, while collecting
abnormal information in mobile communication networks,
datasets become highly dimensional due to accumulating
numerous essential, protocol, and attack behavior attributes.
This high dimensionality impedes the intuitive analysis of the
distribution of these anomalies.

To address the challenges of imbalanced detection diffi-
culty and high dimensionality in anomaly detection within
mobile communication networks, the data is first subjected
to dimensionality reduction analysis in this article. Principal
components analysis (PCA) [22] is chosen as a commonly
used method for multidimensional data analysis. The process
of dimensionality reduction with PCA is as follows.

1) Assume the sample data x, the standardization process
for sample data involves the following formula:

z = (x− ux)

σx
(1)

where ux denotes the mean of each column in the
dataset, σx represents the standard deviation of each
column’s features, and z signifies the standardized data.

2) Using the formula

C = 1

n
zTz (2)

the covariance matrix C of data z is obtained. Performing
eigenvalue decomposition on the covariance matrix C
yields eigenvalues and eigenvectors. Select the top k
rows to form the matrix P.

3) Using the formula Y = P× z, obtain the k dimensional
principal components Y . In the process of dimensionality
reduction, the cumulative contribution rate of the prin-
cipal components is calculated, and the top k principal
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Fig. 2. Analysis and design diagram. In the core network, there are easily
identifiable and difficult-to-identify data samples. The technical approach of
this article is to handle these two types of anomalies with different detection
difficulties separately.

components that reach the set threshold are selected as
the basis for classification. The cumulative contribution
rate of the top k principal components is expressed as

h =
∑

5k
i=1λk

∑d
j=1 λj

(3)

where λk as the eigenvalue of the kth principal compo-
nent and d as the dimensionality of the original data.

After processing anomaly handling in network signaling
attacks through cumulative contribution rate acquisition and
PCA dimensionality reduction, it was observed that there are
N1 + N2 types of anomalies inherent in the attacks. Among
these, N2 types of anomalies are often misclassified into the
same category during classification due to the aggregation
of different category features and blurred boundary delin-
eations. This article defines these N2 types of anomalies
as nonsignificant. Conversely, N1 other types of anomalies
exhibit significant differences and clear boundary delineations
compared to the nonsignificant anomalies grouped. Both tra-
ditional methods and neural networks show promising results
in detecting these N1 + 1 types of anomalies. Therefore, this
article categorizes them as significant anomalies.

B. Functional Layered Anomaly Defense Network

Based on the analysis presented in preliminary, we identified
two distinct types of anomalous signaling in the B5G core
network: significant anomalies and nonsignificant anomalies.
This differentiation underscores the need for a detection model
capable of addressing the varying characteristics of anomalous
signaling. In the case of significant anomalies, the model
must be proficient in extracting and distinguishing critical
features with high accuracy. Conversely, for nonsignificant
anomalies, a model with heightened sensitivity to sample
proximity is required to detect subtle deviations. Therefore,
we propose a hierarchical detection model that can adapt
to the distinct distribution patterns of these two types of
anomalies, ensuring robust and accurate detection across the
spectrum of anomalous signaling. Given the above analysis,

we propose a detection mechanism tailored for both significant
and nonsignificant anomaly features, as shown in Fig. 2. This
mechanism is highly relevant for anomaly detection of N4
interface signaling in the B5G core network and provides
a reliable research framework for future studies on B5G
anomalous signaling detection.

Fig. 2 illustrates that different detection methods are
required for anomalies with distinct feature distributions to
enhance overall detection performance. For significant anoma-
lies, deep feature extraction is necessary to uncover intricate
patterns and neural networks can be employed as detection
models, given the real-time requirements of anomaly detection,
a lightweight neural network should be chosen. For non-
significant anomalies, the features tend to be similar, and the
decision boundaries are often ambiguous. Traditional machine
learning algorithms are better suited to capture the data
characteristics and achieve satisfactory classification results
for such high-similarity, low-dimensional data. Appropriate
machine learning algorithms can be selected for this purpose.

Specifically, there are N1 + 1 types of significant anomaly
samples and N2 types of nonsignificant anomaly samples
in the dataset. Given a set of training objects consisting
of m + p samples from both types of anomalies X =
{x1, x2, . . . , xm, xm+1, . . . , xm+p} with xi ∈ R

1×M , in which
χ = {x1, x2, . . . , xm} is significant anomaly sample and μ =
{xm+1, xm+2, . . . , xm+p} is nonsignificant anomaly sample. For
a given raw input data x, after feature extraction and trans-
formation by the upper-stage model fupper(·), a new feature
set is generated. This new feature set can be transformed into
predicted probabilities for each category through a softmax
function

(
Pu

1, . . . , Pu
N1 , Pu

N1+1
)
= Softmax

(
fupper(x)

)
. (4)

In the upper-stage model, it can obtain predicted probabili-
ties for each category of significant anomalies and determine
whether they are nonsignificant anomalies, when the probabil-
ity value Pu

N1+1 < ∀Pi
u(i = 1, 2 · · ·N1), the loss function at

the upper-stage is represented as

Loss1 = �1
(
(fupper(x)), yx

)
(5)

where �1 is a multiclass loss function and yi
u denotes the target

class of sample xi.
When the probability value Pu

N1+1 > ∀Pi
u(i = 1, 2 · · ·N1),

the raw input data x undergoes processing by the lower-stage
model flower(·) to obtain probabilities for sample categories
within nonsignificant anomalies

(
P1

1, P1
2, . . . , P1

N2
)
= Softmax (flower(x)). (6)

Therefore, the loss function of the lower-stage model is

Loss2 = �2
(
(flower(x)), yx

)
. (7)

Finally, after aggregating and combining the output proba-
bilities from the upper and lower stages, we obtain the final
classification probabilities N1 + N2 for the categories P =
(Pu

1, . . . , P1
N1+N2). It is important to note

⎧
⎨

⎩

(
Pu

1, Pu
2, . . . , Pu

N1
)
= 0 Pu

N1+1 > ∀Pi
u(i = 1, . . . , N1)

(
P1

1, P1
2, . . . , P1

N2
)
= 0 Pu

N1+1 < ∀Pi
u(i = 1, . . . , N1)

. (8)
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Fig. 3. Network architecture diagram of an FLAD. The data samples are directly separated for some significant anomalies by the upper-KAN model, while
the remaining nonsignificant anomalies can be further distinguished by the lower-KNN model.

Based on the loss functions of the upper and lower stages,
the overall loss function can be defined as follows:

Losstotal = Loss1 + Loss2

= �1
(
(fupper(x)), yx

)+ �2
(
(flower(x)), yx

)
. (9)

Based on the detection mechanism presented in Fig. 2,
our paper proposes an FLAD, as shown in Fig. 3. By
separating anomalies with different detection difficulties and
optimizing with relevant loss functions, the approach aims to
improve the classification performance of the algorithm. This
method effectively combines the detection of significant and
nonsignificant anomalies, better handling complex abnormal
scenarios in mobile communication network data. In the FLAD
model described in this article, the upper model fupper(·) is
constructed using the Kolmogorov–Arnold network (KAN). In
contrast, the lower model flower(·) adopts the traditional KNN
detection method.

1) Significant Anomaly Classification Based on KAN
Architecture: In the anomaly signaling data flow at the
N4 interface of the B5GC core network, significant fea-
tures exhibit apparent differences in the high-dimensional
information between anomaly classes. The neural network
model can efficiently learn and capture the deep features of the
signaling data, thereby improving classification and detection
accuracy. Given the real-time requirements of 5G anomaly
signaling detection, a lightweight network architecture should
be designed. Based on the above analysis, we select the
KAN proposed by Liu [23] as the upper-layer structure of
FLAD, as shown in Fig. 3. The KAN network eliminates
the dependence on a linear weight matrix by using learnable
functions instead of fixed activation functions. Additionally,
KAN significantly reduces the complexity and the number of
parameters required for precise modelling by focusing on opti-
mizing these 1-D functions rather than the entire multivariate
space.

By composing multiple univariate functions, KAN achieves
an effect similar to that of a multilayer perceptron (MLP).
While KAN features a fully connected structure similar to
an MLP, it differs because KAN employs learnable activation
functions at the edges rather than fixed activation functions
at the nodes, as in MLPs. A KAN model with L layers can

be represented as a nested composition of multiple KAN
layers

KAN(x) = (�L−1 ◦�L−2 ◦ · · · ◦�1 ◦�0)(x) (10)

where �i denotes the ith layer of the entire KAN network.
Each KAN layer has nin-dimensional inputs and nout-
dimensional outputs. The function � consists of nin × nout
learnable activation functions φ, and is given by the following
formula:

� = {
φq,p

}
, p = 1, 2, . . . , nin, q = 1, 2, .., nout. (11)

The computation results of the KAN model from layer k to
layer k + 1 can be represented in matrix form as follows:

xl+1 =

⎛

⎜
⎜
⎜
⎜
⎝

φl,1,1(·) φl,1,2(·) · · · φl,1,nl (·)
φl,2,1(·) φl,1,2(·) · · · φl,1,nl (·)

.

.

.
.
.
.

.

.

.

φl,nl+1,1(·) φl,nl+1,2(·) · · · φl,nl+1,nl (·)

⎞

⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
�l

xl (12)

where φl,i,j denotes the activation function between the ith
neuron in the lth layer and the jth neuron in the subsequent
layer.

In practice, a single-layer KAN model has limited expres-
sive power due to its few parameters and difficulty in capturing
complex patterns. We extended the single-layer KAN model
to a multilayered structure, as illustrated in (10). In the upper-
stage model, after feature extraction and transformation using
the KAN model, the training is optimized using a cross-
entropy loss function

Loss = −
N1+1∑

i=1

yu
ilog

(
Pu

i) (13)

where N1 + 1 represents the number of significant anomaly
categories, and yu is the one-hot encoding of the significant
anomaly category label. The position corresponding to the
encoded label y is set to 1, with all other positions set to 0.
Pu is the predicted probability from the upper stage.

By repeatedly optimizing the objective function, the model
can better capture the features of complex data, there by
improving classification accuracy and generalization ability.
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2) Nonsignificant Anomaly Classification Based on KNN
Algorithm: KAN has demonstrated high efficiency in detect-
ing significant anomaly features. However, when handling
nonsignificant anomalies, neighborhood relationships between
similar anomalous classes result in nonlinear features and
high similarity, which negatively impacts the classification
performance of the KAN network. To address this issue, we
propose a lower-level network model specifically designed to
handle anomalies in neighborhood relationships. This model
complements the KAN network to enhance the precision of
network anomaly signaling detection.

Nonsignificant anomalies typically exhibit sparse and
difficult-to-observe features and ambiguous boundaries, which
neural network methods may find challenging to address
effectively. Traditional machine learning algorithms, such as
K-nearest neighbor (KNN) [24], DT, and RF, have shown
promising results in nonlinear data with high similarity, mak-
ing them suitable for handling these types of problems. Since
similar anomalous samples exhibit neighborhood relationships,
KNN is particularly well-suited for this task. Therefore, we
construct a lower-level detection network based on the KNN
algorithm to improve anomaly detection performance.

In the lower stage of the FLAD model shown in Fig. 3,
the KNN model for anomaly classification involves three main
steps. First, the distance between the test sample and each
object in the training set is computed. Next, the K nearest
training objects to the test sample are identified. Finally, the
test sample is classified based on the predominant class among
these KNNs. Distances between objects in the training set are
generally measured using a standard metric to quantify the
similarity between the test and training samples. This distance
measurement considers the squared differences between each
feature value of the test and training samples. Then, it takes the
square root to combine these differences into a single distance
value, effectively applying the Euclidean distance formula.

At the lower-level stage, optimizing the KNN algorithm
focuses on selecting the value of k. During optimization, the
value of k is adjusted to achieve an optimal classification
result. For the original data X ∈ R1×M with N types of
nonsignificant anomalies, after applying (14), the probability
values of each type of nonsignificant anomaly can be obtained.
Among the most recent k values, the probability value C for
category P can be expressed as

P =
∑

i:xi∈Nk(X) D(X, Xi) · δ(yi, C)
∑

i:xi∈Nk(X) D(X, Xi)
(14)

where δ(yi, C) is an indicator function such that it takes the
value of 1 if yi equals category C, and 0 otherwise. D(X, Xi)

represents the distance metric between the data to be classified
and the training sample Xi. Nk(X) denotes the set of the nearest
neighbors of all samples.

By using (14), the probability values (P1
1, P1

2, . . . , P1
N2)

for each type of nonsignificant anomaly can be calculated at a
given value of k. The k values are optimized using the cross-
entropy loss function

Loss = −
N2∑

k=1

y1
klog

(
P1

k
)

(15)

where N2 represents the number of nonsignificant anomaly
categories, yl is the one-hot encoding of the nonsignificant
anomaly category label. The position corresponding to the
encoded label y is set to 1, with all other positions set to 0.
Pl is the predicted probability from the lower stage.

The optimal k value is determined by minimizing the loss
function. In the lower-level stage of the two-layer detection
algorithm illustrated in Fig. 3, the KNN algorithm continu-
ously optimizes the k value, considering the number of nearest
neighbor samples for classification, thereby avoiding potential
misclassification that may arise from a global model.

3) Training and Testing Process of Functional Layered
Anomaly Defense Algorithm: Algorithm 1 outlines the train-
ing and testing procedures of the functional layered anomaly
defence algorithm. The training set is divided into datasets for
significant and nonsignificant anomalies during the training
phase. Each model layer is trained on its respective feature
set, employing distributed training to allow each model to
focus on the characteristics of each anomaly type, thus
enhancing the model’s ability to fit the corresponding anomaly
type. These trained models are then loaded into the two-
layer detection algorithm for application during the testing
phase.

The test dataset is first classified by the upper-layer KAN
network in the testing phase. This upper-layer model identifies
significant anomalies within the test data and treats nonsignif-
icant ones as a single group. Samples identified as significant
anomalies are then passed to the lower-layer KNN model,
further refining the classification of nonsignificant anomalies.
The classification results from both layers are subsequently
consolidated to identify different anomaly categories across
the entire dataset comprehensively. By handling significant
and nonsignificant anomalies in separate layers, the algorithm
improves the accuracy of anomaly detection and classification,
thereby significantly enhancing the overall performance of
anomaly detection.

C. B5G Distributed Core Network Integrated Point-and-Area
Decentralized Federated Anomaly Detection Architecture

Conventional single-point core network defence mecha-
nisms often face challenges in promptly updating newly
discovered vulnerabilities across geographically dispersed peer
core networks. This limitation can lead to adjacent core
networks remaining vulnerable to the same anomaly x, poten-
tially resulting in successful attacks. To address this issue,
we propose a decentralized, federated anomalous signaling
protection architecture (B5GCASP) for core networks, as
illustrated in Fig. 1. In this architecture, when a node detects
a new anomaly, it updates its model weights to incorporate
the characteristics of the newly identified anomaly. These
optimized model weights are then shared with other nodes
within the network, facilitating an integrated point-to-surface
anomaly detection mechanism. This decentralized approach
accelerates the enhancement of detection capabilities across
multiple core networks and reduces the overall detection time
by enabling more rapid dissemination of anomaly related
information.
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Algorithm 1 FLAD Algorithm
Input: Train data: X = χ∪μ; Test data: T; Upper-layer Model

fupper(·): Mu(θu); Lower-layer Model flower(·): Ml(θl);
FLAD model: (Mu(θu)|Ml(θl)); Number of training itera-
tions: E;

Output: FLAD Model Test Results R :
{
R1, R2, · · · , RN

}

1: // Model training process
2: Initialize the parameters θu of the upper-layer model

Mu and the parameters θl of the lower-layer model Ml

3: for i = 1, ..., E do
4: X is divided into significant anomalies χ and nonsignif-

icant anomalies μ

5: Randomly sample M samples from the dataset χ to train
the parameters θu of the model Mu: θ ′u ← θu

6: Randomly sample M samples from the dataset μ to train
the parameters θ ′l of the model Ml: θ ′l ← θu

7: end for
8: // Model testing process
9: Load the trained parameters θ ′u and θ ′l into the FLAD

model: (MU(θ ′u) | Ml(θ
′
l )← (MU(θu) | Ml(θl)

10: Randomly sample N test data points {x1, x2, . . . , xn} from
T

11: for i = 1, ..., n do
12: Classification results through the upper layer of the

FLAD model fupper(·): Ri
u ← fupper(xi)

13: if Ri
u ∈ χ then

14: Update the results: Ri ← Ri
u

15: else
16: Classification results through the lower layer of the

FLAD model flower(·): Ri
l ← flower(xi).

17: Update the results: Ri ← Ri
l

18: end if
19: end for
20: return R

Assume that there are initially n independent FLAD models
within the core networks, with each core network having the
same model structure and weights. Core network i can be
represented as Mθi , where θi denotes the weight parameters
of model i. If core network i is the first to be attacked by
anomalous data x, it will undergo recovery and subsequently
train on dataset X, which includes the anomaly x. Let L(θi)

represent the loss of the new anomaly detection model during
the parameter update process of core network i. Then, the loss
L(θi) can be expressed as

Lθi = −(

N1+1∑

m=1

ym
u log

(
Pu

m)+
N2∑

k=1

yk
l log

(
Pl

k
)
) (16)

where N1 + 1 and N2 represent the number of significant
and nonsignificant anomalies, Pm

u and Pk
1 are the probability

values of the mth significant sample and the kth nonsignificant
sample. Respectively, ym

u and yk
1 denote the true labels of

the anomalous data. The updated model parameters can be
expressed as θ ′i

θ ′i = θi + ∇θi (17)

Algorithm 2 B5G Distributed Core Network Integrated
Point-and-Area Decentralized Federated Anomaly Detection
Architecture
Input: N core networks FLAD model M = {Mθ1 , ...Mθn};

Attacked core network i model Mθi ; Train datasets X =
{Train1, ..., Trainn}; The dataset used for training after
the recovery of core network Traini

attacked; Number of
iterations n_epochs;

Output: Each updated core network model after being
attacked {Mθ ′1 , . . . , Mθ ′n}

1: Before being subjected to anomalous signaling attacks.
2: Initialize the parameters of each core network’s FLAD

model {θ1, ..., θn}
3: for i = 1, ..., n_epochs do
4: Send the model weights to neighboring core networks

and update its own parameters: θ t+1 ← θ t

5: Each core network FLAD model calculates the loss
using eq. (9):L← eq(9)

6: end for
7: // After launching an anomaly signaling attack on the

core network i and obtaining Traini
attacked.

8: for i = 1, ..., n_epochs do
9: Using Traini

attacked, calculate the loss value using
eq. (16) Lθi

10: Update the parameters of core network model i: θ t+1
i ←

θ t
i +∇θi

11: end for
12: Send the trained model parameters a of core network i to

other core networks θ ′j = θ ′i (i 
= j)
13: return Updated model {Mθ ′1 , . . . , Mθ ′n}

∇θi ← Lθi . (18)

Based on the principles of decentralized federated learning
model updates [25], when the model weights of a core
network change, the updated weight information needs to
be communicated to other core networks. The remaining
n− 1 core networks need to update their model weights by
incorporating the gradient information from core network i.
Specifically, the core network model Mθ ′i needs to share its
updated weights θ ′i with other core networks Mθj (j 
= i). The
following formula can represent this process

θ ′j = θ ′i (i 
= j). (19)

Compared to traditional single-point core network defence
mechanisms, the decentralized, federated learning archi-
tecture proposed in this article establishes an integrated
point-to-surface anomaly signaling detection mechanism. This
architecture leverages decentralized, federated learning, ensur-
ing the efficient transmission of data weight characteristics
between edge core networks without central cloud network
involvement. In Algorithm 2 presents B5G distributed core
network integrated point-and-area decentralized federated
anomaly detection architecture (B5GCASP).
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TABLE I
COMPARISON TABLE OF OVERALL ANOMALY CLASSIFICATION

V. EXPERIMENT

A. Experimental Dataset Description

To validate the effectiveness of the hierarchical detection
algorithm for handling two specific types of imbalanced
anomalies in the core network, we utilized the PFCP dataset
as a crucial test basis. The PFCP dataset was collected by
Amponis [10] through attacks on the PFCP protocol under a
5G core network, specifically for intrusion detection purposes.
This dataset comprises anomalous and normal signaling for
four types of PFCP protocol attacks. The training set consists
of 2307 instances, while the test set includes 615 instances. To
address the imbalance in class distribution, random sampling
was employed during both training and testing phases to
ensure balanced representation across each class.

In the experiment, after performing feature dimensionality
reduction on the PFCP dataset, the cumulative contribution rate
of representing the original dataset remained above 85% when
reduced to two dimensions, as depicted in Fig. 4(a). This was
determined by computing the ratio of the number of principal
components to the cumulative variance contribution rate. In
the low-dimensional plane, distinct distributions of the four
types of anomalous signals and normal signals could be clearly
observed. As shown in Fig. 4(b), Class 1 (NORMAL), Class
2 (Mal_EST), and Class 3 (including Mal_DEL, Mal_MOD1,
and Mal_MOD2) exhibit clearly distinguishable boundaries,
defining them as significant anomalies in this study. Within
Class 3, the boundaries between Mal_DEL, Mal_MOD1, and
Mal_MOD2 are blurred, characterized by fewer relevant data
features and less straightforward observation, hence catego-
rized as nonsignificant anomalies.

B. Experimental Setup and Baseline Models

This experiment utilized a computer equipped with a
NVIDIA GeForce RTX 4060 graphics card and an Intel i7
12700K CPU. The experimental procedures were implemented
in Python and involved constructing model algorithms based
on the PyTorch framework. The PyTorch and CUDA versions
utilize GPU acceleration for training, which are 2.1.2 and
11.8, respectively. The proposed FLAD algorithm employs
four-layer KAN network structure, while the lower-stage KNN
model utilizes a hyperparameter k set to 25. The learning rate
for the FLAD model is configured at 0.01, with the Adam
optimizer used for parameter optimization.

FLAD algorithm was compared with various methods.
Among traditional machine learning approaches, we selected
KNN, DT, RF, and SVM as comparison benchmarks. For
neural network models, we chose MLP, CNN, KAN and the
recently popular Transformer for comparison. The descriptions
of these comparison methods are as follows.

1) KNN [26]: An unsupervised learning algorithm that
utilizes distance-based metrics to classify a sample or
predict its value by referencing its KNNs in the training
set, widely used in classification and regression tasks.

2) DT [4]: A supervised learning algorithm that employs
feature-based partitioning to recursively select the
optimal features for splitting data into subsets and
defining decision boundaries using specific thresholds,
resulting in a tree-structured model.

3) RF [27]: An ensemble learning method that combines
multiple independent DT, with the final output deter-
mined by majority voting for classification or averaging
for regression tasks.

4) SVM [28]: A supervised learning algorithm that uses
kernel functions to project data into a high-dimensional
space, enabling the identification of an optimal lin-
ear decision boundary by maximizing the margin
between classes for superior classification or regression
performance.

5) MLP [29]: A deep learning architecture consisting of
multiple fully connected layers, which transforms inputs
into outputs through nonlinear activation functions and
serves as a foundational model in neural network
research.

6) CNN [30]: A deep learning architecture extensively
employed in domains, such as image processing and
speech recognition. It leverages convolutional layers to
hierarchically extract local features from input data, fol-
lowed by fully connected layers to perform classification
tasks, thereby exhibiting substantial efficacy in anomaly
detection applications.

7) KAN [23]: A lightweight neural network architecture
derived from the Kolmogorov–Arnold representation
theorem, capable of expressing high-dimensional func-
tions as finite nested compositions of univariate
continuous functions, with decision boundaries effi-
ciently approximated using fully connected layers and
B-splines.

8) Transformer [31]: A deep learning model utilizing
self-attention mechanisms, characterized by an encoder–
decoder architecture, and renowned for its advanced
capabilities in global feature extraction and repre-
sentation, extensively applied in tasks, such as text
classification and anomaly detection.

C. Overall Anomaly Classification Comparison

First, we present a comprehensive overview highlighting
the advantages of the proposed approach. Table I displays
the performance of different models in terms of ACC, FPR,
and FI in the comparative overall abnormal classification of
the functionally layered network (FLAD). The FLAD model
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Fig. 4. Dimensionality reduction analysis: a) statistical calculation of the cumulative explained variance as the number of reduced dimensions increases and
b) distribution of dataset sample types when the principal components are reduced to 2. (a) Pca dimensionality reduction information loss. (b) Dataset 2-D
principal component analysis category relationship.

TABLE II
COMPARISON TABLE OF OVERALL ANOMALY CLASSIFICATION

achieves approximately 4% higher accuracy and F1 score
compared to the best results. Compared to traditional machine
learning methods, such as KNN, DT, and SVM, it improves
accuracy by around 4%. It also achieves an increase of
approximately 10% in accuracy compared to neural network
models, such as CNN, MLP, and KAN.

To highlight the advantages of using the hierarchical detec-
tion algorithm in handling two types of anomalies in the
dataset, precise statistical analysis was conducted on the results
of these models during the experimental process. Table II
shows that the FLAD model performs comparably well in
detecting significant anomalies MAL_EST and NORMAL, not
inferior to models like DT and RF. However, FLAD does
not exhibit superior performance in detecting MAL_DEL and
MAL_MOD1 anomalies. This is because FLAD misclassifies
both MAL_MOD1 and MAL_DEL as MAL_DEL anomalies,
a phenomenon also observed in SVM, CNN, and MLP models.
However, in terms of overall performance, FLAD demonstrates
the most robust performance across different categories of
anomalies, showing a balanced detection capability. Overall,
it achieves approximately 4% improvement compared to the
best-performing DT model. In order to better visualize the
detection performance of FLAD across different anomaly
categories, we have included Fig. 5, which provides a clear
representation of each category’s contribution to the total
detection samples. This visualization serves to further substan-
tiate the balanced detection capability of FLAD. Moreover,

based on the prediction outcomes for each class of detection
samples in Table II, confusion matrices for these models were
plotted to showcase the experimental model’s advantages.

Fig. 6 illustrates the confusion matrices for various models
over the 5GC PFCP dataset, where C1–C5 refer to NORMAL,
MAL_EST, MAL_DEL, MAL_MOD1, and Mal_MOD2,
respectively. Overall, the FLAD model introduced in this
research performs better than existing models when processing
datasets containing significant and nonsignificant anomaly
features. Specifically, the upper layer of the FLAD model
employs the KAN network architecture, achieving significant
performance enhancements of 10% and 60.05%, respectively,
over traditional KNN methods for handling C1 and C2 data
categories. The lower layer of the FLAD model leverages the
KNN algorithm, resulting in notable improvements of 38.8%
and 42.5% in processing C4 and C5 data categories compared
to neural network models, such as MLP, CNN, and KAN.
It is worth noting that although advanced neural network
models, including MLP, CNN, SVM, and Transformer, report
higher accuracy rates in the detection of C3 data, this elevated
accuracy is primarily attributed to their misclassification of all
nonsignificant anomalies as C3, thereby inflating the accuracy
of C3 data detection. This phenomenon further elucidates why
the FLAD model exhibits inferior performance to specific
neural network models in predicting C3 data, as it prioritizes
minimizing false positives to ensure the precision of anomaly
detection. Furthermore, compared with traditional machine
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Fig. 5. Contribution ratio of accuracy for each category in the overall anomaly
of the model.

learning approaches, such as RF, the FLAD model achieves
performance improvements of 15%, 6.55%, and 3.9% in
predicting C3–C5 data categories, respectively. Relative to
baseline DT models, the FLAD model also demonstrates
enhanced predictive capabilities, with performance increases
of 5%, 7.7%, and 7.5% across these three categories.

D. Upper Significant Anomaly Classification, Lower
Nonsignificant Anomaly Classification and Ablation Analysis

Fig. 7 illustrates the detection performance of significant
and nonsignificant anomalies across the different functional
layers of the network. Fig. 7(a) depicts the results of signif-
icant anomaly detection by various algorithms, highlighting
the contribution proportions of significant anomalies in each
category across different models. Both traditional machine
learning and neural networks were trained and tested sepa-
rately in this process. The results demonstrate that the KAN
model achieves outstanding performance, with an accuracy
of 98.7% enabled by multilevel feature extraction that cap-
tures subtle data features. Following closely are CNN and
MLP, achieving classification accuracies of 98.1% and 98.3%,
respectively. The KAN model excels in extracting features at
different layers within each network, enabling it to capture
anomaly patterns in the data from simple to complex and
from local to global perspectives. This analysis indicates that
the KAN model exhibits notable performance in classifying
significant anomalies, particularly in the higher functional
layers of the network.

Fig. 7(b) shows the results of different algorithms in detect-
ing nonsignificant anomalies and illustrates the contribution
proportions of nonsignificant anomalies in each category
across different models. The KNN model performs well in
nonsignificant anomaly classification, achieving an accuracy of
49.6%. It exhibits a distinct advantage in classifying nonsignif-
icant anomalies, particularly suitable for handling nonlinear
data and data with high similarity and insignificant features.
Following are traditional machine learning models, such as
DT and RF, with accuracies of 44.2% and 42.9%, respectively.
In contrast, neural network models show insufficient feature
significance in nonsignificant anomaly detection, resulting in
poor generalization and low accuracy (33.3%). From Fig. 7(b),
it is evident that nonsignificant anomalies exist in the detection

of core network signaling attacks, posing additional challenges
in detection.

As shown in Table III, the FLAD module employs the
lightweight network structure KAN as an upper-layer compo-
nent to learn and capture the features of salient anomalies. This
approach yields results comparable to those of the Transformer
model regarding overall performance. However, KAN exhibits
a notable advantage in the number of covariates, requiring
only 2.5% of the covariates needed by the Transformer model.
Specifically, after fixing KNN as the lower module, the other
modules selected for comparison in this study achieved the
best results of 0.688, 0.919, and 0.678 in terms of accuracy,
false positive rate (FPR), and F1 score, respectively, when
either KAN or Transformer is used. However, the Transformer
model has approximately 40 times more parameters than
KAN. Compared to alternative candidate modules, such as
DT, RF, and SVMs, KAN demonstrates a 3% improvement
in accuracy and F1 score. Compared to neural networks like
MLP and CNN, KAN shows a 2% improvement in accuracy
and F1 score. The results of the comparison experiments on
the selected different upper-layer modules indicate that both
the KAN network and the Transformer model are effective in
perceptual recognition when dealing with salient anomaly fea-
tures. However, as shown in Table III, the Transformer model
is better suited for handling large-scale, high-dimensional,
and complex information, albeit with significantly larger
model parameters. Given the real-time requirements of 5G
anomaly signalling detection, this article ultimately selects the
lightweight network structure KAN, which provides sufficient
expressive power without increasing model complexity and
exhibits superior performance outcomes with lower parameter
counts.

Table IV shows the application of the FLAD module using
the conventional KNN approach as an underlying component
for addressing nonsignificant anomalies with high nonlinearity
and similarity. Applying the KNN method as the lower
module yields the optimal accuracy, FPR, and F1 score results.
Compared to the DT with the highest overall performance,
there is a 3% improvement in accuracy.

Additionally, in terms of the number of parameters, KNN is
comparable to SVMs, RF, and DT, and it offers the advantage
of a lower number of parameters and superior accuracy
when utilizing traditional methods. The experimental results
demonstrate that traditional machine learning algorithms can
address the issue of nonsignificant anomalies arising from
near-neighbor relationships between similar anomaly classes
characterized by highly nonlinear and similar features. After
comparing various modules, this article has validated the
appropriateness of selecting KNN as the lower module.
KNN demonstrates superior performance in handling similar
anomaly samples with a certain degree of near-neighbor
relationships compared to traditional methods, such as DT and
RF.

E. B5G Distributed Core Network Integrated Point-and-Area
Decentralized Federated Anomaly Detection Architecture

Fig. 8 compares the proposed decentralized B5GC anomaly
signaling protection (B5GCASP) framework and traditional
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Fig. 6. Confusion matrices of various models on the 5GC PFCP dataset are shown, from which it can be observed that traditional machine learning methods
can effectively separate the nonsignificant anomalies, such as MAL_DEL (C3), MAL_MOD1 (C4), and MAL_MOD2 (C5). Neural network models are able
to distinguish between NORMAL (C1) and EST_EST (C2). Our FLAD model combines the different strengths of these two types of models, aiming to
maximize the separation of significant and nonsignificant anomalies. (a) KNN confusion matrix. (b) DT confusion matrix. (c) RF confusion matrix. (d) SVM
confusion matrix. (e) CNN confusion matrix. (f) MLP confusion matrix. (g) KAN confusion matrix. (h) Transformer confusion matrix. (i) FLAD confusion
matrix.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS—UPPER LAYER ANALYSIS

single-point core network anomaly detection in terms of time
and detection capability on both small-scale IID datasets and
large-scale extended IID datasets. The large-scale extended IID

dataset is larger and more complex, allowing us to evaluate
the performance of our proposed method under different data
complexities.
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Fig. 7. Upper and lower layer algorithm analysis chart: a) in the upper layer, algorithms like KAN and CNN perform excellently in detecting significant
anomalies and b) in the lower layer, the KNN algorithm performs well in detecting nonsignificant anomalies. (a) Accuracy contribution for each category of
upper level. (b) Accuracy contribution for each category of Lower level.

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS—LOWER LAYER ANALYSIS

Fig. 8. Comparison of the B5GCASP with traditional single-point core
network anomaly detection in terms of time and detection capability.

During the experiment, as the detection time progressed, the
accuracy of all three curves showed an upward trend, even-
tually reaching a peak and gradually stabilizing. Notably, the
detection accuracy of B5GCASP was consistently higher than
that of single-point defence at various time points. Specifically,
by leveraging decentralized federated learning principles and
sharing the same anomaly weights among peer core networks,
B5GCASP (represented by the orange and red curves) reached
points A and B at times t1 and t2 with an accuracy of 68.8%.
The traditional single-point defence mechanism (blue curve)
also reached the same accuracy of 68.8% at time t3 (point

Fig. 9. Convergence comparison graph of the B5GCASP model on large-
scale IID and non-IID datasets.

C). However, points A and B were reached earlier than point
C, showing that B5GCASP can achieve the same detection
performance as traditional single-point methods but in a
shorter time. Furthermore, B5GCASP can detect anomalous
signaling faster than single-point defence in both small-scale
and large-scale extended datasets.

To validate the generalization capability of the proposed
B5GCASP model, we conducted experiments using large-
scale independent and identically distributed (IID) and non-IID
datasets, as shown in Fig. 9. The experimental results show
that under the IID data condition (red curve), where the data
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from each client follows IID characteristic, the accuracy of
B5GCASP rapidly increases and reaches a high-level stable
state relatively early. In contrast, under the non-IID data
distribution (green curve), B5GCASP requires more iterations
to achieve a stable state, and the convergence process exhibits
more significant fluctuations, resulting in a longer time to
reach a stable accuracy. Specifically, the B5GCASP model
achieves its highest accuracy of 80.0% at iteration t1 on IID
data and reaches a peak accuracy of 78.5% at iteration t2
on non-IID data. Although there is a slight difference in
final accuracy between the two data distributions (a reduction
of only 1.5%), these results show that B5GCASP maintains
strong generalization and robustness when handling data with
different distributions, sustaining high-performance levels in
complex real-world applications. Overall, the experimental
results further show that B5GCASP performs well under
ideal data distribution conditions and effectively maintains
its performance in the face of data heterogeneity challenges,
demonstrating excellent adaptability and generalization capa-
bilities.

VI. CONCLUSION

To address the challenge of effectively detecting anomalous
signaling attacks in the user plane of B5G networks, this arti-
cle introduced a decentralized, federated abnormal signaling
protection architecture based on functionally layered networks
(B5GCASP). In addition, we proposed an FLAD model to
identify both data anomalies efficiently. Extensive experiments
on the PFCP dataset demonstrate that the FLAD model
outperforms the existing detection methods in identifying data
features under the N4 interface, showcasing its accuracy, FPR,
and F-score effectiveness.

In the future, we plan to evaluate how real-time (time series)
feature extraction impacts the state of the edge core network
control plane. For large-scale datasets, our goal is to optimize
the balance between accuracy and processing time while
maintaining a unified level of point-to-surface protection.
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