
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017 3161

Approximation Algorithms for Charging Reward
Maximization in Rechargeable Sensor

Networks via a Mobile Charger
Weifa Liang, Senior Member, IEEE, Zichuan Xu, Member, IEEE, Wenzheng Xu, Member, IEEE,

Jiugen Shi, Guoqiang Mao, Senior Member, IEEE, and Sajal K. Das, Fellow, IEEE

Abstract— Wireless energy transfer has emerged as a promis-
ing technology for wireless sensor networks to power sensors with
controllable yet perpetual energy. In this paper, we study sensor
energy replenishment by employing a mobile charger (charging
vehicle) to charge sensors wirelessly in a rechargeable sensor
network, so that the sum of charging rewards collected from all
charged sensors by the mobile charger per tour is maximized,
subject to the energy capacity of the mobile charger, where the
amount of reward received from a charged sensor is proportional
to the amount of energy charged to the sensor. The energy of the
mobile charger will be spent on both its mechanical movement
and sensor charging. We first show that this problem is NP-
hard. We then propose approximation algorithms with constant
approximation ratios under two different settings: one is that a
sensor will be charged to its full energy capacity if it is charged;
another is that a sensor can be charged multiple times per tour
but the total amount of energy charged is no more than its energy
demand prior to the tour. We finally evaluate the performance
of the proposed algorithms through experimental simulations.
The simulation results demonstrate that the proposed algorithms
are very promising, and the solutions obtained are fractional
of the optimum. To the best of our knowledge, the proposed
algorithms are the very first approximation algorithms with guar-
anteed approximation ratios for the mobile charger scheduling
in a rechargeable sensor network under the energy capacity
constraint on the mobile charger.

Index Terms— Rechargeable wireless sensor networks, wireless
energy transfer, mobile chargers, approximation algorithms, com-
binatorial optimization problem, sensor energy replenishments.
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I. INTRODUCTION

W IRELESS Sensor Networks (WSNs) have shown great
potential in various applications, from military surveil-

lance to environmental monitoring, to disaster reliefs, and to
home automation [10], [26], [29]. Energy efficiency is critical
for a WSN to achieve a long lifetime. Currently, most sensor
nodes in a WSN are powered by batteries. The batteries add
significant size, cost to the system, and may also be hazardous
to the environment. One solution to this is to allow each sensor
scavenge energy from surrounding energy sources such as
solar, vibration, temperature variations, wind, and biochemical
processes [7], [14], [18]. The drawback of this approach, how-
ever, lies in its high reliance on unpredictable environmental
conditions [13]. For example, solar-powered nodes may fail
to work if there is insufficient sunshine. Rechargeable Sensor
Networks – consisting of sensors with rechargeable batteries
and a mobile charger (or mobile charging vehicle or drone) to
charge the sensors – is emerging as a promising solution to
prolong their network lifetimes [4], [17], [20], [25], [27].

Most existing studies on rechargeable sensor networks
assumed that each mobile charging vehicle (or mobile charger)
has sufficient energy to charge all sensors in a WSN [17], [22],
[24], [30]. However, in a large sensor network, the amount
of energy carried by a mobile charger may not be enough
to charge all nearly-expired sensors in a single tour when
there are a large portion of sensors to be charged. Existing
approaches thus are not applicable to rechargeable sensor
networks with energy-limited mobile charging vehicles. New
algorithms for scheduling the charging tours of a mobile
charger must be devised, to determine which sensors should
be charged if not all of sensors can be charged during the
charging tour of the mobile charger [11].

In this paper we study a fundamental sensor charging
problem. Given a set of energy-critical sensors and the energy
capacity of the mobile charger, how to determine which
sensors should be charged? and how to fairly charge the
sensors through finding a charging tour for the mobile charger?
where charging fairness means that a sensor under a critical
energy level should be charged first compared with another
sensor with plenty of residual energy. In this paper we will
address the mentioned challenges by devising approximation
algorithms with provable approximation ratios for the charging
reward maximization problems.
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A. Novelty of This Work

The novelty of our work lies in three aspects. First, unlike
most existing studies in literature that assumed either all
sensors can be charged by the mobile charger per tour without
any energy capacity constraint on the mobile charger, or each
sensor can be charged to its full energy capacity without taking
into account its residual energy, we are the first to formulate
novel charging reward maximization problems in rechargeable
sensor networks, where more prizes can be collected by
charging a sensor with less residual energy than that by
charging a sensor with much residual energy, and a sensor can
be charged multiple times per tour (due to other energy-critical
sensors to be charged during the course), while it may not be
charged to its full energy capacity at each time. Second, this
work builds a connection between the prize collection and the
urgency of sensor charging. It assigns a node a certain amount
of prizes to model its urgency to be charged before its energy
depletion, i.e., the amount of prizes assigned to a sensor is
inversely proportional to its residual energy. Finally, existing
studies of traditional reward maximization problems [1], [2]
in an undirected graph assumed that the prize at each node
and the length of each edge are two independent metrics,
i.e., maximizing the reward collected from the nodes while
bounding the length of a traveling path by a given value. In this
paper, both the prize at each node and the length of each edge
are the functions of energy, and they are closely related to each
other. If more energy is spent on the travelling path, then less
energy will be available for sensor charging, thereby resulting
in less prizes collected from the charged sensors, or vice versa.

To the best of our knowledge, this is the first approximation
algorithm with a constant approximation ratio for scheduling a
mobile charger to charge a set of sensors to maximize the sum
of collected prizes (or to maximize the survival lifetimes of
these sensors), under the energy capacity constraint imposed
on the mobile charger.

B. Contributions

The main contributions of this paper are as follows. We first
formulate novel optimization problems of using a mobile
charger to wirelessly charge a set of sensors under the energy
capacity constraint on the mobile charger, with an objective
of maximizing the total prize collected from all charged
sensors per tour, we term the problems as the fully and
partially charging reward maximization problems respectively,
depending on whether each sensor can be charged multiple
times by the mobile charger per its tour. We then show that
the problems are NP-hard, and instead devise approximation
algorithms with constant approximation ratios for them. A key
technique in the design of approximation algorithms is a non-
trivial reduction that reduces each of the problems into an
orienteering problem in an auxiliary, undirected graph, and
a solution to the latter will return a solution to the former,
through a series of transformations. In addition to providing
analytical solutions with provably performance guarantees,
we also conduct empirical evaluation on the performance of
the proposed approximation algorithms through experimental
simulations. Simulation results demonstrate that the proposed

algorithms significantly outperform other heuristics, and the
solutions delivered by the proposed algorithms are fractional
of the optimum.

The remainder of the paper is organized as follows.
Section II reviews related studies. Section III introduces the
system model, notations and notions, and problem definitions.
Section IV shows that the problem of concern is NP-hard.
Sections V and VI devise constant approximation algorithms
for the fully charging reward maximization problem and
partially charging reward maximization problem, respectively.
Section VII evaluates the performance of the proposed algo-
rithms, and Section VIII concludes the paper.

II. RELATED WORK

With the advance in the wireless energy transfer technology
based on strongly magnetic resonances [8], wireless energy
replenishments have been adopted for the lifetime prolongation
of WSNs in literature [9], [17], [21], [30]. Although the
adoption of this technology is still in its infancy stage, several
studies have been conducted recently. Most of these studies
made use of a mobile charger to replenish energy to sensors
and to collect sensing data from the charging sensors simulta-
neously [9], [17], [19], [21], [30]. For example, Shi et al. [17]
and Xie et al. [21] conducted a theoretical study on the
efficient usage of the wireless charging technique for WSNs,
by employing a wireless charging vehicle to periodically
charge sensors such that the network can operate perpetually.
Zhao et al. [30] proposed a joint design of energy replen-
ishment and data gathering by exploiting sink mobility, and
provided an adaptive solution that jointly selects the sensors
to be charged and finds an optimal data gathering scheme
such that the network utility can be maximized. Li et al. [9]
argued that the mentioned charging schemes so far only
passively replenish sensors that are deficient in energy supply,
and cannot fully leverage the strength of wireless energy
transfer technology. They instead proposed a ‘charging-aware’
routing protocol (J-RoC) that incorporates dynamic energy
consumption rates of sensors into the design of data routing
protocols. Although this schema can pro-actively guide routing
activities and charge energy to sensors, this makes the design
and management of routing protocols more complicated. For
example, the deployed routing protocols in a sensor network
sometimes are required to be updated periodically due to the
security concern of sensing data.

In contrast, several recent works studied passive energy
replenishments to sensors. For example, Xu et al. [22]
considered the problem of scheduling K mobile chargers
to replenish a set of sensors such that the length of the
longest charging tour among the K chargers is minimized,
for which they proposed constant approximation algorithms.
Liang et al. [11], [12] considered an optimization problem of
minimizing the number of mobile chargers to charge a set
of sensors, assuming that the energy capacity of each mobile
charger is limited. Ren et al. [15] provided a novel charging
paradigm and proposed efficient sensor charging algorithms,
considering the requirements of dynamic sensing and transmis-
sion behaviors of sensors. Ye and Liang [28] considered sensor
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Fig. 1. A rechargeable sensor network.

charging with stringent charging deadlines, by formulating
the problem as a charging utility maximization problem.
He et al. [5] examined a mobile charging problem, using a
Nearest-Job-Next with preemption, and provided analytical
results on the number of sensor charging requests served and
the charging latency at each charged sensor, assuming that sen-
sor charging request rates follow a Poisson distribution. Their
solution however cannot guarantee all sensors to be charged
prior to their energy depletion. Given a set of to-be-charged
sensors with different residual lifetimes, they also provided
an adaptive algorithm to schedule a mobile charger to charge
a proportion of the sensors before their energy depletions,
with the objective to maximize the total amount of energy
charged to sensors minus the total traveling energy cost of the
charger [20]. In addition, Xu et al. [23] argued that it may
take a long time to charge a sensor to its full energy capacity,
instead they aim to minimize the depletion period of each
sensor by charging each sensor with an amount of energy to
its ’satisfied’ energy level. Thus, a mobile charger can charge
as many sensors as possible.

In the same spirit of the study in [23], we here assume that a
sensor can be partially charged to a certain energy level and the
sensor can be charged multiple times per charging tour. Also,
a sensor with less residual energy should be urgently charged
compared with a sensor with plenty of residual energy. We aim
to find a charging tour for a mobile charger such that the total
reward collected from all charged sensors on its closed tour is
maximized while the total energy consumption on the tour is
upper bounded by the energy capacity of the mobile charger.

III. PRELIMINARIES

In this section we first introduce the system model, notations
and notions, and then precisely define the problems.

A. System Model

We consider a large wireless sensor network Gs = (Vs, Es)
deployed in a monitoring region for environmental monitor-
ing or event detection, where Vs is a set of sensors and a
base station. There is an edge in Es between each pair of
sensors or a sensor and the base station if they are within
the transmission range of each other. Each sensor v ∈ Vs

sends its sensing data or requests to the base station via
multi-hop relays. Also, each sensor v ∈ Vs is powered by a
rechargeable battery with energy capacity Bv , and it consumes
energy when performing sensing, data processing, and data
transmissions and receptions. Each sensor can be charged by
a wireless mobile charger (MC) if needed. Without loss of
generality, we assume that there is sufficient energy supply
to the base station. Fig. 1 illustrates a wireless rechargeable
sensor network.

To maintain the long-term operation of Gs, its sensors will
be charged at certain time points by a mobile charger which is
located at a depot r. To this end, sensors in Gs will send their
charging requests to the base station, and the mobile charger
will be scheduled to respond the charging requests. Assume
that the mobile charger has a full energy capacity IE that
can be used for charging a nearby sensor (e.g., 2.6 meters
within the location of the mobile charger [6]) with a fixed
charging rate μ, and for its mechanical movement at a constant
speed s. We further assume that the energy consumption rate
of the mobile charger per unit length is ξ when it travels
at a constant speed s. The mobile charger will start from
depot r when performing charging duties and return to the
depot after finishing its charging tour to recharge itself for the
next charging tour. Since the energy capacity of the mobile
charger is limited, it will consume energy on its own travel
and sensor charging during a charging tour, its total energy
consumption thus is upper bounded by its energy capacity IE.

B. Charging Tours and Charging Rewards

Sensors in Gs can send their charging requests to the base
station, it is the base station to schedule the mobile charger to
charge these sensors. A sensor will issue a charging request
to the base station when its residual energy is below a given
threshold. The base station will respond to sensor charging
requests periodically. That is, if the mobile charger is on
its charging tour at the moment, all requests received at the
base station during this period will be considered in the next
charging tour. We assume that there is a server deployed at the
base station, the next charging tour of the mobile charger will
be delivered by running the designed scheduling algorithm on
the server, and the base station dispatches the mobile charger
to charge the requested sensors.

Denote by G = (V, E; π0, l
′) a weighted undirected graph

with a distance function on its edges l′ : E �→ R+, and a
prize or reward on its nodes π0 : V �→ R+. Let π0(v) be the
prize at node v, and r be a special node called the root or the
depot of the mobile charger. For a path Pu,v in G from node u
to node v, let l′(Pu,v) be the length of path P , i.e., l′(Pu,v) =∑

e∈Pu,v
l′(e), where l′(e) is the length of edge e.

Let Vc ⊆ Vs be the set of sensors that send their charging
requests to the base station. We assume that a charging request
from a sensor v is expressed by a triplet (idv, REv, R(v)),
where idv is the sensor ID, REv is the residual energy of
v, and R(v) is the charging request time of v. Denote by
Gc = (Vc, Ec; π0, l

′) the induced metric graph by the nodes
in Vc of to-be-charged where π0(v) is the amount of energy
charged to sensor v with 0 ≤ π0(v) ≤ Bv−REv. Let n = |Vc|.
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A mobile charger that initially stays at a depot r and will
return to the depot after finishing its charging tour, we term
such a charging tour as a closed tour. The mobile charger is
powered by batteries with limited capacity IE. The amount of
energy spent by the charger on both its travelling and sensor
charging in each closed tour should be no more than its energy
capacity IE.

C. Problem Definitions
We first define the charging utility maximization problem

with travelling distance constraint. Given an undirected metric
graph Gc = (Vc, Ec; π, l) where Vc is the set of sensors
requested to be charged (Vc ⊆ Vs) with l : Ec �→ Z+, assume
that there is a mobile charger located at a depot r ∈ Vc with
the total traveling distance being bounded by an integer L.
Associated with each sensor v ∈ Vc, there is a positive integer
prize 1 ≤ π (v) ≤ n2 to model the gain by charging the sensor
at a tour of the mobile charger. In other words, a sensor with
less residual energy will have a larger prize as it needs to-
be-charged urgently and will be charged with more energy.
The problem is to find a closed tour C for the mobile charger
such that the sum of the prizes collected from the sensors in
the closed tour C,

∑
v∈C π (v), is maximized, while the total

traveling distance of the mobile charger, l(C) is no greater
than L, i.e.,

∑
e∈C l(e) ≤ L.

Notice that the charging utility maximization problem is a
subproblem of the two optimization problems in this paper
that are defined as Definition 1 and Definition 2, respectively.

Definition 1: Given a sensor network Gs = (Vs, Es) and
a subset Vc of sensors requested to be charged (Vc ⊆ Vs),
assume that there is a mobile charger at deport r with energy
capacity IE that will be used for its traveling and sensor
charging, the fully charging reward maximization problem in
Gs is to find a closed tour C for the mobile charger such that
the sum of prizes collected from all charged sensors in C,∑

v∈C π (v), is maximized, subject to that the total amount
of energy consumed on sensor charging and the traveling of
the mobile charger is no greater than its energy capacity IE,
i.e.,

∑
v∈C(Bv −REv)+

∑
e∈C l′(e) · ξ ≤ IE, assuming that

each sensor in C will be charged to its full energy capacity,
where the prize assigned to a sensor is proportional to the
amount of energy it will be charged, or inversely proportional
to the residual energy of the sensor, and ξ is the amount of
energy consumption of traveling unit length by the mobile
charger.

In the problem definition 1, we assume that once a sensor
is charged by the mobile charger, it will be charged to its full
energy capacity. In practice, due to the charging duration and
the total energy capacity constraint on the mobile charger, it is
highly desirable that the mobile charger can charge as many
lifetime-critical sensors as possible in order to minimize the
number of dead sensors or shorten their expiration periods per
tour. Thus, a sensor can be charged to a certain level of energy
at each time, and can be charged multiple times by the mobile
charger per tour. We then define a generalized sensor charging
optimization problem as follows.

Definition 2: Given a sensor network Gs = (Vs, Es) and
a subset Vc of sensors requested to be charged (Vc ⊆ Vs),

assume that there is a mobile charger at depot r with energy
capacity IE that will be used for its traveling and sensor
charging, the partially charging reward maximization problem
in Gs is to find a closed tour C for the mobile charger such
that the sum of prizes collected from all charged sensors in C,∑

v∈C π (v), is maximized, subject to that the total amount
of energy consumed on sensor charging and traveling is no
more than its energy capacity IE, assuming that a sensor can
be partially energy charged at each time and can be charged
multiple times per tour. However, the total amount of energy
charged to a sensor by the mobile charger per tour is no greater
than the energy demand of the sensor.

Notice that every sensor in the closed tour must be fully
charged in the problem Definition 1. In contrast, every sen-
sor in the problem Definition 2 is allowed to be partially
charged each time, and it can be multiple charged per tour.
Thus, the mobile charger can charge more energy-critical
sensors (i.e., can collect more prizes) during one charging tour.

D. Approximation Algorithm

We say an algorithm for a maximization optimization
problem is an α-approximation algorithm if the ratio of the
approximate solution to the optimal solution is no less than 1

α ,
where α is a constant with α ≥ 1.

IV. NP-HARDNESS

In this section we show that the decision version of the
fully charging reward maximization problem in a wireless
rechargeable sensor network is NP-hard, so is the partially
charging reward maximization problem, since the former is a
special case of the latter. We thus only show that the fully
charging reward maximization problem is NP-hard.

Theorem 1: The decision version of the fully charging
reward maximization problem in Gs = (Vs, Es) with the set
Vc (Vc ⊆ Vs) of sensors to be charged is NP-hard.

Proof: The proof is contained in the Supplementary
Material. �

V. APPROXIMATION ALGORITHM FOR THE FULLY

CHARGING REWARD MAXIMIZATION PROBLEM

In this section we deal with the fully charging reward maxi-
mization problem under the total energy capacity constraint on
the mobile charger. We approach this problem through a novel
reduction by reducing it to the charging utility maximization
problem with travelling distance constraint in another auxiliary
graph G′′ = (V ′, E′; π, l) with π : V ′ �→ Z≥0 and l :
E′ �→ Z≥0. We first devise an efficient solution to the
charging utility maximization problem with travelling distance
constraint. We then elaborate on the non-trivial reduction.
A solution to the latter in turn will return a feasible solution
to the former.

A. Approximation Algorithm for the Charging Utility
Maximization Problem

We start with an approximation algorithm for the orienteer-
ing problem [1]. We then devise an approximation algorithm
for the charging utility maximization problem, by reducing it
to the orienteering problem, and a feasible solution to the latter
then returns a feasible solution to the former.
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Given an undirected graph G = (V, E; π, l) with π : V �→
Z+ and l : E �→ Z+, a source node s ∈ V , a destination
t ∈ V , and a non-negative integer L > 0, the orienteering
problem in G is to find a path Ps,t from node s to node t
such that the total reward collected from the nodes in Ps,t,∑

v∈Ps,t
π (v), is maximized, while the length

∑
e∈Ps,t

l(e)
of path Ps,t is no greater than L, i.e.,

∑
e∈Ps,t

l(e) ≤ L.
The mentioned orienteering problem is NP-hard, and there

is an approximation algorithm with an approximation ratio
of 3 for it due to Bansal et al. [1], which is an improvement of
the result in [2] if the edge weights in G abide by the triangle
inequality. Denote by Tori(|V |, |E|) the time complexity of
their approximation algorithm for the orienteering problem in
a graph G(V, E) with |V | nodes and |E| edges in the rest of
this paper.

We now study the charging utility maximization problem
with travelling length constraint L, which is the key ingredi-
ent in the development of approximation algorithms for the
fully charging reward maximization problem under the energy
capacity constraint IE on the mobile charger. We show how
to reduce the charging utility maximization problem into the
orienteering problem, and an approximate solution to the latter
will return an approximate solution to the former. Denote by
Gc = (Vc, Ec; π0, l

′) a metric graph induced by the set Vc of
sensors to be charged with π0 : Vc �→ R+ and l′ : Ec �→ R+,
we assume that π0(v) = Bv−REv for each v ∈ Vc. We further
assume that the depot r of the mobile charger is in Vc for the
sake of convenience.

Without loss of generality, we adopt the similar scaling
approach as in [1] and [2]. That is, we assume that prizes at
nodes in Gc(Vc, Ec) are integers in the range {1, 2, . . . , n2} -
this allows us to “guess” the reward collected by the optimal
solution by trying out all integer values less than n3. We can
make this assumption by scaling the prizes down such that
the maximum reward is exactly n2, this guarantees that the
optimal solution gets at least n2 reward. We then round the
prize value of each node down to a nearest integer, losing an
additive amount of at most n in total, which is a negligible
multiplicative factor. Since the new reward obtained by the
optimal solution is at least n2, we only lose a factor of at
most 2 in approximation.

The idea behind the proposed algorithm is to treat the depot
r as two virtual nodes r and r′, and if there is any edge
incident to node r there is an edge incident to node r′ too.
We assume that the resulting graph is still Gc after adding
node r′ and its incident edges. We then convert the amount of
energy charged to a sensor into a prize assigned to the node.
The problem then becomes finding a path from s (= r) to
t (= r′) in Gc such that the total reward collected from the
nodes in the path is maximized, while the length of the path
is no greater than L. The detailed algorithm for the charging
utilization maximization problem is given in Algorithm 1.

B. An Approximation Algorithm for the Fully Charging
Reward Maximization Problem

We deal with the fully charging reward maximiza-
tion problem by reducing it to the charging utility max-
imization problem, and an approximate solution to the

Algorithm 1 finding a closed tour C in Gc rooted at r with
a total length of the mobile charger L for the charging utility
maximization problem

Input: An undirected metric graph Gc = (Vc, Ec; l), a depot
r ∈ Vc and its virtual copy r′ ∈ Vc, l : Ec �→ Z+,
a given integer L ∈ Z+, assume that each sensor v ∈ Vc

is expressed as (idv, REv, 0). Let Δmax = max{Bv −
REv | v ∈ Vc} and Δmin = min{Bv −REv | v ∈ Vc} be
the maximum and minimum amounts of energy charged to
the sensors in Vc, assuming that Δmin ≥ Δmax/n2 with
|Vc| = n.

Output: A closed tour C = Pr,r′ including the source node r
so that the award collected from all charged nodes in Pr,r′

is maximized, while the length of the closed tour C by the
mobile charger is no greater than L.

1: δ ← Δmax

n2 ; /* convert the amount of energy charged to
each sensor into an integer prize */

2: Calculate the prize π (v) of each node v ∈ Vc, if REv 	= 0,
then π(v) ← 
 (Bv−REv)

δ �; otherwise, π(v) ← M , where
M is the given maximum prize that can be collected from
a sensor, which is a value no more than n2, e.g., M = n2;
/* a node with a large prize implies less residual energy
left and more energy will be charged to it */

3: Find a maximum utility path Pr,r′ in G such that the sum
of prizes of the nodes in Pr,r′ is maximized, while the
length of the path Pr,r′ is no greater than L, by applying
the approximation algorithm for the orienteering problem
due to Bansal et al. [1];

4: return path Pr,r′ , and the total utility of prize in Pr,r′ ,∑
v∈Pr,r′

π (v).

latter in turn returns an approximate solution to the
former.

We first construct an auxiliary undirected, weighted graph
G′ = (V ′, E′; π, w) from Gc = (Vc, Ec; π0, l

′) as follows.
For each node v ∈ Vc in Gc, three corresponding nodes v0, v1

and v2 are added to V ′, and two edges (v1, v0) and (v0, v2)
are added to E′. Each of these two edges is assigned a weight
Bv−REv

2 , which is half the amount of energy needed to charge
node v to its full energy capacity if sensor v will be charged
in the current tour of the mobile charger. The prize on v0

is π (v0) = 
Bv−REv

δ � while π(v1) = π(v2) = 0, where
Δmin = minv∈Vc{Bv − REv}, Δmax = maxv∈Vc{Bv −
REv}, and δ = Δmax

n2 . In our discussion we assume that
Δmin ≥ Δmax/n2. For the depot r of the mobile charger
which is a special node, assign π(r0) = π(r1) = π(r2) = 0
and w(r1, r0) = w(r0, r1) = 0. For each edge (u, v) ∈ Ec,
we add two edges (v2, u1) and (u2, v1) in G′, and assign each
of the edges a weight l′(u, v)·ξ, which is the amount of energy
consumed by the mobile charger travelling along edge (u, v)
and ξ is its energy consumption rate per unit length travelling.

The intuition behind the construction of G′ is as follows.
As we need to charge a sensor v with the amount of energy
A, we create three virtual nodes v0, v1, and v2 in the auxiliary
graph G′ for sensor v such that the corresponding prize of A
is assigned to v0, and we set both v1 and v2 with prizes of
zeros. Also, we have an edge between v0 and v1 (v2). Since
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Fig. 2. The constructions of G′ and G′′ from Gc, where the real number
in each node or link in Gc represents the amount of energy to be charged
to the sensor or the amount of energy consumed by traveling along the link,
and the real number on each edge of G′ is the amount of energy consumed
to charge the sensor and traveling along the edge, while the integer length of
each edge in G′′ is obtained by first dividing the edge weight by δ and then
rounding the real value upto a nearest integer no less than the real number.
(a) The network Gc(Vc, Ec; π0, l′). (b) The auxiliary graph G′(V ′, E′; π, w)
of Gc. (c) The auxiliary graph G′′(V ′, E′; π, l) of G′.

the charging tour of the mobile charger is a closed tour, this
implies that the mobile charger must pass through both nodes
v1 and v2 in its charging tour in order to collect the prize
at node v0. As the amount of energy charged to sensor v
is A, the two edges (v1, v0) and (v0, v2) in G′ are assigned
the identical weight A/2. We treat the subgraph consisting of
nodes v0, v1, and v2 for a sensor node v as a widget, we then
connect the widgets of different sensor nodes in Gc(Vc, Ec)
together to form the auxiliary graph G′. That is, for each edge
(u, v) ∈ Ec, we add two edges (u2, v1) and (u1, v2) in G′

to connect the two widgets derived by sensor nodes u and
v, and each of the edges is assigned a value which is the
amount of traveling energy consumed by the mobile charger
on the edges. Thus, any closed tour in G′ including the mobile
charger will be a candidate solution to the fully charging
reward maximization problem if the total energy consumption
in the tour is upper bounded by IE.

Fig. 2 illustrates the construction of G′ from the original
graph Gc. In Fig 2(a), the number within each node is the
amount of energy to be charged to it and the weight on each
edge is the amount of energy consumed of the mobile charger
traveling along the edge. Fig 2(b) is the resulting graph G′

by transforming the energy consumption on sensor charging

and the traveling of the mobile charger of Gc into a graph
with edge weights only. Meanwhile, the amount of energy
charged to a node now is converted into a prize value for
the node. In this example, we have Δmax = 4, Δmin = 2,
n = 4, and δ = Δmax

n2 = 4
42 = 1/4. The prizes on nodes

v, u, x and y are π(v0) = 
Bv−REv

δ � = 
 3.5
1/4� = 14, π(u0) =


Bu−REu

δ � = 
 2
1/4� = 8, π(x0) = 
Bx−REx

δ � = 
 4
1/4� = 16,

and π(y0) = 
By−REy

δ � = 
 3
1/4� = 12, respectively. The

prize of each of the rest of nodes in G′ is set to zero. Clearly,
the edge weights of G′ meet the triangle inequality.

The weight of each edge in G′ however is the amount of
energy needed, which is a real value, not an integer. The
rest is how to convert this real energy value into another
integer length in another auxiliary graph G′′ that has the same
topological structure as G′. Fig 2(c) is the resulting graph G′′

by converting the real weight value of each edge in G′ into
a nearest integer length no less than the real value obtained
through dividing the real weight by δ, as the approximation
algorithm due to Bansal et al. [1] is only applicable to a
graph with integer edge weights and the edge weights meet
the triangle inequality. For example, the weights of edges
(v1, x2) and (v2, x1) in G′ are 3.7, we are given δ = 1/4,
then the lengths of edges (v1, x2) and (v2, x1) in G′′ are
l(v1, x2) = l(v2, x1) = �w(v1,x2)

δ  = � 3.7
1/4 = �14.8 = 15.

Following the discussion in the previous subsection, we add
a virtual copy r′ of the depot r and its incident edge into
Gc. Notice that Gc(Vc, Ec) meets the triangle inequality in
terms of the length of each edge. It can be seen that G′

meets the triangle inequality in terms of the energy weight on
each edge, and the auxiliary graph G′′ that has the identical
topological structure as G′ meets the triangle inequality in
terms of the integer length of each edge. The fully charging
reward maximization problem then reduces to the problem of
finding a maximum utility path (or a closed tour C) Pr0,r′

0
in

G′′ from the depot r0 to a node r′0 such that the total prize
collected from the nodes in Pr0,r′

0
is maximized, subject to

that the length of path Pr0,r′
0

is bounded by L (or IE in terms
of the energy metric). The detailed algorithm is described in
Algorithm 2.

C. Analysis of the Proposed Algorithms

We analyze the performance and the time complexities of
the proposed algorithms.

Lemma 1: Given an undirected graph Gc(Vc, Ec; π0, l) with
π0 : Vc �→ R≥0 and l : Ec �→ Z+ where π0(v) =
Bv − REv for each v ∈ Vc, its edge weight meeting the
triangle inequality, and a given integer value L > 0, there
is an approximation algorithm, i.e., Algorithm 1, for the
charging utility maximization problem with travelling distance
constraint L, which delivers an approximate solution with an
approximation ratio of 4. The time complexity of the proposed
algorithm is Tori(|Vc|, |Ec|), where Tori(|V |, |E|) is the time
complexity of the approximation algorithm of Bansal et al [1]
for the orienteering problem in a graph with |V | nodes and
|E| edges.

Proof: The proof is contained in the Supplementary
Materials. �
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Algorithm 2 finding a closed tour C for the mobile charger
for the fully charging reward maximization problem

Input: An undirected metric graph G = (Vc, Ec; π0, l
′),

a depot r ∈ V , assume that each requested sensor v ∈ Vc

is expressed as (idv, REv, 0), Let Δmax and Δmin be the
maximum and minimum amounts of energy to be charged
to the sensors in Vc and Δmin ≥ Δmax

n2 . If a sensor has
an amount ε ≥ 0 of energy, it is assumed that it runs out
energy already, where n = |Vc|.

Output: A closed tour C = Pr0,r′
0

including the root r so that
the total charging reward collected from the nodes in C is
maximized, while the total amount of energy consumption
of the mobile charger is no greater than IE.

1: δ ← Δmax

n2 ;
2: Calculate the prize π (v) of each node v ∈ Vc, if REv ≥ ε,

then π(v) ← 
 (Bv−REv)
δ � = 
π0(v)

δ �; otherwise π(v) ←
n2;

3: Construct the auxiliary graph G′(V ′, E′; π, w) from graph
Gc;

4: An auxiliary graph G′′ = (V ′, E′; π, l) is derived from G′

where l(e) = �w(e)/δ for each edge e ∈ E′;
5: L← 
 IE

δ �;
6: Find a maximum utility (reward) path Pr0,r′

0
in G′′ such

that the sum of the prizes collected from the nodes in the
path is maximized, while the length of Pr0,r′

0
is no greater

than L, by applying the approximation algorithm due to
Bansal et al. [1];

7: A closed tour C′ for the mobile charger is derived from a
closed tour C = Pr0,r′

0
, which is an approximate solution

to the problem;
8: Each corresponding sensor node v with non-negative prize

in C′ will be fully charged with the amount of energy Bv−
REv, and each corresponding edge in Ec will consume the
actual amount of energy needed by the mobile charger.

Lemma 2: If the edge weight in G′ = (V ′, E′; π, w)
meets the triangle inequality, then the edge weight in G′′ =
(V ′, E′; π, l) also meets the triangle inequality.

Proof: Following the construction of G′′, we have l(e) =
�w(e)

δ  for each its edge e. It is easily verified that the triangle
inequality property still holds under the metric l(·) in G′′ if it
does hold for metric w(·) in G′. �

Lemma 2 ensures that the approximation algorithms due to
Bansal et al. [1] is applicable to G′′.

Theorem 2: Given a sensor network Gs(Vs, Es) with the
subset Vc (⊆ Vs) of charging sensors and a mobile
charger (mobile charger) with the energy capacity IE,
there is an approximation algorithm, Algorithm 2, for
the fully charging reward maximization problem, which
delivers an approximate solution with the approximation
ratio of 4. The time complexity of Algorithm 2 is
Tort(3|Vc|, 2(|Vc| + |Ec|)), where Tori(|V |, |E|) is the time
complexity of the approximation algorithm of Bansal et al. [1]
for the orienteering problem in a graph with |V | nodes and
|E| edges.

Proof: The proof is contained in the Supplementary
Materials. �

VI. APPROXIMATION ALGORITHM FOR THE PARTIALLY

CHARGING REWARD MAXIMIZATION PROBLEM

In this section we deal with the partially charging reward
maximization problem. We assume that each sensor can be
charged multiple times per tour due to some energy-critical
sensors to be urgently charged to mitigate their dead durations.
It must be mentioned that although each sensor v ∈ Vc can
be charged multiple times during each tour of the mobile
charger, the amount of energy charged to it at each time may
be different, and the total amount of energy charged to it in
the entire tour is no greater than its actual amount of energy
demand, Bv −REv .

A. Algorithm Overview

The idea behind the proposed algorithm is described as
follows. Given a sensor v with its residual energy REv , denote
by g(ev) the utility gain for charging an amount ev of energy
to sensor v, which is defined as follows.

g(ev) =
f(REv + ev)− f(REv)

δ
, (1)

where ev ∈ [emin, Bv −REv], function f(x) is an increasing
submodular function (e.g., f(x) = log (x + 1)) whose utility
gain is diminishing with the growth of the value of x, i.e.,
f(x+Δ)−f(x) ≥ f(y+Δ)−f(y) if 0 ≤ x ≤ y and Δ (> 0)
will be defined later. Notice that emin is the minimum amount
of energy charged to a sensor if the sensor will be charged by
the mobile charger in a tour. The rationale behind the adoption
of the sub-modular function f(·) (sometimes it is also referred
to as a utility function) is as follows. We model the energy
charging to a sensor as a submodular function, which implies
that the utility gain margin by charging a sensor with much
residual energy is far less than that by charging a sensor with
less residual energy, as the latter will be dead if it will not
be charged as soon as possible. In case a sensor has run out
of its energy, a maximum utility gain M will be assigned
to it.

Recall that the minimum amount of energy charged to
a sensor per charging is emin. The maximum number of
chargings to a sensor at each closed tour of the mobile
charger thus is no more than 
maxv∈Vc{Bv}

emin
�. Denote by

Kv = 
Bv−REv

emin
� the maximum number of possible chargings

to sensor v per tour. Kv virtual copies v1, v2, . . . , vKv of
sensor v are created, and each virtual copy vi corresponds to
an amount emin of energy charged to sensor v. The charging
utility gain contributed to virtual copy vi of sensor v is
gi = f(REv+i·emin)−f(REv+(i−1)·emin)

δ , where 1 ≤ i ≤ Kv.
It can be seen that g1 ≥ g2 ≥ . . . ≥ gKv , as f(.) is an
increasing submodular function.

The strategy we adopt for the partially charging reward max-
imization problem in Gc(Vc, Ec; l′) is to reduce the problem
to the fully charging reward maximization problem in another
graph G1 = (V1, E1; π0, l

′), and a feasible solution to the latter
will return a feasible solution to the former. The construction
of graph G1 = (V1, E1; π0, l

′) from Gc(Vc, Ec; l′) is as
follows. V1 = {vi | v ∈ Vc, 1 ≤ i ≤ 
Bv−REv

emin
�}, where

each virtual copy vi of sensor v represents an amount emin
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of energy to charge sensor v. Let (u, v) ∈ Ec be an edge in
Gc. Assume that sensors u and v have Ku (≥ 1) and Kv

(≥ 1) virtual copies in V1, which are u1, u2, . . . , uKu and
v1, v2, . . . , vKv respectively. Then, the set of edges derived
from an edge (u, v) ∈ Ec in G1 is Eu,v = {(ui, vj) | (u, v) ∈
Ec, 1 ≤ i ≤ Ku, 1 ≤ j ≤ Kv, u ∈ Vc, v ∈ Vc}, and
the set of edges derived from nodes u and v are Eu =
{(ui, uj) | u ∈ Vc, 1 ≤ i, j ≤ Ku, i 	= j} and Ev =
{(vi, vj) | v ∈ Vc, 1 ≤ i, j ≤ Kv, i 	= j}, respectively.
Thus, E1 = ∪(u,v)∈Ec

Eu,v∪v∈Vc Ev . The length of each edge
(ui, vj) ∈ E1 is equal to the length of edge (u, v) in Gc, i.e.,
l′(ui, vj) = l′(u, v), while the lengths of all edges (vi, vj)
derived from each node v are set to zeros, i.e., l′(vi, vj) = 0.
G1(V1, E1; π0, l

′) is a node and edge weighted graph with
π0 : V1 �→ R+ and l′ : E1 �→ R≥0, and each virtual copy of a
sensor will be charged with the amount emin of energy if the
virtual copy is included in a closed tour of the mobile charger.

The auxiliary graph G1(V1, E1; π0, l
′) is treated as the orig-

inal graph Gc(Vc, Ec; l′) in the previous section (Section V),
i.e., each virtual copy vi ∈ V1 of every sensor v ∈ Vc has the
amount emin of energy to be charged and the prize collected
by charging it is π0(vi). Each edge derived from a sensor node
v has a length of zero, and each edge derived from an edge
between two different sensor nodes has of identical length as
the one of the original edge. Note that the edge weights in G1

meets the triangle inequality.
Another auxiliary graph G′ = (V ′, E′; π, w) from

G1(V1, E1; π0, l
′) with π : V ′ �→ {1, 2, . . . , n} and w :

E′ �→ R+ can then be constructed as follows, by applying
the reduction technique in Section V. That is, the prize of a
virtual copy vi of sensor v is

π(vi) = 
f(REv + i · emin)− f(REv + (i− 1) · emin)
δ

�,
for all i with 1 ≤ i ≤ 
Bv −REv

emin
�, (2)

where δ is a scaling factor to make the largest prize among
the sensors no greater than n, while the smallest prize among
the sensors is no less than 1, which will be defined later
in the analysis of the proposed algorithm. There are three
corresponding nodes vi,0, vi,1, and vi,2 in G′ for each virtual
node vi in G1. The only difference is that the prize of each
node in G′ is calculated by Eq. (2). As a result, G′ is a graph
with a weight on each of its nodes representing the prize
collected from the node if the node is charged with an amount
of emin of energy, and a weight on each edge representing the
energy consumption of the mobile charger traveling along the
edge or the amount of energy for sensor charging if the edge
is derived from a node.

Having the auxiliary graph G′, auxiliary graph G′′ =
(V ′, E′; π, l) is then constructed from G′ such that the weight
of each edge in G′′ is a non-negative integer, by adopting
the similar scaling and rounding techniques as we did in
Section V. Also, it can be verified that the edge weights of
G′′ meet the triangle inequality if the edge weights of G′ meet
the triangle inequality. The approximation algorithm due to
Bansal et al. [1] is applied to graph G′′, and an approximate
solution C is then obtained. An approximate solution to the

partially charging reward maximization problem finally can be
derived from the solution C as follows.

Assume that the solution C, by the approximation algorithm
for the fully charging reward maximization problem in G1,
contains k virtual copies vi1 , vi2 , . . . , vik

of sensor v with
1 ≤ i1 ≤ i2, . . . ≤ ik ≤ Kv, where Kv is the number of
virtual copies of sensor v. We then form another solution C′

from C, by replacing the k virtual copies vi1 , vi2 , . . . , vik
of

sensor v with its other k virtual copies v1, v2, . . . , vk. It can
be seen that C′ is still a feasible solution to the problem,
and the length of closed tour C′ is identical to the one of
C, which actually is the total amount of energy consumption
of the mobile charger on this closed tour, while the sum
of prizes collected from the virtual copies v1, v2, . . . , vk is
no less than that from the k virtual copies vi1 , vi2 , . . . , vik

due to the fact that π(vj) ≥ π(vij ), which will be shown
later in Lemma 3, for all j with 1 ≤ j ≤ k ≤ Kv. The
sum of prizes of virtual copies v1, v2, . . . , vk of sensor v
is

∑k
i=1 π(vi) =

∑k
i=1
 f(REv+i·emin)−f(REv+(i−1)·emin)

δ � ≤

 f(REv+k·emin)−f(REv)

δ �, which is no greater than the actual
prize collected from sensor v by charging it with the amount
k · emin of energy with 1 ≤ k ≤ Kv.

Note that following the constructions of the auxiliary graphs
G′ and G′′, a given sensor v may appear in the solution C′′

multiple times, each of its appearances at a difference position
in C′′ corresponds charging a different amount of energy to
the sensor, and the total amount of energy charged to sensor
v is no more than Bv −REv per tour.

B. Approximation Algorithm
The detailed algorithm for the partially charging reward

maximization problem is described in Algorithm 3.
In Algorithm 3, it is noted that if energy capacities

of different sensors are substantially different, then sensors
with large energy capacities may need to be charged many
times while sensors with small energy capacities may be
charged a few times, depending on the setting of the minimum
amount emin of energy charged per sensor each time. Thus,
the number of virtual copies of each sensor and edges in G′

become a function of emin. The approximate solution may not
be achievable within polynomial time. To devise a polynomial
time approximation algorithm for the problem and to fairly
charge sensors with different energy capacities, we assume
that each sensor can be charged with a fixed number of charges
by the mobile charger per tour. That is, each sensor can be
charged no more than K times per tour, where K (≥ 0) is a
given constant integer. Under this assumption, we can modify
the approximation algorithm, Algorithm 3, as follows.

Given a sensor v with residual energy REv, we assume that
the minimum amount of energy charged per charging is emin

and the maximum number of chargings to sensor v per tour is
no more than K . Then, each time sensor v can be charged with
the amount Δv of energy with Δv = Bv−REv

K . If Δv ≤ emin,
then, the minimum amount of energy charged to v at each time
is emin, and the number of chargings to v per tour is no more
than K ′ = 
Bv−REv

emin
� ≤ 
Bv−REv

Δv
� ≤ K . Thus, each sensor

will be charged no more than K times per tour.
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Algorithm 3 finding a closed tour for the mobile charger for
the partially charging reward maximization problem

Input: An undirected metric graph G = (Vc, Ec; l′), a depot
r ∈ V and a submodular function, assume that each requested
sensor in Vc is expressed as (idv, REv, 0), Let Δmax and
Δmin be the maximum and minimum amounts of charging
energy among the sensors, and emin the minimum amount of
energy charged to a sensor, δ > 0 to be defined in the analysis
of this algorithm.

Output: A closed tour C′′ including the root r so that the charging
reward of all nodes in C′′ is maximized, while the total energy
consumption of the mobile charger is no more than IE. Note
that a sensor v can appear multiple times in C and each of
its appearances has a certain amount of energy charged and the
total amount of energy charged to it is no more than (Bv−REv)
per tour.

1: Construct an auxiliary graph G1 = (V1, E1) from the original
graph Gc = (Vc, Ec), where for each node v ∈ V there are
Kv = 
Bv−REv

emin
� virtual copies of sensor v, v1, v2, . . . , vKv .

Note that each node in G′ has a weight emin which is the
minimum amount of energy charged to the sensor per time, and
each edge has a weight which is the travel distance between
two sensors as the endpoints of the edge;

2: Calculate the prize of each virtual copy vi of sensor v, which is
π(vi)← 
 f(REv+i·emin)−f(REv+(i−1)·emin)

δ � with 1 ≤ i ≤
Kv, where δ = Δfmax

n and Δfmax = maxv∈Vc{f(REv +
Δv)− f(REv)};

3: Construct another auxiliary graph G′ = (V ′, E′; π, w) from
G1 by applying the novel reduction technique in the previous
section. As a result, graph G′ is a node and edge weighted
undirected graph, where its edge weight represents the energy
consumption by traveling along the link and charging the
sensor (an endpoint of the link), and the node weight is the
prize collected from the node by charging it with the amount
emin of energy, the prize of a virtual copy vi of sensor v is
π(vi);

4: δ′ ← Δmax
n2 ;

5: Construct the auxiliary graph G′′(V ′, E′; π, l) from G′ by first
dividing the weight of each edge e in G′ by Kδ′, and then
rounding the value up to a nearest integer, i.e., l(e) = �w(e)

Kδ′ ,
where K = max{Kv | v ∈ Vc};

6: L← 
 IE
Kδ′ �;

7: Find a maximum reward closed tour C (or a maximum utility
path from r0,0 to r′0,0 ) in G′′ with the tour length being
upper bounded by L, while the length of the path Pr,r′ is no
greater than L, by applying the approximation algorithm for
the orienteering problem due to Bansal et al. [1];

8: A corresponding closed tour C′ is then constructed from C,
by replacing the k virtual copies of each sensor v in C with its
the first k virtual copies, assuming that there are k virtual copies
of sensor v in C and 1 ≤ k ≤ Kv while Kv = 
Bv−REv

emin
�;

9: Construct a closed tour C′′ for the partially charging reward
maximization problem, by replacing the virtual copies of each
sensor in C′ with the sensor itself. If multiple virtual copies
of a sensor appear in C′ consecutively, only one copy and the
number of such copies are kept. The closed tour C′′ then is
obtained, which is a sequence of sensors and each appearance
of a sensor also contains the amount of energy charged to the
sensor.

10: return C′′.

In the rest of discussion, we assume that Δv ≥ emin, K
virtual copies v1, v2, . . ., vK of sensor v are created, and each
of the virtual copies vi corresponds to an amount Δv of energy
charged to v. The prize of a virtual copy vi of sensor v thus is
π(vi) = 
 f(REv+i·Δv)−f(REv+(i−1)·Δv)

δ �, where 1 ≤ i ≤ K .

C. Algorithm Analysis

We now analyze the performance of the algorithms. To this
end, we first show that π(v1) ≥ π(v2) ≥ . . . ≥ π (vK) for
the K virtual copies of sensor v by Lemma 3.

Lemma 3: For each given sensor v ∈ Vc in Gc =
(Vc, Ec; l′), let v1, v2, . . . , vK be its K virtual copies, then
π (v1) ≥ π (v2) ≥ . . . ≥ π (vK).

Proof: For any two virtual copies vi and vj of a sensor v
with i < j, the prizes collected by charging the same amount
Δv (= Bv−REv

K ) of energy to sensor v are different. We thus
have π (vi) ≥ π (vj) due to

π(vj)
π(vi)

=

 f(REv+j·Δv)−f(REv+(j−1)·Δv)

δ �

 f(REv+i·Δv)−f(REv+(i−1)·Δv)

δ �
≤ 


f(REv+j·Δv)−f(REv+(j−1)·Δv)
δ �


 f(REv+j·Δv)−f(REv+(j−1)·Δv)
δ �

,

as f(x + Δ)− f(x) ≥ f(y + Δ)− f(y) if x < y.
= 1. (3)

�
We now determine the value of δ such that the mini-

mum prize π(vi) of any virtual copy of a sensor v is no
less than 1, while the maximum prize π(uj) of a virtual
copy uj of a sensor u is no greater than n. Denote by
Δfmin = minv∈Vc{f(Bv) − f(Bv − Δv)} and Δfmax =
maxv∈Vc{f(REv + Δv) − f(REv)}, where Δv = Bv−REv

K .
Assume that Δfmin ≥ Δfmax

n . Then, δ is defined as follows.

δ =
Δfmax

n
. (4)

Its correctness is shown in Lemma 4.
Lemma 4: Let δ = Δfmax

n , then 1 ≤ π (vi) ≤ n for any
virtual copy vi of a sensor v ∈ Vc with 1 ≤ i ≤ K .

Proof: We show the claim by two cases. Case 1: assume
that uj is a virtual copy of sensor u in G′ that has the minimum
prize, then j = K , following Lemma 3. We have

π (uK) = 
f(REu + K ·Δu)− f(REu + (K − 1) ·Δu)
δ

�

= 
n · f(Bu)− f(Bu −Δu)
Δfmax

� ≥ 
n · Δfmin

Δfmax
�,

≥ 
n ·
Δfmax

n

Δfmax
�, since Δfmin ≥ Δfmax/n

= 1. (5)

Case 2: assume that vi is a virtual copy of sensor v in G′

that has the maximum prize, then i = 1, following Lemma 3.
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We then have

π (v1) = 
f(REv + Δv)− f(REv)
δ

�

= 
n · f(REv + Δv)− f(REv)
Δfmax

�

≤ 
n · Δfmax

Δfmax
�, as v1 has the maximum prize

= n. (6)

Thus, for any virtual copy vj ∈ V ′ derived from any sensor
v, the range of its prize π (vj) is between 1 and n. �

We now have the following theorem.
Theorem 3: Given a sensor network Gs(Vs, Es), a subset

Vc (⊆ Vs) of sensors to be charged by a mobile charger
with the energy capacity IE, there is an approximation
algorithm, Algorithm 3, for the partially charging reward
maximization problem in Gc = (Vc, Ec; l′), assuming that
each sensor can be charged no more than K times and
K ≥ 1 is a given constant. Algorithm 3 delivers a
solution with approximation ratio of 4. The time complex-
ity of Algorithm 3 is Tort(3K|Vc|, (K2|Vc| + 4K|Ec| +
3K|Vc|)/2), where Tori(|V |, |E|) is the time complexity of
the approximation algorithm of Bansal et al. [1] for the
orienteering problem in a graph with |V | nodes and |E| edges.

Proof: Following the constructions of auxiliary graphs
G′ = (V ′, E′; π, w) and G′′ = (V ′, E′; π, l), which are
derived from another auxiliary graph G1 = (V1, E1; π0, l

′)
where G1 is derived from the graph Gc, each virtual copy
uj of a sensor u in G1 has three copies uj,0, uj,1, and uj,2

in G′ and G′′ with 1 ≤ j ≤ K . Following Algorithm 3,
an approximate solution C delivered at Step 7 by the proposed
approximation algorithm, Algorithm 1, for the charging
utility maximization problem in G′′, contains k (1 ≤ k ≤ K)
virtual copies vi1 , vi2 , . . . , vik

of sensor v with 1 ≤ i1 ≤
i2, . . . ≤ ik ≤ K . Another approximate solution C′ can
then formed by replacing the k virtual sensors vi1 , vi2 , . . . , vik

of each sensor v in C with its the first k virtual sensors
v1, v2, . . . , vk. Clearly, C′ still is a feasible solution to the
problem, and the tour length of both C and C′ are identical.
The sum of prizes of virtual copies v1, v2, . . . , vk of sensor v
is no less than that of its other k virtual copies vi1 , vi2 , . . . , vik

as π(v1) ≥ π(v2) ≥ . . . ≥ π(vk) by Lemma 3. Also, the sum
of prizes collected from the virtual copies v1, v2, . . . , vk of
sensor v is no greater than the actual prize collected from
sensor v by charging it with an amount k ·Δv of energy.

We now analyze the actual amount of energy of the mobile
charger used for charging the sensors and traversing the edges
derived from the closed tour C. Let ne(C) be the number
of edges in C with p virtual sensor nodes (the mobile charger
can be treated as a sensor). Clearly, ne(C) = 3p following the
similar discussion we did in the proof body of Theorem 2. Let
v be a virtual sensor in C, then there are three nodes v0, v1, v2

in G′ and G′′. Assume that the amount of energy that virtual
sensor v will be charged is A. Following the construction of
G′, there are two edges (v1, v0) and (v2, v0) in G′ that are
related to energy charging to virtual sensor v, and each of
them is assigned a weight is A/2, i.e., w(v1, v0) = A/2 and
w(v2, v0) = A/2. These edge weights are then converted into

integers in G′′, i.e., l(v1, v0) = �A/2
Kδ′  and l(v2, v0) = �A/2

Kδ′ 
where δ′ = Δmax

n2 . Thus, the amount of energy assigned to
virtual sensor v (via these two edges) may be larger than its
actual demand A. However, it can be seen that the difference
between the actual demand and the amount of extra energy
assigned to sensor v is no greater than 2δ′. For each edge
(u, v) ∈ Ec derived from two virtual sensors in C, its energy
consumption was rounding up, the amount of energy assigned
for the mobile charger passing through the edge may also be
larger than its actual need, and this extra amount of energy
however is no more than δ′. The total amount of extra energy
assigned to the virtual sensors and traveling edges in C is no
more than 3(p− 1)δ′ due to the fact that the mobile charger
node will not be charged by itself. Thus, there is at most the
amount of extra energy 3K(n− 1)δ′ assigned to the sensors
and travelling edges in any C as there are at most n sensor
nodes to be charged in the network and each sensor node has
at most K virtual sensor copies in G′ and G′′. In other words,
the amount of unused energy of the mobile charger per tour
is no more than 3K(n− 1)δ′.

Following Step 6 of Algorithm 3, let IE′ be the actual
amount of energy IE′ (≤ IE) used by the mobile charger
for charging the sensors and travelling edges that are derived
from the closed tour C. It then can be seen that IE′ ≥ (IE−
3(p− 1)δ′) ≥ (IE − 3K(n− 1)δ′) = IE − 3K(n−1)Δmax

Kn2 >
IE − 3Δmax

n , where Δmax is the maximum amount of energy
to charge a sensor. When the number of requested charging
sensors n (= |Vc|) in the network is quite large, the term 3Δmax

n
approaches zero, i.e., there is almost no any energy left when
the mobile charger returns its depot.

Let Π(v) be the actual prize collected from sensor v by
charging it an amount k ·Δv of energy per tour of the mobile
charger, then

Π(v) = 
f(REv + k ·Δv)− f(REv)
δ

�

= 

k∑

i=1

f(REv + i ·Δv)− f(REv + (i− 1) ·Δv)
δ

�

≥
k∑

i=1


f(REv + i ·Δv)− f(REv + (i− 1) ·Δv)
δ

�

=
k∑

i=1

π(vi). (7)

A closed tour C′′ finally can be derived from C′ by
replacing each virtual copy of a sensor with the sensor and
the amount of energy charged in the tour, which is an approx-
imate solution to the partially charging reward maximization
problem in Gc. Thus, the total prize collected from all charged
sensors in C′′ is
∑

v∈C′′
Π(v) ≥

∑

vi∈C′
π(vi), vi is a virtual copy of sensor v∈Vc

≥
∑

vji
∈C

π(vji ), vji is a virtual copy of sensor v

and vji was replaced by vi in C′

≥ OPT

4
, by Theorem 2, (8)

where OPT is the cost of the optimal solution.
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The rest is to analyze the time complexity of
Algorithm 3. The construction of auxiliary graph
G1(V1, E1) takes O(|V1| + |E1)) time, as |V1| = K|Vc|,
|E1| = K(K − 1)|V |/2 + 2K|Ec|, and K is constant.
The construction of the auxiliary graph G′ takes
O(|Vc| + |Ec|) time, as it contains |V ′| = 3K|Vc|
nodes and |E′| = K(K − 1)|Vc|/2 + 2K|Vc| +
2K|Ec| = (K2|Vc| + 4K|Ec| + 3K|Vc|)/2 edges.
The time complexity of Algorithm 3 thus is
Tort(3K|Vc|, (K2|Vc|+ 4K|Ec|+ 3K|Vc|)/2). �

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms by experimental simulations. We also study the
impact of important parameters on their performance.

A. Simulation Environment

We consider a WSN consisting of from 50 to 200 sensors
randomly deployed in a 1, 000 × 1, 000 m2 square area. The
base station and the depot of the mobile charger are co-located
at the center of the monitoring area. The battery capacity of
each sensor is set at 10.8 kJ [17]. The residual energy of
each sensor is randomly generated in the range of (0, 10.8] kJ .
A sensor will send a recharging request to the base station once
its energy level is below a given threshold, which is 20% of its
energy capacity. The energy capacity IE of the mobile charger
is set to 300 kJ , and it consumes 600 J per meter when
travelling [16]. The default value of K in Algorithm 3 is 3.
The submodular function used in Algorithm 3 is log(x+1).
Unless otherwise specified, these parameters will be adopted
in default settings. Each value in all figures is the average of
the results by applying each mentioned algorithm 50 times on
different network topologies with the same network size.

We evaluate the performance of the proposed algorithms
against that of the following three state-of-the-art heuristics.

The first one finds a minimum spanning tree (MST) in Gc,
and then derives a cycle from the MST using the triangle
inequality property. If the total energy consumption on the
traveling of the mobile charger and charging the sensors in
the cycle is no greater than the energy capacity IE of the
mobile charger, the solution is a feasible solution. Otherwise,
the heuristic removes a node v from the cycle such that the
ratio of the reward to its distance in the cycle is minimized,
and a shorter cycle then is formed. This procedure continues
until the total energy consumption in the resulting cycle is no
more than IE.

The second one charges sensors greedily. That is, the next
sensor to be charged is the sensor with the least residual
energy, and the mobile charger ends its tour if all its energy
runs out.

The third one first reduces the original problem to a Capac-
itated Minimum Spanning Tree (CMST) problem, and then
extends the Esau-Williams algorithm [3] to jointly consider
sensor charging energy and travelling energy [20].

For simplicity, we refer to the first heuristic for the fully
and partially charging reward maximization problems as algo-
rithms Heu_FULL and Heu_PART, the second heuristic as

algorithms LEF_FULL and LEF_PART, and the third heuristic
as algorithms CMST_FULL and CMST_PART, respectively.
We refer to algorithms 2 and 3 in this paper as algorithms
App_FULL and App_PART, respectively.

B. Performance of Different Algorithms

We first evaluate the two proposed algorithms against the
three mentioned heuristic algorithms, by varying network sizes
from 50 to 200. Fig 3 shows the total reward, the total amount
of energy charged to sensors and spent on the travelling of
the mobile charger, and the running times of all mentioned
algorithms. It can be seen from Figures 3(a), (b), (c), and (d)
that the total reward by algorithm App_FULL is around 25%,
35%, and 45% more than those by algorithms CMST_FULL,
Heu_FULL, and LEF_FULL respectively when the network
size is 100, while the total energy for sensor charging
is roughly 6%, 8%, and 10% more than those by algo-
rithms CMST_FULL, Heu_FULL, and LEF_FULL, respec-
tively. It is noticed that the better solution delivered by
algorithm App_FULL is at the expense of more running
time, compared with the other algorithms. Notice that the
running times of different algorithms are obtained in a desktop
with limited computing power, which however can be much
improved if a power-full server is deployed at the base station.
In addition, it can also be seen from Fig. 3 (c) that more
energy will be spent on travelling in the solutions delivered
by each of the algorithms with the growth of network size,
because sensors to be charged in a large network are very
likely distributed in a wider region far from the depot of
the mobile charger. Since the energy capacity IE of the
mobile charger is fixed, the amount of energy used for sensor
charging will decrease with the growth of network size,
as shown in Fig. 3(b). Furthermore, the total reward collected
in the solutions delivered by all mentioned algorithms increase,
since there are more sensors to be charged and there are
much more opportunities to select the sensors with larger
rewards to be charged. Similar performance for algorithms
App_PART, CMST_PART, Heu_PART, and LEF_PART can
also be observed from Figures 3(e), (f), (g), and (h), respec-
tively. In addition, from Fig. 3(b) and Fig. 3(f) It can be seen
that the energy charged to sensors by algorithm App_FULL is
slightly less than that by algorithm App_PART, the rationale
behind is that unlike fully charging, partial charging can avoid
charging the next sensor with less residual energy (i.e., REv)
that is far away from the currently being charged sensor,
thereby saving energy that is spent on travelling (as shown
by the comparisons of Fig. 3(c) and Fig. 3(g)).

C. Impact of Parameters

We then study the impact of different parameters on the
performance of different algorithms.

We start by investigating the impact of the energy capacity
IE of the mobile charger on the performance of differ-
ent algorithms, by varying IE from 200 kJ to 350 kJ .
Figures 4(a), (b), (c), and (d) depict the total reward, the total
amounts of energy on the travelling and sensor charging, and
the running times of algorithms App_FULL, CMST_FULL,
Heu_FULL, and LEF_FULL, respectively.
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Fig. 3. The performance of different algorithms by varying network sizes. (a) The total reward. (b) The total energy on sensor charging. (c) The total energy
on travelling. (d) The running times of algorithms. (e) The total reward. (f) The total energy on sensor charging. (g) The total energy on spent travelling.
(h) The running times of algorithms.

Fig. 4. Impacts of the energy capacity IE of the mobile charger on the performance of different algorithms. (a) The total reward. (b) The total energy
on sensor charging. (c) The total energy on travelling. (d) The running times of algorithms. (e) The total reward. (f) The total energy on sensor charging.
(g) The total energy on travelling. (h) The running times of algorithms.

Fig. 5. The impact of K on the performance of algorithms App_PART, Heu_PART, CMST_PART, and LEF_PART. (a) The total reward. (b) The total
energy on sensor charging. (c) The total energy on travelling. (d) Running times

It can be seen from Figures 4(a) and 4(c) that the total
reward collected by algorithm App_FULL is around 10%,
19%, and 23% more than that by algorithms CMST_FULL,
Heu_FULL, and LEF_FULL respectively when IE =
350, 000, while the amount of energy spent on traveling
of the mobile charger is also larger than that by other
algorithms CMST_FULL, Heu_FULL, and LEF_FULL. Fur-
thermore, it can be seen that the reward collected by all

algorithms grow with the increase of the value of IE, as a
larger IE enables the mobile charger to charge more sen-
sors. The running time of algorithm App_FULL increases
with the growth of the value of IE. Similarly, from Fig-
ures 4(d), (e), and (f), it can be observed that the total
award collected by algorithm App_PART is much more than
that by either of algorithms Heu_PART, CMST_FULL, and
LEF_FULL.
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We then study the impact of the maximum number K of
charges to a sensor per tour on the performance of different
algorithms, which is shown in Fig. 5. We can see from this
figure that with the increase of K , the reward and energy
charged to sensors by algorithms App_PART and Heu_PART
slightly decrease. The rationale behind is that with a larger K ,
algorithm App_PART will spend more energy in travelling,
since the mobile charger can be scheduled to charge other
sensors in different locations after its partial charging to a
sensor, which can be seen in Fig. 5(c). The running time of
algorithm App_PART grows with the increase of K , as a
larger K implies that more virtual sensor nodes are derived
from each sensor, thereby increasing the network size of G1.

VIII. CONCLUSIONS

In this paper we studied the use of a mobile charger to
charge energy to sensors wirelessly in a rechargeable sensor
network with the aim to maximize the total reward collected
from the charged sensors, subject to the energy capacity of
the mobile charger. We first formulated this mobile charging
scheduling problem as fully and partially charging reward
maximization problems under the assumptions of full and
partial energy charging to each sensor per tour, respectively.
We then showed that both problems are NP-hard, and devised
constant approximation algorithms for them. We finally eval-
uated the performance of the proposed algorithms through
experimental simulations. Simulation results demonstrate that
the proposed algorithms are promising, and outperform state-
of-the-arts heuristics.
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