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Abstract— This paper deals with the cooperative source local-
ization problem with the goal of having an accurate estimate
of the coordinate of the source cooperatively by a group of
unicycle-type mobile agents. Neither absolute positioning infor-
mation nor a common sense of direction is shared by the agents.
Each agent gets its estimate about the source’s coordinate in its
own local frame based on the bearing measurements about its
neighbors (that may or may not include the source) together
with its own linear and angular speed information. A continuous
time estimation scheme and a distributed fusion scheme are
proposed for this goal such that the source’s relative coordinate
can be estimated at any time by each agent no matter whether
it can directly detect the source or not. The globally asymptotic
convergence of the estimation scheme and the fusion scheme
is rigorously analyzed. Simulation results are also provided to
verify the effectiveness of the proposed algorithms.

I. INTRODUCTION

Source localization or cooperative source localization has
attracted a lot of attention in recent years. It has a number
of important applications, for example, formation control,
navigation, search and rescue etc. In the formation control
problem [1], the followers may need to localize the positions
of the leaders in the network, based on which a distributed
control law can then be developed to achieve certain desired
formation shape. For the navigation problem, every agent
may have to localize its own position relative to a landmark
in real time so that it can travel from a starting location to
a target location along a specific path.

Roughly, cooperative source localization can be classified
into two categories, based on whether the agents are sta-
tionary or mobile. In the first category, a network of agents
remains stationary after they are deployed, usually in sensor
networks. For this class, it generally requires three or more
nodes to realize cooperative localization about one or many
static nodes depending on different types of measurements
[2] and about a moving target (such as a jammer in a wireless
network) [3], [4]. The second category concerns about a
network of mobile agents, for which either the mobile agents
use one or multiple source nodes as references to localize
themselves, or the mobile agents try to localize one or more
targets with the help of their motion information. For this
class, mobile agents are capable of localizing themselves
with relative measurement of just one source node, and a
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single mobile agent is also able to localize a target of interest.
Even so, a group of agents working together for cooperative
localization is still attractive as such a scenario can improve
the localization performance for the case with measure-
ment failures and measurement noises, which are usually
unavoidable. Among different kinds of local measurements,
bearing measurements have been widely used for localiza-
tion [5]–[10]. More recently, [8] studies the optimal target
localization problem for a sensor network with bearing-only
measurements in a constrained three-dimensional underwater
scenario. In [5] and [6], a single mobile agent in the plane
uses a continuous time localization algorithm to estimate
the position of a target based on bearing measurements and
achieves circumnavigation around the target. In [10], two
mobile agents undergo a planar circular motion to localize
each other using bearing measurements with bounded noises.

This paper aims to develop a deterministic estimation
scheme for source localization based on bearing measure-
ments as well. But the setup is different. In contrast to
[5], [11] and [6], we assume in this paper that no absolute
positions of the mobile agents are available, no compass is
carried, and the mobile agents are of unicycle model, which
are quite common and meet the practical needs. Moreover,
it is also common that not all the agents can detect the
source directly at any time. However, the goal is to get
an accurate estimate for each agent about the source in its
own local frame at any time. Towards this objective, firstly,
a continuous-time estimation scheme is proposed using the
bearing measurement and linear/angular speed information
when an agent is able to measure the bearing angle of
the source. The continuous-time estimation scheme requires
to know the changing rate of the measured bearing angle,
for which a linear time-varying differentiator is considered
and the input-to-state stability theory is recalled to show
the convergence of the estimation scheme together with the
time-varying differentiator. Secondly, a consensus-like fusion
scheme is designed for every agent to fuse the estimates from
its neighbors as well as its own estimate if exists. By doing
so, the agents, which are not able to directly measure the
bearing angle about the source, can also estimate the source’s
coordinate in its local frame. As shown in this paper, the
estimate resulting from the fusion scheme is asymptotically
convergent to the true relative coordinate of the source in the
local frame of each agent no matter whether it can or cannot
measure the bearing angle about the source.

II. PROBLEM FORMULATION

This section introduces several preliminary results and
then formulates the cooperative localization problem.
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A. Preliminaries

Let G = (V , E) be an undirected graph of order N with the
set of nodes V = {1, 2, . . . , N}, a set of edges E ⊆ V × V .
We denote by Ni the neighbor set of node i. Let A = [aij ] ∈
R

N×N be the adjacency matrix associated with G, for which
aij = aji = 1 if (i, j) is an edge in G and aij = 0 otherwise.
A diagonal matrix D = diag{d1, d2, . . . , dN} ∈ R

N×N is
called the degree matrix of G, whose diagonal elements di =
∑

j∈Ni
aij for i = 1, . . . , N . The Laplacian of the graph G

is defined as L = D −A.
To study the cooperative source localization problem, we

use an undirected graph G to describe the sensing relationship
of N agents in a group. That is, (i, j) is an edge of G if
and only if agents i and j can mutually measure the bearing
angle information about the other and can communicate each
other. Let L be the Laplacian of G. Moreover, by taking into
account the source, we introduce another graph Ḡ associated
with the system consisting of N mobile agents and the source
(labeled 0), which contains G as its subgraph. We denote by
N̄i the set of agent i’s neighbors in Ḡ possibly including
node 0. Node 0 is in N̄i if and only if agent i has the
bearing measurement about the source. Similarly, we define a
diagonal matrix B ∈ R

N×N to be a source adjacency matrix
associated with Ḡ with diagonal elements bi, i ∈ 1, . . . , N ,
where bi > 0 if node 0 is a neighbor of node i, that is, agent
i has the direct bearing measurement about the source and
bi = 0 otherwise. We say Ḡ is connected if there exists a
path from node 0 to every other node in Ḡ. Next we recall
a known result about the matrix H = L+B.

Lemma 2.1 ( [12]): The matrix H = L + B is positive
definite if Ḡ is connected.

Here we give a simple example consisting of 4 agents and
one source. The sensing graph Ḡ of the system is shown in
Fig. 1. we can check that Ḡ is connected though G is not.

Ḡ G

11

22

33
44

0

Fig. 1. An example of Ḡ and G.

B. Problem Statement

We consider N mobile agents and suppose that each agent
i is of unicycle model and is able to measure its own
velocity vi and wi as well as the bearing measurements of
its neighbors. Without loss of generality, suppose there is a
global coordinate frame Σg and there are local frames Σi’s
attached to the agents (see for example, Fig. 2). We use
p
g
i = [xg

i y
g
i ]

T to represent the coordinate of agent i in the
global frame Σg. For each agent i, the relative coordinate
of the source 0 or agent j in agent i’s moving frame Σi is
denoted by pij = [xij yij ]

T, j = 0, 1, . . . , N . Moreover,

we denote p
g
ij = p

g
j − p

g
i . Let θi ∈ R denote the orientation

difference between Σi and Σg, and let vi and wi denote
the linear and angular speed of agent i, respectively. The
distance dij between agent i and agent j certainly satisfies
dij(t) = ‖pij(t)‖, where ‖ · ‖ refers to the Euclidean norm.
An illustration is given in Fig. 2.
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Fig. 2. Local frames and relative states.

In this paper, we assume that
Assumption 2.1: The linear and angular speeds vi(t) and

ωi(t) of each agent i, i = 1, . . . , N , are continuously
differentiable and bounded.

Finally, we state the cooperative source localization prob-
lem using locally available information.

Problem 2.1: Suppose every agent i ∈ 1, ..., N measures
the bearing angle αij(t) ∈ [0, 2π), j ∈ Ni of its neighbors,
its own linear speed vi(t) and angular speed ωi(t). Besides,
each agent receives certain information from its neighbors
via communications, (including vj(t) of its neighbor j, the
bearing angle αji(t) in its neighbor’s local frame, its neigh-
bor’s estimate about the source, etc). Design an estimation
scheme for every agent i based on these available information
to localize the source (namely, pi0(t)) in the local frame Σi

of agent i).

III. LOCALIZATION SCHEME

In this section, we assume that the bearing angle measure-
ment αi0(t) about the source is available to agent i all the
time. We propose an observer to estimate the coordinate of
the source in its local frame. Firstly, the group of n unicycles
in the global frame Σg is described by







ẋ
g
i = vi cos θi

ẏ
g
i = vi sin θi
θ̇i = ωi.

(1)

With respect to the local frame Σi attached to agent i with the
x-axis aligning to its heading, the following is the coordinate
transformation,

pi0 = R(−θi)p
g
i0, (2)
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where

R(θ) =

[

cos θ − sin θ
sin θ cos θ

]

represents the counterclockwise rotation matrix. According
to (2) and (1), we deduce the dynamic equation of pi0(t) as
follows.

ṗi0(t) =

[

0 ωi

−ωi 0

]

pi0(t) +

[

−vi
0

]

. (3)

Considering the polar coordinate system, the dynamics of
di0 and αi0 can be easily obtained as

{

ḋi0 = −vi cosαi0

α̇i0 = vi sinαi0

di0
− ωi.

(4)

Let ui0 = [−vi 0]T. Taking the derivative of both sides
of d2i0 = ‖pi0‖2 with respect to time and considering (3),
one obtains

d

dt
[d2i0(t)] = 2ṗTi0(t)pi0(t),

and
di0ḋi0 = uT

i0pi0.

In order to use the bearing angle information instead of the
range information, we use (4) to get

−v2i cosαi0 sinαi0

α̇i0 + ωi

= uT
i0pi0. (5)

Combining (5) and (3), we have
{

ṗi0(t) = Ai0(t)pi0(t) + ui0(t)
yi0(t) = uT

i0(t)pi0(t)

where

Ai0(t) =

[

0 ωi

−ωi 0

]

, yi0(t) =
−v2

i cosαi0 sinαi0

α̇i0+ωi
.

Denote by p̂i0(t) the estimate of pi0(t) and denote by
p̃i0(t) = p̂i0(t) − pi0(t) the estimation error. We propose
a full order estimator as follows

˙̂pi0(t) = Ai0(t)p̂i0(t)+ui0(t)+ui0(t)
[

yi0(t)− uT
i0(t)p̂i0(t)

]

.

(6)

Combining (5) and (6), one obtains the dynamics of the
estimation error as follows.

˙̃pi0(t) =

[

−v2i ωi

−ωi 0

]

p̃i0(t). (7)

The limit of p̂i0(t) gives an estimate for the coordinate of
the source when p̃i0(t) converges to zero. We then have the
following result.

Theorem 3.1: The zero solution of (7) is exponentially
stable if there exist ǫ1, ǫ2 > 0 and T > 0 such that for
any t0 > 0

∫ t0+T

t0

|ωi(t)|dt ≥ ǫ1,

∫ t0+T

t0

|vi(t)|dt ≥ ǫ2. (8)

Proof: First, we choose a quadratic function V (p̃i0) =
1
2 p̃

T
i0p̃i0. It is known that V (p̃i0(t)) > 0 for p̃i0(t) 6= 0.

Next, denote p̃i0(t) = [x̃i0(t) ỹi0(t)]
T. Then we have

V̇ (p̃i0) =
1

2
p̃Ti0

([

−v2i ωi

−ωi 0

]

+

[

−v2i −ωi

ωi 0

])

p̃i0

=
1

2
p̃Ti0

[

−2v2i 0
0 0

]

p̃i0

= −v2i x̃
2
i0 ≤ 0.

V̇ (p̃i0(t)) is negative semi-definite and V (p̃i0(t)) is bounded.
We check

V̈ (p̃i0) = −2viv̇ix̃
2
i0 − 2v2i x̃i0

˙̃xi0

= −2viv̇ix̃
2
i0 − 2v2i x̃i0(−v2i x̃i0 + ωiỹi0).

Because vi, v̇i, ωi, x̃i0(t), and ỹi0(t) are all bounded,
V̈ (p̃i0(t)) is finite, which means that V̇ (p̃i0(t)) is uniformly
continuous in time. According to Barbalat’s Lemma [13],
V̇ (p̃i0)(t) → 0 as t → ∞. Therefore, x̃i0(t) → 0 as t → ∞
due to the condition about vi(t) in Theorem 3.1.

Consider ˙̃xi0(t) = −v2i x̃i0(t) + ωiỹi0(t), and let f(t) =
x̃i0(t), g1(t) = ωiỹi0(t), g2(t) = −v2i x̃i0(t). Because
ġ1(t) = ω̇iỹi0(t) − ω2

i x̃i0(t) is finite (implying that g1(t)
is uniformly continuous), and g2(t) → 0 as t → ∞, by
Extended Barbalat’s Lemma [14], it follows that g1(t) → 0
as t → ∞. Therefore, using the condition about ωi(t) in the
theorem, we get ỹi0(t) → 0.

In conclusion, we have p̃i0(t) → 0 as t → ∞, or
equivalently, the zero solution of (7) is asymptotically stable.
For a linear system, this also means exponential stability
[13]. �

Remark 3.1: Theorem 3.1 shows that during any time
interval of certain length, the agent should not keep stationary
or move straightly towards the target. Moreover, qualitatively
speaking, the larger ǫ1 and ǫ2, the faster p̂i0 converges to pi0.

However, adopting such an approach in practice would
require the explicit differentiation of the measurement αi0(t).
In the following, we introduce a linear time-varying (LTV)
differentiator to estimate the derivative of αi0(t). This dif-
ferentiator does not need any information about the nature
of the signal or a prior knowledge of the upper bounds of
its higher derivatives.

Lemma 3.1 ( [15] ): Let η(t) : R>0 → R be a scalar
function of class C∞ and let (ρk, k = 0, 1, 2, · · · ) be a
sequence of positive real numbers. If the higher derivatives
of η(t) satisfy

sup
t≥0

|η(k)(t)| ≤ ρk, k = 0, 1, 2, . . . ,

then the state of the following time-varying system

ż(t) = A(t)z(t) +B(t)η(t)

asymptotically converges to [η(t) η̇(t)]T with

A(t) =

[

0 1
−a2t2 −2at

]

, B =

[

0
a2t2

]

, a ∈ R>0.

Considering the LTV differentiator, we modify the estima-
tor for each agent as follows, which now does not need to
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know α̇i0.


























η̇i0(t) = ξi0(t)

ξ̇i0(t) = −a2t2ηi0(t)− 2atξi0(t) + a2t2αi0(t)

ŷi0(t) =
−v2

i cosαi0 sinαi0

ξi0+ωi

˙̂pi0(t) = Ai0(t)p̂i0(t) + ui0(t)
+ui0(t)

[

ŷi0(t)− uT
i0(t)p̂i0(t)

]

.

(9)

To analyze the convergence of the modified estimator (9),
we define ∆i0(t) = ui0(t)(ŷi0(t) − yi0(t)) Then we obtain
the following estimation error dynamics.

˙̃pi0(t) =

[

−v2i ωi

−ωi 0

]

p̃i0(t) + ∆i0(t). (10)

According to LTV differentiator we conclude that the distur-
bance limt→∞ ∆i0(t) = 0. Then the convergence property
of the modified estimator (9) is given below.

Theorem 3.2: If (8) is satisfied, then p̃i0(t) in (10) asymp-
totically converges to 0.

The proof of Theorem 3.2 uses input-to-state stability
theory. Following almost the same argument as the proof
of Theorem 2 in [11], Theorem 3.2 can be justified. So the
detailed proof is omitted here.

IV. FUSION SCHEME

In this section, we investigate the cooperative source
localization problem using multiple mobile agents.

First we consider how to estimate the coordinate of a
neighbor mobile agent in order to use the estimation in-
formation about the source passed from the neighbor. The
estimation scheme is similar to the one of estimating the
source developed in the preceding section, except that the
neighbor being localized is not stationary.

Similar with (4), the dynamics of dij and αij can be easily
obtained as

{

ḋij = −vi cosαij − vj cosαji

α̇ij =
vi sinαij+vj sinαji

dij
− ωi.

Let uij(t) = [vj cos θij − vi vj sin θij ]
T. Taking the

derivative of both sides of d2ij = ‖pij‖2 and following the
same procedure for the stationary source, we obtain

{

ṗij(t) = Aij(t)pij(t) + uij(t)
yij(t) = uT

ij(t)pij(t)

where

Aij(t) =

[

0 ωi

−ωi 0

]

yij(t) = − (vi cosαij+vj cosαji)(vi sinαij+vj sinαji)
α̇ij+ωi

.

Here θij = θj − θi = π + αij − αji + 2kπ for some k ∈ Z.

Thus, similar to (9), we design an estimator for agent i
to estimate the relative coordinate of its neighbor j ∈ Ni,
using its bearing measurement and the information (αji and

vj) obtained via communication .


























η̇ij(t) = ξij(t)

ξ̇ij(t) = −a2t2ηij(t)− 2atξij(t) + a2t2αij(t)

ŷij(t) = − (vi cosαij+vj cosαji)(vi sinαij+vj sinαji)
ξij(t)+ωi

˙̂pij(t) = Aij(t)p̂ij(t) + uij(t)
+uij(t)

[

ŷij(t)− uT
ij(t)p̂ij(t)

]

.
(11)

Denote by p̃ij(t) = p̂ij(t) − pij(t) the estimation error and
define ∆ij(t) = uij(t)(ŷij(t) − yij(t)). Then we obtain the
error system as follows.

˙̃pij(t) = −uiju
T
ij p̃ij(t) +Aij(t)p̃ij(t) + ∆ij(t). (12)

Next we present a sufficient convergence condition for the
estimation error system.

Theorem 4.1: The estimate p̂ij(t) in (11) asymptotically
converges to pij(t) if there exist T and ǫ3 > 0 such that for
any t0 ≥ 0,
∫ t0+T

t0

∣

∣

∣

∣

ωi(t)u
T
ij(t)uij(t) +

1

ωi(t)
uT
ij(t)Aij u̇ij(t)

∣

∣

∣

∣

dt ≥ ǫ3.

(13)
Proof: Regarding ∆ij(t) as the input disturbance, we first

analyze the unforced system

˙̃pij(t) = −uij(t)u
T
ij(t)p̃ij(t) +Aij(t)p̃ij(t). (14)

We choose a quadratic function V (p̃ij) =
1
2 p̃

T
ij p̃ij . It is clear

that V (p̃ij(t)) > 0 for p̃ij(t) 6= 0. Taking the derivative of
V (p̃ij), we have

V̇ (p̃ij(t)) =
1

2
p̃Tij(t)

(

−2uiju
T
ij +AT

ij +Aij

)

p̃ij(t)

= −
[

uT
ij(t)p̃ij(t)

]2
.

It can be easily verified that V̈ (p̃ij(t)) is finite, which
means V̇ (p̃ij(t)) is uniformly continuous. Thus, according to
Barbalat’s Lemma [13] we conclude that limt→∞ V̇ (t) = 0
and therefore, limt→∞ uT

ij(t)p̃ij(t) = 0.

Moreover, it can be verified that d2

dt2
(uT

ij(t)p̃ij(t)) is
finite, which means d

dt
(uT

ij(t)p̃ij(t)) is uniformly continu-
ous. Thus, according to Barbalat’s Lemma [13], we have
limt→∞

d
dt
(uT

ij(t)p̃ij(t)) = 0.
Denote uij = [ux uy]

T and p̃ij = [x̃ ỹ]T. Then we have

lim
t→∞

ux(t)x̃(t) + uy(t)ỹ(t) = 0, (15)

lim
t→∞

(u̇x(t)−ωi(t)uy(t))x̃(t)+(u̇y(t)+ωi(t)ux(t))ỹ(t) = 0.

(16)
From the two equations (15) and (16), it can then be obtained
that

lim
t→∞

(ux(t)u̇y(t)− uy(t)u̇x(t) + ωi(t)‖uij(t)‖
2)x̃(t) = 0,

lim
t→∞

(ux(t)u̇y(t)− uy(t)u̇x(t) + ωi(t)‖uij(t)‖
2)ỹ(t) = 0.

From the condition (13), it is equivalent to say that
for any time t0, we always have

∫ t0+T

t0
|ux(t)u̇y(t) −

uy(t)u̇x(t) + ωi(t)‖uij(t)‖2|dt > ǫ3. Then we conclude
that limt→∞ x̃(t) = 0 and limt→∞ ỹ(t) = 0, i.e.,
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limt→∞ p̃ij(t) = 0. Hence the zero solution of (14) is
asymptotically stable. Using ISS, we conclude that p̂ij(t)
asymptotically converges to pij(t) because ∆ij(t) → 0 as
t → ∞. �

Remark 4.1: When the neighbor agent j remains station-
ary, i.e., vj = 0, then the estimation error dynamics (12)
turns out to be the same form as (10). Also, since vj = 0,
then uij = [−vi 0]T and the condition (13) degenerates to
∫ t0+T

t0
|ωi(t)v

2
i (t)|dt > ǫ3, which can be transformed into

the form like (8).
Remark 4.2: For the scenario that agent i and agent j have

parallel linear motions with the same constant speed, it is
clear that uij is constant and u̇x = 0, u̇y = 0, and ωi =
0. Thus, the condition (13) is not satisfied. Indeed, for this
scenario, the system (12) becomes ˙̃pij = −uiju

T
ij p̃ij where

uij is a constant vector and thus the the system (12) is not
asymptotically stable. This means that the estimator cannot
get the accurate estimate for the relative position in this case,
which is consistent to the conclusion above inferred from
(13).

Next, we develop a distributed fusion scheme for each
agent i to estimate the relative coordinate of the stationary
source even when the agent may not be able to detect the
source. As illustrated in Fig. 3, if agent i is able to estimate

Source

Σj

Σi

Σg

αj0

αij

αji

vi

ωi θi

vj

ωj

θjp̂ij

zj

p̂
j
i0

Fig. 3. Indirect estimation of the relative coordinate of the source.

agent j’s relative coordinate and agent j is able to estimate
and communicate to agent i the fused estimate for the relative
coordinate of the source, denoted as zj , in its local frame Σj ,
then the estimate of the source can be indirectly obtained by
agent i as

p̂
j
i0 = p̂ij +R(θij)zj (17)

where R(θij) means that agent j needs to rotate the relative
coordinate to the local frame Σi. Let bi be 1 if agent i has the
bearing measurement about the source and 0 otherwise. Then
we propose the following consensus-like estimation fusion
scheme for agent i.

żi(t) =Ai0(t)zi(t) + ui0(t) + bi [p̂i0(t)− zi(t)]

+
∑

j∈Ni(t)

[

p̂
j
i0(t)− zi(t)

]

, (18)

where zi represents the fused estimate of the relative coordi-
nate of the source in the local frame Σi, and p̂i0 and p̂

j
i0 are

the direct and indirect estimate of the source obtained in (9)
and (17), respectively. Then we have the following result.

Theorem 4.2: Suppose the source Ḡ is connected. If (8)
and (13) are satisfied, then the fused estimate zi(t) in (18)
converges to the relative coordinate pi0(t) of the source.

Proof: For i = 1, . . . , N , we let z̃i = zi − pi0, p̃i0 =
p̂i0−pi0, and p̃ij = p̂ij −pij . Then (18) can be transformed
to

˙̃zi =
∑

j∈Ni

[R(θij)z̃j − z̃i]− biz̃i

+Ai0(t)z̃i + bip̃i0 +
∑

j∈Ni

p̃ij .

This is a typical consensus system, in which z̃i’s (i =
1, . . . , N ) are the individual states of N agents in their own
frames. In the following, we transform every z̃i to a state in
a common frame, for example Σg . Let z̃gi = R(θi)z̃i. Then
z̃i = R(−θi)z̃

g
i . We consider ui(t) = bip̃i0 +

∑

j∈Ni
p̃ij as

an external perturbation. Thus, we obtain

˙̃zgi =Ṙ(θi)θ̇iz̃i +R(θi) ˙̃zi

=

[

0 −ωi

ωi 0

]

z̃
g
i +

∑

j∈Ni

[

z̃
g
j − z̃

g
i

]

− biz̃
g
i

+Ai0(t)z̃
g
i +R(θi)ui(t)

=
∑

j∈Ni

[

z̃
g
j − z̃

g
i

]

− biz̃
g
i + u

g
i (t),

where u
g
i (t) = R(θi)ui(t), for which the aggregated system

can be expressed as

˙̃zg = −(H ⊗ I2)z̃
g + ug(t) (19)

where z̃g = [z̃g1 , z̃
g
2 , ..., z̃

g
N ]T, ug(t) = [ug

1, u
g
2, ..., u

g
N ]T, and

H is the matrix as defined in Lemma 2.1. According to
Lemma 2.1, H is positive definite, so the zero solution of
system (19) is exponentially stable and system (19) is ISS.
According to Theorem 4.1 and Theorem 3.1, ug(t) → 0 as
t → ∞. Then by the input-to-state stability, we have that
z̃g(t) → 0 as t → ∞. Finally, we consider z̃i = R(−θi)z̃

g
i .

Since R(−θi) is non-singular and z̃
g
i (t) → 0 as t → ∞, we

know z̃i(t) → 0 as t → ∞. Thus the conclusion follows. �

V. SIMULATION

In this section, we present a simulation of four mobile
agents for the task of cooperative source localization. To
demonstrate the performance and effectiveness of the pro-
posed estimation scheme, we set the stationary source at
the origin and let each of the four mobile agents labeled
1, 2, . . . , 4 take a uniform circular motion around the station-
ary source labeled 0 along the counterclockwise direction.
Both the radius and the moving speeds are 1, 2, 3, and
4 for agent 1, 2, . . . , 4, respectively. The sensing graph is
depicted in Fig. 4. That is, agent 1 and 2 have direct bearing
measurements about the source while agent 3 and agent 4
can only have indirect estimate through their neighbors. It
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Fig. 4. Sensing graph Ḡ.

can be simply observed that Ḡ is connected. Moreover, it
can be verified that for each agent, (8) and (13) hold. We
adopt the estimator described in (9), (11) and (18) to estimate
the relative coordinate of the source for every agent. Then,
by Theorem 4.2, the fused estimate zi(t) converges to the
relative coordinate of the source in Σi. The evolution curves
of the estimation errors ‖zi(t) − pi0‖ (i = 1, . . . , 4) are
plotted in Fig. 5, which shows the errors converge to zero.
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‖z1(t)− p10‖
‖z2(t)− p20‖
‖z3(t)− p30‖
‖z4(t)− p40‖

Fig. 5. The evolution of ‖zi(t) − pi0‖, i = 1, 2, . . . , 4.

We perform another simulation for our estimation scheme
by taking into account the measurement noises. Bounded
noises are added to the bearing measurements while the
other setup remains the same as for the simulation without
noises. The simulation result is shown in Fig. 6, depicting the
estimation errors ‖zi(t)−pi0‖ (i = 1, . . . , 4) in the presence
of measurement noises. From Fig. 6, we can see that with
bounded measurement noises, the estimation errors are also
ultimately bounded.
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Fig. 6. The evolution of ‖zi(t) − pi0‖, i = 1, 2, . . . , 4.

VI. CONCLUSION

This paper studies the source localization problem based
on bearing measurement information. First, an estimator is
developed to estimate the relative coordinate of a stationary
or a moving object in its local frame with the help of a linear
time-varying differentiator. Second, a consensus-like fusion
scheme is proposed for cooperative localization by fusing
the estimation from the neighboring agents. The proposed
estimation scheme only requires the exchange of agents’
local information and also their estimates, yet the estimate of
every agent is globally asymptotically convergent as long as
the sensing graph is connected. There are a few interesting
research issues arising from the setup introduced in this paper
such as robustness to measurement noises, communication
delays, and switching sensing topology.
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