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Distributed source localization of multi-agent systems with bearing

angle measurements

Che Lin1, Zhiyun Lin1,2,∗, Ronghao Zheng1, Gangfeng Yan1, Guoqiang Mao3

Abstract—This note deals with the distributed source local-
ization problem by considering a group of unicycle-type agents.

Without the need of GPS and compass, we develop a distributed
source localization scheme based on bearing angle measurements
about neighbors. It is shown that if the sensing and communi-
cation graph is connected and the relative motion of every pair
of neighboring agents satisfies a persistent excitation condition,
then every agent is able to estimate the relative coordinate of the
source asymptotically.

Index Terms—Multi-agent system, source localization, bearing
information.

I. INTRODUCTION

This note is concerned with a network of mobile robots

that are sent out to perform source localization. This can

be found in many applications such as search and rescue,

surveillance, etc. That is, if the source is within the field-of-

view of a robot, then that robot will get relative measurements

and localize the source in its local frame. Otherwise, the robot

may need assistance from its neighboring robots to compute

the estimate of the source’s location. However, due to the

absence of a commonly agreed global coordinate system such

as applications underwater or inside buildings where GPS is

unavailable, a necessity for distributed collaborative source

localization is that each agent needs also to determine the

relative positions of its neighboring agents in its local frame of

reference. Moreover, it is often desired that no central fusion

center or leader agent exists to collect all relative measure-

ments and combine them together to compute the estimate

of the source. In this note, we are interested in developing

a distributed source localization algorithm for a network of

agents, which collaborate by exchanging appropriate messages

between neighboring agents, such that every agent is able to

determine the relative position of the source in its local frame.

Related problems have been considered in the past, includ-

ing acoustic source localization [1], [2], single landmark based

localization [3], collaborative target tracking [4], [5], coop-

erative localization and formation [6], [7], circumnavigation

[8], [9], etc. Depending on the type of relative measurements,

[1] and [2] consider TDOA measurements for a static sensor
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network to identify the acoustic source location, while [10]

and [11] consider distance measurements for a mobile robot

or a network of mobile robots to localize the target of interest.

As an alternative, bearing information, referring to the mea-

surement of the angle of arrival with respect to the local frame

on an agent, can also be used in source localization [8], [12]–

[14]. Bearing measurement techniques are passive methods,

which are particularly preferred in the scenarios where the

agents must maintain radio silence.

In this note, we aim to solve the distributed source local-

ization problem based on bearing measurements. We consider

the nonholonomic unicycle model, which has been employed

in many studies of distributed robotic systems to model a

differentially driven mobile robot [15] and aerial vehicle

[16]. Differing from the point-mass model assumed in the

aforementioned works, the local frame on each unicycle-type

agent rotates according to its kinematic motion, which causes

extra challenges in relative localization, in particular in the

scenarios where no GPS and no compass are available to

provide each agent its own absolute position and orienta-

tion. However, we do succeed in developing a simple and

provably convergent distributed source localization algorithm.

It is shown that if the graph describing the communication

and sensing relationship among the agents and the source is

connected and if the relative motion of any pair of neighboring

agents satisfies a persistent excitation condition, then the

estimate by every agent can asymptotically converge to the

true relative coordinate of the source in its local frame. The

novelty of our work is in the development of a distributed

estimation scheme that takes into consideration of the more

complicated nonholonomic-constraint motion and does not

require a commonly known coordinate system, which has not

been addressed in [8], [12], [13]. Compared to our earlier work

[14], this note develops a new estimator that does not require

to know the changing rate of the bearing angle, which is not

easy to be obtained precisely. Moreover, based on this new

estimator, the agents are able to localize the source in the case

when the agents perform uniform linear motions, for which the

localization scheme in [14] does not work.

II. PROBLEMS AND PRELIMINARIES

This section presents a graph model for a network of

agents and then formulates the distributed source localization

problem.

A. Graph Modeling

We consider a setup with a stationary source labeled as 0,

and N mobile agents labeled as 1, 2, . . . , N .
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First, we use an undirected graph G = (V , E) to describe the

interconnection structure of the N agents. The node set V =
{1, 2, . . . , N} is defined such that each node i corresponds to

an agent, and the edge set E ⊆ V × V is defined such that

(i, j) ∈ E if and only if agents i and j are neighbors in the

sense that they can mutually measure the bearing angle of the

other and can communicate to each other. We denote by Ni

the neighbor set of node i in G. Moreover, we let A = [aij ] ∈
R

N×N be the adjacency matrix associated with G, for which

aij = aji = 1 if (i, j) is an edge in G and aij = 0 otherwise.

A diagonal matrix D = diag{d1, d2, . . . , dN} ∈ R
N×N is

called the degree matrix of G, whose diagonal elements di =∑

j∈Ni
aij for i = 1, . . . , N . The Laplacian of the graph G is

defined as L = D −A.

Second, we add the source as a new node to the graph G
and construct an augmented graph, denoted by Ḡ = (V̄ , Ē).
The node set is V̄ = {0} ∪ V and the edge set is Ē = Eo ∪ E
where an edge (i, 0) is in Eo if and only if the source is a

neighbor of agent i in the sense that agent i can measure

the bearing angle of the source. Though no bidirectional

information exchange exists between an agent and the source,

we still use an undirected edge connecting node i and 0 for

simplicity. The graph Ḡ is connected if there exist at least

a path between each pair of nodes. We then denote by N̄i

the set of agent i’s neighbors in Ḡ. Furthermore, we define a

diagonal matrix B ∈ R
N×N to be the source adjacency matrix

associated with Ḡ with diagonal elements bi, i = 1, . . . , N ,

where bi = 1 if node 0 ∈ N̄i and bi = 0 otherwise. Next we

recall a preliminary result about the matrix H = L+B.

Lemma 2.1 ( [17]): The matrix H = L + B is positive

definite if and only if Ḡ is connected.

We give a simple example consisting of four agents and

one source. The graphs Ḡ and G associated with the system

are shown in Fig. 1.For this example, Ḡ is connected. It can

be checked that the matrix H in Lemma 2.1 is

H =







1 0 0 0
0 3 −1 −1
0 −1 1 0
0 −1 0 1







and is positive definite.

Ḡ G

11

22

33
44

0

Fig. 1. An example of Ḡ and G.

B. Problem Statement

This note addresses the distributed source localization prob-

lem, for which the goal is to let each agent asymptotically

estimate the relative coordinate of the stationary source in its

own local frame.

In this note, we use pgi = [xg
i ygi ]

T to represent the

coordinate of agent i in the global frame Σg . Assume each

agent is governed by a unicycle model, where θi is its

orientation within Σg. With these three states xg
i , ygi and θi,

the motion equation of agent i in the global frame Σg is






ẋg
i = vi cos(θi)

ẏgi = vi sin(θi)

θ̇i = ωi

(1)

where vi and ωi are the linear and angular speed, respectively.

We consider a local frame Σi attached to agent i, with

its positive x-axis coincident with the heading of agent i.
We suppose that the bearing angle αij can be measured by

agent i if j is its neighbor. Note that αij is defined within

the local frame Σi as no global frame is known by the agents

(see Fig. 2 for an example). Moreover, we suppose that the

linear speed vi and the angular speed ωi are available to agent

i by its equipped speedometer. The combination of linear

speed vi, angular speed ωi and bearing angle αij is called

the measurement data by agent i. In addition, if j ∈ Ni (i.e.

neighbor j is a mobile agent rather than the source), then the

measurement data by agent j can be communicated to agent i,
which is called the communication data available by agent i.

Σj

Σi

Σg

αi0

αij

αji

vi

vj

ωi

θi

ωj

θj

dij

di0

pij

pi0

Source

Fig. 2. Local frame and bearing angle measurement.

Let pi0 be the relative coordinate of the source in agent i’s
local frame Σi, that is,pi0 = R(−θi)(p

g
0 − pgi ), where pg0 is

the absolute coordinate of the source in the global frame Σg

and R(·) =

[
cos(·) − sin(·)
sin(·) cos(·)

]

is the rotation matrix. The

distributed source localization problem is stated as follows.

Problem 2.1: Design a distributed source localization al-

gorithm such that each agent only utilizes the measurement

data and communication data available to it, yet it is able to

asymptotically estimate the relative coordinate of the source

(i.e., the estimate converges to pi0 as t → ∞).

To make the distributed source localization problem solvable

and make the potential solutions practically meaningful, we

make the following assumptions.

Assumption 2.1: The linear speed vi(t) and the angular

speed ωi(t) of each agent i = 1, . . . , N are continuously

differentiable and bounded.

Assumption 2.2: The agents do not collide with each other,

i.e., the distance dij between any pair of agents is greater than

the safe distance dsafe for any i and j.

Assumption 2.3: All the agents do not communicate and

exchange measurement data with the source.
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III. DISTRIBUTED SOURCE LOCALIZATION

This section is going to present a solution to the distributed

source localization problem.

A. Relative Motion Dynamics

As we assume in this note, there is no global coordinate

system available and all measurements and estimation are

made on local frames attached to the mobile agents. So in

this subsection, we will derive the relative motion dynamics

of each agent relative to its neighbor.

Consider an agent i and a neighbor of agent i, say agent j.

Then pgij = pgj − pgi is the relative coordinate of agent j and

agent i in the global frame Σg. Within the local frame Σi

attached to agent i, the relative coordinate of agent j and agent

i can then be written as pij = R(−θi)p
g
ij , where R(·) is the

rotation matrix in the plane. An illustration is shown in Fig. 3.

xg
j

ygj

xg
i

ygi
vi

vj

pij pgij

ϕij%ij αij

αji

Fig. 3. Relative motion.

Denote the relative orientation angle θij between the local

frames Σi and Σj as θij = θj − θi. In terms of the relative

coordinate pij in the local frame Σi, the relative motion

dynamics can be obtained from (1) as follows.

ṗij = Ṙ(−θi)p
g
ij +R(−θi)ṗ

g
ij

= ωi
dR(−θi)

dθi
R(θi)pij +R(−θi)ṗ

g
ij

=

[
0 ωi

−ωi 0

]

pij +

[
vj cos(θij)− vi

vj sin(θij)

]

.

Writing the relative motion dynamics in the polar coordi-

nate system in terms of the distance dij between agent j and

i and the bearing angle αij , we have
{

ḋij = −vi cos(αij)− vj cos(αji)

α̇ij =
vi sin(αij)+vj sin(αji)

dij
− ωi.

(2)

Define the unit vector along the line of sight as ϕij :=
[cos(αij) sin(αij)]

T, and define the unit vector rotated

counterclockwise π/2 from ϕij (see Fig. 3.) as %ij :=
[− sin(αij) cos(αij)]

T. Then it is clear that 0 = %T

ijpij .

For neat expression, we denote Ai =

[
0 ωi

−ωi 0

]

and

denote vij = [vj cos(θij)−vi vj sin(θij)]
T, that is the relative

velocity of agent i with respect to agent j. Treating 0 = %T

ijpij
as the measurement equation, then we have

{
ṗij = Aipij + vij
0 = %T

ijpij .
(3)

In particular, when neighbor j is the source (vj = 0), then

the system (3) becomes
{

ṗi0 = Aipi0 + vi0
0 = %T

i0pi0
(4)

where vi0 = [−vi 0]
T.

Remark 3.1: For the relative orientation angle θij , it can

be calculated in terms of the bearing angle measurements, i.e.,

θij = PV(π+αij−αji), where PV(x) , [(x+π) mod 2π]−π
[18]. Therefore, the relative velocity vij in (3) for j ∈ Ni

can be known by agent i based on its measurement data and

communication data from agent j. But vi0 in (4) can be known

by agent i based only on its measurement data and so agent i
does not need to communicate with the source. Moreover, it

is worth to point out that Ai in (3) and (4) relies only on the

angular speed ωi, while %ij relies only on the bearing angle

αij . In brief, all the system parameters are available locally

by agent i such that it is possible to make an estimation in a

distributed way.

B. Distributed Source Localization Algorithm

In this subsection, we are going to develop a distributed

source localization algorithm such that every agent i asymp-

totically estimates the relative coordinate of the source in its

own local frame no matter whether it is able to detect the

source or not.

Σj

Σi

αj0

αij

αji

θi

θj

p̂ij

zj

zi

Source

Fig. 4. The setup of distributed source localization.

As illustrated in Fig. 4, we denote by zi, i = 1, . . . , N ,

the estimate of the relative coordinate of the source by agent

i in its local frame Σi. For notation consistency, we also let

z0 = 0. Moreover, we denote by p̂ij , i = 1, . . . , N and j ∈ N̄i,

the pairwise estimate of the relative coordinate of neighbor

agent j by agent i in its local frame Σi. Here, we want to

clarify that if the source is a neighbor of agent i, the pairwise

estimate p̂i0 is different from the estimate zi as the latter may

be updated using more pairwise estimate information from

other neighbors.

To solve the source localization problem, we propose the

following distributed source localization algorithm

˙̂pij = Aip̂ij + vij
︸ ︷︷ ︸

Prediction

− %ij%
T

ij p̂ij
︸ ︷︷ ︸

Innovation

, ∀j ∈ N̄i (5a)

żi = Aizi + vi0
︸ ︷︷ ︸

Prediction

+
∑

j∈N̄i

[p̂ij − (zi −R(θij)zj)]

︸ ︷︷ ︸

Innovation

(5b)
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where i = 1, . . . , N .

Remark 3.2: Eq. (5a) gives a pairwise estimation scheme

to estimate the relative coordinate of a neighbor and Eq. (5b)

provides an estimation scheme to estimate the relative coor-

dinate of the source by using all the pairwise estimates of

its neighbors. Both of them use the prediction + innovation

structure. In Eq. (5a), the first part is the prediction term

according to the dynamical model of the relative motion

between each pair of agents. The second part %ij%
T
ij p̂ij is the

orthogonal projection of p̂ij onto the orthogonal compliment

of the bearing. This part is zero only if the estimated relative

bearing is consistent to the measured bearing. The similar idea

was also appeared in [8] for point mass agents. In Eq. (5b),

the first part Aizi + vi0 is the prediction term according to

the relative motion dynamics with respect to the source and

the second part is the innovation term that compares with the

pairwise estimates p̂ij of agent i’s neighbors obtained from

(5a) and the relative coordinates zi − R(θij)zj of agent i’s
neighbors derived from the estimates about the source by agent

i in agent i’s local frame as well as by agent i’s neighbors in

their own local frames. The presence of the rotation matrix

R(θij) is to make the coordinates all in agent i’s local frame

Σi.

Note that in the distributed source localization algorithm (5),

the required information includes the measurement data (agent

i’s angular speed ωi and linear speed vi, and the bearing angle

measurement αij measured by agent i) and the communication

data from agent i’s neighbors (the linear speed vj , the bearing

angle measurement αji measured by agent j, and agent j’s

estimate zj for j ∈ Ni). Note that the agents do not need to

communicate with the source.

Next, we present our main result on the convergence of the

distributed source localization algorithm.

Theorem 3.1: Suppose that Ḡ is connected. If there exist

ε > 0 and T > 0 such that for all t > 0, i ∈ V and j ∈ N̄i,
∫ t+T

t

∣
∣
∣
∣

vi sin(αij) + vj sin(αji)

dij

∣
∣
∣
∣
dτ ≥ ε, (6)

then the estimate zi(t) in (5) converges to the true relative

coordinate pi0(t) of the source.

Proof: First, we show that if (6) holds, then the estimate

p̂ij in (5a) converges to the true relative coordinate pij of its

neighbor. To this end, we define the estimation error p̃ij =
p̂ij − pij . Then the error dynamics is obtained from (3) and

(5a) as
˙̃pij = Aip̃ij − %ij%

T

ij p̃ij . (7)

Consider the positive definite function V (p̃ij) = 1
2 p̃

T

ij p̃ij .
Taking the derivative of V along the solution of system (7),

we have

V̇ (p̃ij) = 1
2 p̃

T
ij

[
−2%ij(t)%

T

ij(t) +Ai(t) +AT

i(t)
]
p̃ij

= 1
2 p̃

T
ij

[
−2%ij(t)%

T

ij(t)
]
p̃ij = −

[
%T

ij(t)p̃ij
]2

,

which is negative semi-definite. So we know that V (p̃ij)
and p̃ij are upper bounded and V (p̃ij(t)) has a limit as

t → ∞. Next we check the boundedness of V̈ (p̃ij) =
−2[%T

ij p̃ij ][%̇
T

ij p̃ij+%T

ij
˙̃pij ]. Since p̃ij is upper bounded, consid-

ering the formula of ˙̃pij in (7) and Assumption 2.1, we know

that ˙̃pij is upper bounded. Moreover, since %̇ij = −α̇ijϕij ,

by considering Assumption 2.1 and 2.2, we conclude from (2)

that α̇ij is upper bounded and so is %̇. Hence, it follows from

the formula of V̈ (p̃ij) that V̈ (p̃ij) is upper bounded, which

implies that V̇ (p̃ij) is uniformly continuous. Thus, we apply

Barbalat’s lemma and obtain that V̇ (p̃ij(t)) → 0 as t → ∞.

This is equivalent to

lim
t→∞

%T

ij(t)p̃ij(t) = 0. (8)

Denote η = %T

ij p̃ij and ρ =
vi sin(αij)+vj sin(αji)

dij
. Taking the

derivative of η and utilizing (2) and (7), it is obtained after

several steps of mathematical manipulation that

η̇ = %̇T

ij p̃ij + %T

ij
˙̃pij = −ρϕT

ij p̃ij − η. (9)

Similarly, we can know that η̈ is upper bounded under As-

sumption 2.1 and 2.2. So η̇ is uniformly continuous. Then,

applying Barbalat’s lemma again, we obtain that η̇ → 0 as

t → ∞, which implies from (9) that

lim
t→∞

ρ(t)ϕT

ij(t)p̃ij(t) = 0. (10)

Let P =

[
− sin(αij) cos(αij)
ρ cos(αij) ρ sin(αij)

]

and let δ(t) =

P (t)p̃ij(t). Then eq. (8) and (10) can be rewritten in a

compact form, i.e., limt→∞ δ(t) = limt→∞ P (t)p̃ij(t) =
0. Notice that the determinant of P (t) is det(P (t)) =
−ρ(t). So if condition (6) holds, there must exist an

infinite sequence [t1, t2, ...tk, ...] satisfying tk → ∞
as k → ∞, for which |det(P (tk))| ≥ ε

T
. Hence,

P (tk), k = 1, 2, . . . , is non-singular and the entries in

P−1(tk) are uniformly bounded. So we can conclude that

limk→∞ p̃ij(tk) = limk→∞ P−1(tk)δ(tk) = 0, implying that

limk→∞ V (p̃ij(tk)) = 0. Furthermore, notice that V (p̃ij(t)) is

continuous and non-increasing. It follows that V (p̃ij(t)) → 0
as t → ∞, or equivalently to say that the estimate p̂ij
converges to the true relative coordinate pij .

Second, we show that the estimate zi(t) in (5b) converges

to the true relative coordinate pi0(t) of the source.

For i = 0, 1, . . . , N , we define the estimation error as z̃i =
zi − pi0. For the source node, namely i = 0, we have z̃0 = 0
as both z0 and p00 equal to 0. Then the error dynamics of z̃i
can be obtained from (5), which is

˙̃zi =
∑

j∈N̄i

[R(θij)z̃j − z̃i] +Aiz̃i +
∑

j∈N̄i

p̃ij . (11)

Notice that z̃i, i = 1, . . . , N , is the estimation error de-

fined in agent i’s local frame. For convenience of analysis,

we transform every estimation error z̃i to the one in the

global frame Σg. That is, we let z̃gi = R(θi)z̃i and let

ug
i = R(θi)

∑

j∈N̄i
p̃ij . Expressing in terms of these global

coordinates, (11) can be written as

˙̃zgi = d
dθi

R(θi)θ̇iz̃i +R(θi) ˙̃zi

= −Aiz̃
g
i +

∑

j∈N̄i
(z̃gj − z̃gi ) +Aiz̃

g
i +R(θi)

∑

j∈N̄i
p̃ij

=
∑

j∈N̄i
(z̃gj − z̃gi ) + ug

i .

Denote z̃g = [z̃g1 , ..., z̃
g
N ]T and ug = [ug

1, u
g
2, ..., u

g
N ]T. Then we
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obtain the following aggregated system

˙̃zg = −(H ⊗ I2)z̃
g + ug, (12)

where H is the matrix defined in Subsection II-A, ⊗ represents

the Kronecker product, and I2 is the 2-by-2 identity matrix.

Note that p̃ij(t) → 0 as we just showed, so ug(t) converges

to 0 as well. On the other hand, by Lemma 2.1, H is positive

definite, so the matrix −(H ⊗ I2) is Hurwitz. For a linear

system ẋ = Fx + Gu with F Hurwitz, if x is a solution

on [0,∞) corresponding to an input u ∈ L∞ with u(t) →
0 as t → ∞, then x(t) → 0 as t → ∞ [19]. Hence, we

conclude that for the system (12), limt→∞ ‖z̃g(t)‖ = 0. This

implies that z̃i(t) = R(−θi)z̃
g
i (t) converges to zero for all i =

1, . . . , N . In other words, the estimate zi(t) in (5b) converges

to the true relative coordinate pi0(t). �

Remark 3.3: Now we come to understand the condition

(6) in Theorem 3.1. First, the condition (6) implies that in

order to correctly estimate the relative position of a neighbor,

an agent cannot be too far away from its neighbor (i.e.,

dij in the denominator of (6) cannot be too large all the

time). This is consistent to our intuition. Second, the condition

(6) implies that in order to correctly estimate the relative

position of a neighbor, an agent cannot remain relatively

stationary with respect to its neighbor or move relatively

straight towards its neighbor. This can be observed by looking

at the numerator term vi sin(αij) + vj sin(αji) in (6). By

several steps of mathematical manipulation, it can be shown

that vi sin(αij) + vj sin(αji) = %T

ijvij where vij(t) is the

relative velocity of agent i relative to agent j, defined in

Subsection III-A. As shown in Fig. 5, the unit vector %ij is

orthogonal to the line of sight. So if the two agents remain

relatively stationary (i.e. vij = 0) or the two agents move

relatively straight towards each other (i.e. vij is coincident with

the line of sight), then by intuition it is known that one agent is

not able to estimate the relative position of the other by using

only the bearing measurement. The condition (6) excludes

such a case as well. From the above discussion, we can also

see that the relative motion %T

ijvij and the relative distance dij
are the two main factors, which affect the convergence rate of

the estimator.

Σi

αij

x

y

j

vij

%ij

Fig. 5. Intuitions behind the condition (6).

Remark 3.4: If a neighbor j of agent i is just the source

(labeled 0), which is stationary, then the condition (6) degen-

erates to ∫ t+T

t

∣
∣
∣
∣

vi sinαi0

di0

∣
∣
∣
∣
dτ ≥ ε. (13)

The condition (13) is indeed easier to understand as it requires

the distance di0 to the source cannot be too large, the agent

cannot remain stationary (i.e. vi = 0), and the agent cannot

move straight towards the source (i.e. αi0 = 0) all the time.

Remark 3.5: The condition (6) is mainly for each pair of

neighbors. A similar integral condition was also developed

in [20] for a double-integrator motion. It will be interesting

if we can find a necessary and sufficient condition about the

collective motion of the agents such that the source localization

problem is solvable. This, however, may be possible by

adopting the idea of cooperative persistent excitation from

[21].

IV. SIMULATION

In this section, we present a simulation of four mobile

agents (labeled 1, 2, . . . , 4) for the distributed source local-

ization problem.

Without loss of generality, we set the stationary source

(labeled 0) at the origin of a global coordinate system and

let each agent take different types of motion in the plane. The

linear speed, angular speed, and the initial position of the four

agents are described in Table I. The trajectories resulting from

these parameters are depicted in Fig. 6. It can be verified that

the condition (6) in Theorem 3.1 holds.

TABLE I
PARAMETERS OF THE FOUR MOBILE AGENTS.

vi[m/s] ωi[rad/s] pgi (0)
1 cos(t) 0.4 + 0.1 cos(t) (1, 0)
2 2 0.5 + 0.1 cos(t) (−2, 0)
3 3 0.65 (−1.77, 1.77)
4 3.4 + 0.2 sin(t) 0.6 + 0.1 cos(t) (−2.83,−2.83)
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Fig. 6. The trajectories of the four agents in the plane.

The graph Ḡ describing the interconnection relationship

among the four agents and the source is shown in Fig. 1.

That is, agent 1 and 2 can directly measure the bearing angles

of the source in their own local frames, while agent 3 and 4
can not. But Ḡ is connected as we can see.

We carry out two simulation studies by applying the

distributed source localization algorithm (5) to estimate the

relative coordinate of the source by each agent.
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First, we assume that the measurements of the bearing

angle αij , the linear speed vi and the angular speed ωi are

noiseless. In such a setup, the estimation errors ‖zi(t)− pi0‖
(i = 1, . . . , 4) in the simulation are shown in Fig. 7 by taking

t = 100s. From this simulation, we can see that the estimation

errors converge to 0 as we expect.
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Fig. 7. The estimation errors ‖zi(t)− pi0‖, i = 1, . . . , 4, for the noiseless
case.

Second, we assume that the measurements of the bearing

angle αij , the linear speed vi and the angular speed ωi contain

measurement noises. In this simulation, we add 0.05 ∗ randn

(the normally distributed random numbers in Matlab) to the

bearing angle measurement αij , the linear speed measurement

vi as well as the angular speed measurement ωi. In such

a scenario with measurement noises, we run the distributed

source localization algorithm (5) and the estimation errors are

shown in Fig. 8. From this simulation, we can still see that with

white measurement noises, the estimation errors still converge

and approach close to 0.
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Fig. 8. The estimation errors ‖zi(t) − pi0‖, i = 1, . . . , 4, for the noisy
measurement case.

V. CONCLUSION

This note studies the relative localization problem for a

stationary source by considering a group of unicycle-type

agents based on bearing information. A distributed source

localization scheme is developed for the purpose by exchang-

ing appropriate messages between neighboring agents. Many

interesting problems arising from this research deserve further

investigation. Examples include distributed localization for

a mobile source or multiple sources, and distributed source

localization under time-varying or position-dependent sensing

graphs.
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