
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

1

DATS: Dispersive Stable Task Scheduling
in Heterogeneous Fog Networks

Zening Liu, Xiumei Yang, Yang Yang, Fellow, IEEE, Kunlun Wang, and Guoqiang Mao, Fellow, IEEE

Abstract—Fog computing has risen as a promising architecture
for future Internet of Things (IoT), 5G and embedded artifi-
cial intelligence (AI) applications with stringent service delay
requirements along the cloud to things continuum. For a typical
fog network consisting of heterogeneous fog nodes (FNs) with
different computing resources and communication capabilities,
how to effectively schedule complex computation tasks to multiple
FNs in the neighborhood to achieve minimal service delay is a
fundamental challenge. To tackle this problem, a new concept
named processing efficiency (PE) is first defined to incorporate
computing resources and communication capacities. Further,
to minimize service delay in heterogeneous fog networks, a
scalable, stable and decentralized algorithm, namely dispersive
stable task scheduling (DATS), is proposed and evaluated, which
consists of two key components: (i) a PE-based progressive
computing resources competition (PCRC) and (ii) a QoE-oriented
synchronized task scheduling (STS). Theoretical proofs and
simulation results show that the proposed DATS algorithm
can achieve effective tradeoff between computing resources and
communication capabilities, thus significantly reducing service
delay in heterogeneous fog networks.

Index Terms—Fog computing, task scheduling, computation
offloading, matching theory.

I. INTRODUCTION

With the rapid development of Internet of Things (IoT), 5G
and embedded artificial intelligence (AI), a seamless connec-
tivity of numerous smart devices is to be established, and a
number of new applications and services, such as connected
vehicles, interactive gaming and augmented reality (AR), have
sprung up [1]. On one hand, the emerging various applica-
tions and the massive diverse data from devices are typically
resource-hungry; on the other hand, smart devices are usually
resource-constrained because of physical size constraints and
energy consumption consideration [2]. To relief such tension,
mobile cloud computing (MCC) has been proposed to allow
end devices to offload their computation-intensive tasks to
the remote resource-rich cloud via wireless connections [3].

Z. Liu and Y. Yang are with the School of Information Science and
Technology, ShanghaiTech University, Shanghai 201210, China, with the
University of Chinese Academy of Sciences, Beijing 101408, China, and also
with the Shanghai Institute of Fog Computing Technology, Shanghai 201210,
China.

X. Yang and K. Wang are with the Shanghai Institute of Microsystem and
Information Technology, Chinese Academy of Sciences, Shanghai 200050,
China, and also with the Shanghai Institute of Fog Computing Technology,
Shanghai 201210, China.

G. Mao is with the School of Computing and Communication, University
of Technology Sydney, Sydney, NSW 2007, Australia.

Corresponding author: Yang Yang (yang.yang@wico.sh).
Copyright c⃝ 2012 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

However, due to intermittent wireless connections, scarce
spectrum resources, and high propagation delay, MCC can not
meet the stringent ultra-reliable and low-latency requirements
of many applications, such as connected vehicles and AR.

Therefore, an emerging paradigm called fog computing
has been introduced [4]. Fog computing transfers computing,
storage, control and networking functions to the continuum
along the cloud to things. It allows a crowd of neighbouring
end-user, network edge and access devices to cooperatively
accomplish resource-hungry tasks. As a result, a number of
tasks originally targeting at the cloud can be effectively com-
pleted at edge by surrounding dispersive computing resources.
Since fog computing carries out a considerable amount of
data storage, computing and communication near end users,
it enables low-latency, high-reliability, location-awareness and
privacy-preservation services [5], [6].

In fog computing, how to effectively map computation tasks
to a group of available heterogeneous fog nodes (FNs) is
a fundamental challenge [5]. There have been some works
focusing on minimizing the end-to-end service delay in fog
computing [7]–[13]. Souza et al. [8] introduced a highly
abstract hierarchical architecture called Combined Fog-Cloud
(CFC) in an IoT scenario. They formulated the service al-
location problem as an integer linear programming problem
to minimize the latency. Yousefpour et al. [9] and Masri
et al. [10] proposed two general frameworks for IoT-fog-
cloud scenarios. In these two frameworks, FNs could not
only execute tasks or forward tasks to the cloud, but also
collaborate with each other. Through communicating with
neighboring FNs, they could find a best one to execute tasks
to minimize the service delay. However, both frameworks
only enabled a task to be offloaded to and executed by a
single FN, which could not meet the ultra-latency requirement
since the computational capability of a single FN was limited.
One promising solution is to execute tasks via distributed
computing by multiple FNs. In [11] and [12], the authors
naturally considered the scenario where a task could be splitted
into fragments and offloaded to multiple FNs for distributed
computing. Shih et al. [11] presented a framework for Fog-
Radio Access Network (F-RAN) to support ultra low-latency
applications. In this framework, a master F-RAN node was
responsible for deciding the optimal number of participating
FNs and choosing suitable ones from the candidates to join
the tasks execution. Besides, the master FN was also in
charge of deciding the number of allocated radio resource
blocks and the number of assigned tasks for each participating
FN. Lee et al. [12] proposed a framework to minimize the
maximum computation latency under uncertainty on the arrival

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

2

of neighboring FNs. The framework utilized the queuing
theory to model the process of computation offloading and
adopted the online secretary algorithm to select the optimal
set of FNs. Nonetheless, both of them only considered the
simple single-user scenario. Shih et al. [11] extended their
work to the multi-user scenario in [13]. In [13], a heuristic
algorithm based on dynamic programming was developed to
minimize the total service latency among all users.

In addition to the latency minimization, the energy-latency
tradeoff is another focus of research [14]–[21]. Pu et al. [14]
proposed a novel mobile computation offloading framework,
namely device-to-device (D2D) fogging, for fog computing,
where mobile users could share the communication and com-
putation resources with each other. They developed an online
computation offloading algorithm leveraging Lyapunov opti-
mization to minimize the time-average energy consumption of
all users. They extended their work in [15] to take energy-
latency tradeoff into account. In [15], devices were allowed
to flexibly choose one of three among local mobile execution,
D2D offloaded execution and cloud offloaded execution. The
total task execution cost, including energy and latency, was
minimized by transforming it to a minimum weight matching
problem in a three-layer graph and applying the Edmonds’s
Blossom algorithm to solve it. Ti et al. [16] introduced
a computation offloading solution exploiting computing re-
sources from both mobile edge cloud and mobile peers. It
enabled the source users, the fixed helping users and the
edge cloud to collaborate with each other to execute tasks.
The optimization problem was formulated into a minimum
weighted energy consumption problem subject to the resources
constraints and the latency requirements, and solved by a
method based on the successive convex approximation and
the geometric programming. Meng et al. [17] considered a
hybrid computation offloading problem with two types of
computation offloading destinations: cloud computing servers
and fog computing servers, and minimized the total energy
consumption under the given delay constraints. A similar
problem was investigated by Deng et al. [18]. The authors
considered the problem of minimizing the power consumption
of the fog-cloud computing system while guaranteeing the
required delay. They decomposed the primal problem into
three subproblems and solved them via interior-point method,
generalized Benders decomposition method and Hungarian
method, respectively.

However, there remain many challenges and problems re-
quiring to be addressed and analyzed in heterogeneous fog
networks. For example,

• A multi-user system model where each task can be
executed via distributed computing by multiple FNs is
more desirable, compared with single-user scenarios [11],
[12], [17], [21] or multi-user scenarios where each task
can be only executed by single FN [9], [10], [14], [15].

• A solution with scalable and decentralized capabilities
is much more preferred, while most works run in a
centralized way with high computational complexity and
heavy control signaling [13]–[21].

• The stability of solutions, an outcome where no partici-
pants want to deviate, is also an important concern, which

is ignored by most of the existing works [8]–[21].

In fog computing networks, it is common that multiple
end devices have the demand for computation offloading
simultaneously. Furthermore, due to the limited computing
capability of a single FN, it is reasonable to execute tasks via
distributed computing by multiple FNs to meet the ultra-low
latency requirement. Besides, with the explosion of various
devices, optimal solutions, which are accompanied by global
information and centralized control, will yield significant
communication overhead and high computation complexity,
which is a great obstacle to achieving low-latency and agile
response. Finally, since devices are endowed with intelligence,
they become intelligent and powerful, and meanwhile rational
and selfish. Optimal solutions usually lead to an unstable
outcome where some participants want to deviate.

Therefore, in this paper, we consider a general multi-user
system model for a typical heterogeneous fog network, where
tasks can be simultaneously offloaded to and executed by
multiple dispersive FNs along with the cloud via distributed
computing. We minimize the service delay of the network and
develop a scalable, stable and decentralized algorithm based
on the stable matching theory.

Compared with existing works, the main contributions of
this paper are summarized as follows.

• A general multi-user system model for a typical hetero-
geneous fog network is proposed, where dispersive task
nodes can simultaneously offload computation tasks to
multiple neighboring helper nodes with heterogeneous
capabilities and the cloud so that tasks can be executed in
parallel. More importantly, a new concept named process-
ing efficiency (PE) is defined to incorporate computing
resources and communication capabilities.

• To minimize service delay in heterogeneous fog net-
works, a scalable, stable and decentralized algorith-
m called dispersive stable task scheduling (DATS) is
proposed, which consists of two key components: (i)
a PE-based progressive computing resources competi-
tion (PCRC) and (ii) a QoE-oriented synchronized task
scheduling (STS). Particularly, to tackle the critical diffi-
culties of constructing the preference profile in PCRC, we
further develop the progressive most-preferred coalition
selection (PMCS) algorithm, a key step in PCRC.

• Extensive simulations are conducted to demonstrate the
performance of the proposed DATS algorithm. Theoret-
ical proofs and simulation results show that the DATS
algorithm can achieve effective tradeoff between com-
puting resources and communication capabilities, thus
significantly reducing service delay in heterogeneous fog
networks.

The rest of this paper is organized as follows. We first
introduce the system model and formulate our task scheduling
problem in Section II. Then, we reformulate the problem as
a many-to-one matching and propose the DATS algorithm in
Section III. We evaluate the proposed algorithm and analyze
the results in Section IV. Finally, we conclude this article in
Section V.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

3

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model and then
formulate the problem formally.

A. System Overview

We first have an overview of the system model. As il-
lustrated in Fig. 1, we consider a general hybrid cloud-fog
architecture consisting of multiple FNs and the remote cloud.
The FNs can share resources and serve as helpers to each
other. At every task scheduling interval, FNs with computation
tasks can offload tasks to neighboring idle FNs and the cloud
to reduce the latency. For convenience, we call FNs with
computation tasks as task nodes. We denote the set of task
nodes as T = {1, 2, . . . , N}, and use n to refer to the n-
th task node. Correspondingly, we define idle FNs as helper
nodes, and denote them by H = {1, 2, . . . ,M}. We use m to
denote the m-th helper node. Besides, the cloud consists of a
set V = {1, 2, . . . ,K} of virtual machines (VMs), and we use
k to signify the k-th VM.

Due to some constraints, such as the user service level, the
limited hardware capability and the fairness consideration, task
node n can offload computation tasks to at most qn helper
nodes and VMs, totally. On the other side, each helper node
and VM can only host the computation task from a single
task node at every scheduling interval (as shown in Fig. 1).
Here, we assume that helper nodes and VMs are with enough
storage. We represent the group of helper nodes and VMs for
task node n, termed coalition, as Cn with Cn ⊆ H ∪ V and
|Cn| ≤ qn. |Cn| is the cardinality of Cn. In addition, we denote
the coalition of helper nodes for task node n and the coalition
of VMs for task node n as CH

n and CV
n , respectively. CH

n ⊆ H,
CV
n ⊆ V , and CH

n ∪ CV
n = Cn. Then, the task allocation vector

can be represented as αn = {αn,l, αn,m, αn,k ∈ R+|αn,l +∑
m∈CH

n

αn,m+
∑

k∈CV
n

αn,k = 1}, where αn,l, αn,m and αn,k are

the fraction of tasks computed by task node n locally and the
fraction of tasks offloaded from task node n to helper node m
and VM k, respectively.

We introduce a parameter tuple {In, ηn, µn} to characterize
the task of task node n, where In is the input data size, ηn is
the processing density measured by the CPU cycles required
to process per bit data, and µn is the output-input ratio, i.e.,
the ratio between the output data size and the input data size
[15]. For convenience, we use the task n interchangeably for
the task of task node n in the following context. Thus, the
total required computation resources of task n is ηnIn [15],
and the output data size of task n is µnIn.

B. Communication Model

We next introduce the communication model. The com-
munication delay includes two components: the delay caused
by transmitting computation tasks and the delay caused by
receiving computation results. For cloud computing, we as-
sume that tasks offloaded from one task node to different VMs
must be transmitted (received) to (from) the cloud through the
same channel simultaneously. Thus, the communication delay

Task nodes

Type I helper nodes

Type II helper nodes

Type III helper nodes

Link

1 2

3

 !
"

 !
"

 #
"

 $
"

 !
%

 !
%

 $
%

Task

Fig. 1. An illustration of hybrid cloud-fog architecture consisting of multiple
FNs and the remote cloud. Here, FNs can be end-user and edge devices,
such as smartphones, smart edge routers, or customized FNs. They are
with different types (distinguished by colour) and different resource amounts
(distinguished by size). They can collaborate with each other to execute
computation tasks. Besides, each FN within coverage can access the cloud
via a access point (AP) using wired or wireless links.

caused by offloading computation tasks to the cloud can be
represented as

T t,r
n,c(Cn,αn) =

∑
k∈CV

n

αn,kIn

rtn
+

∑
k∈CV

n

αn,kµnIn

rrn
, (1)

where, rtn is the transmitting data rate from node n to the
cloud, and rrn is the receiving data rate from the cloud to node
n. The first item and the second item on the right-hand side
represent the total transmitting delay and the total receiving
delay, respectively.

Similarly, for the helper nodes offloaded computing, the
communication delay between the task node n and the helper
node m can be written as

T t,r
n,m(Cn,αn) =

αn,mIn
rn,m

+
αn,mµnIn

rm,n
, (2)

where, rn,m and rm,n are the data rate from task node n to
helper node m and the data rate from helper node m to task
node n, respectively. Similar to [15], [22], we assume that the
data rate can be obtained by measurement and is known.

C. Computation Model
We then introduce the computation model. The computation

delay of the local execution can be expressed as

T c
n,l(Cn,αn) =

αn,lηnIn
fn

, (3)

where fn is the CPU frequency (in CPU cycles per second)
of task node n.

Accordingly, the computation delay resulted from compu-
tation offloading can be written as

T c
n,x(Cn,αn) =

αn,xηnIn
fx

, x ∈ Cn, (4)

where fx is the CPU frequency of the corresponding helper
nodes and VMs.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

4

D. Problem Formulation

We finally formulate the task scheduling problem formally.
Table I gives a summary of the key notations. The final latency
is composed of three components: the local execution delay,
the helper nodes offloaded delay and the cloud offloaded delay,
and determined by the maximum of the three.

If the task is executed locally, then the local execution delay
can be given by

Tn,l(Cn,αn) = T c
n,l(Cn,αn), (5)

since no communication is necessary for local execution.
If the task is offloaded to helper node m, then the helper

node offloaded delay can be represented as the sum of the
communication delay and the computation delay:

Tn,m(Cn,αn) = T t,r
n,m(Cn,αn) + T c

n,m(Cn,αn). (6)

If the task is offloaded to the cloud, then the cloud offloaded
delay is determined by the communication delay and the
maximal computation delay of some VM k:

Tn,c(Cn,αn) = T t,r
n,c(Cn,αn) + max

k∈CV
n

T c
n,k(Cn,αn). (7)

Therefore, the final latency can be expressed as

Tn(Cn,αn)

=max(Tn,l(Cn,αn), max
m∈CH

n

Tn,m(Cn,αn), Tn,c(Cn,αn)).

(8)
Given the system model aforementioned, our objective is to

efficiently allocate resources and assign tasks to minimize the
total latency of all tasks generated in a timeslot. Similar to
many other works [11]–[18], we consider a quasi-static sce-
nario, wherein time is slotted into equivalent intervals. All the
new tasks arrived in the same time interval will be processed
together at the beginning of next interval. Mathematically, the
problem can be formulated as

min
{Cn},{αn}

∑
n∈T

Tn(Cn,αn), (9a)

s.t. C1 : Cn ⊆ H ∪ V, ∀n ∈ T , (9b)
C2 : |Cn| ≤ qn, ∀n ∈ T , (9c)

C3 : Cn ∩ Cn′ = ∅, ∀n, n
′
∈ T , (9d)

C4 : αn ∈ R|Cn|
+ , ∀n ∈ T , (9e)

C5 : 1Tαn = 1, ∀n ∈ T . (9f)

Constraint (9c) ensures that the task node n can offload
computation tasks to at most qn helper nodes and VMs, totally.
Constraint (9d) implies that each helper node and VM can only
host the computation task from a single task node at every
scheduling interval.

The problem (9) is indeed a combinatorial optimization
problem, which is NP-hard [23]. In fact, with the explosion of
the network size, the optimal solution will become infeasible
because of the scalability issue and the lack of global infor-
mation. Besides, since smart devices want to maximize their
own benefits, the optimal solution usually leads to an unstable
outcome. Taking all into consideration, we adopt the stable
matching theory to develop the DATS algorithm, a suboptimal
but stable and scalable algorithm, for this problem.

TABLE I
LIST OF KEY NOTATIONS.

Symbol Definition
T The set of task nodes
H The set of helper nodes
V The set of VMs
Cn The coalition of helper nodes and VMs for task node n

qn The maximum of |Cn|, quota of task node n

CH
n The coalition of helper nodes for task node n

CV
n The coalition of VMs for task node n

αn The task allocation vector of task n

In The input data size of task n

ηn The processing density of task n

µn The output-input ration of task node n

rtn The transmitting data rate from node n to the cloud
rrn The receiving data rate from the cloud to node n

rn,m The data rate from node n to node m

fn, fk The CPU frequency of node n, VM k

T t,r
n,c The communication delay between node n and cloud

T t,r
n,m The communication delay between node n and node m

T c
n,l The computation delay of executing tasks on local device

T c
n,x The computation delay of executing tasks on helper node or VM

Tn,l The local execution delay
Tn,m The helper nodes offloaded delay of offloading task n to helper node m

Tn,c The cloud offloaded delay
λ The processing efficiency, PE

III. DISPERSIVE STABLE TASK SCHEDULING

In this section, we first introduce the stable matching
theory briefly and transform our problem into a many-to-one
matching. We then describe the DATS algorithm in detail,
from theories to algorithms. We finally analyze the stability
and complexity of the DATS algorithm.

A. Preliminary

We first have a brief overview of the stable matching theory.
Matching theory is an important mathematical framework
analyzing the formation of mutually beneficial relationships.
It has roots in economics but is being fruitfully applied in
many other fields, especially the resource allocation problems
in networks [24]–[29], for following reasons. First, matching
theory can capture the various network features and interpret
the complex system requirements, i.e., generalization. Second,
matching theory provides low-complexity, self-organized and
near-optimal algorithm while guaranteeing the system stability
[30]. In this paper, we mainly focus on the two-sided matching,
especially the many-to-one matching, since there are two types
of nodes, i.e., the task nodes and helpers (helper nodes and
VMs), in our problem. In a two-sided matching, there are
two distinct sets of agents. A matching is an assignment of
agents in one set to agents in the other set. In what follows,
we formally define some key concepts in the stable matching
theory.

Definition 1. Given the sets M and N , a many-to-one
matching is a mapping µ : M∪N → 2M∪N , such that:

• For each agent i ∈ M, |µ(i)| ≤ qi, µ(i) ⊆ N .
• For each agent j ∈ N , |µ(j)| ≤ 1, µ(j) ⊆ M.
• For each agent i, j, i ∈ µ(j) if and only if j ∈ µ(i).

where, qi is the quota of the agent i [31].
Stable matching theory is based on the preference relation,

i.e., the preference ordering of agents in one set over agents

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

5

in the other set. The preference relation is a complete, anti-
symmetric and transitive binary relation [31]. We use ≻i to
denote the preference relation of agent i. If agent i prefers
agent j to agent j

′
, then we can use j ≻i j

′
to represent

this preference ordering. Given a preference relation, the set
of partners preferred to the empty set are called acceptable.
Here, agents in different sets are partners to each other. In
the following context, a preference relation only includes the
acceptable partners. If no agent is indifferent between any two
partners, then we call that the preference relation is strict.
We refer to a list of preference relations, say {≻i}i∈M, as a
preference profile.

Given a set of partners S, let Cha(S) denote agent a’s most-
preferred subset of S under the preference relation of agent
a.

Definition 2. A many-to-one matching µ is individual
rational if and only if µ(i) = Chi(µ(i)) and µ(j) ≻j ∅
∀i ∈ M, ∀j ∈ N [31].

Individual rationality implies that matches are voluntary
[32]. If agent a prefers a proper subset Sµ(a) µ(a) over
µ(a), then a will be not willing to be matched with the
partners in µ(a)\Sµ(a). Note that µ(j) ≻j ∅ is a special case
of µ(j) = Chj(µ(j)) when µ(j) is a singleton.

Definition 3. Given a many-to-one matching µ, a pair of
agents (i, j) is called a pairwise block of µ if i /∈ µ(j), j /∈
µ(i) such that j ∈ Chi(µ(i) ∪ j) and i ≻j µ(j) [31].

Pairwise block indicates that agents in the pairwise block
have incentives to deviate from the current matching to form
a new matching. Note that i ≻j µ(j) is a special case of
i ∈ Chj(µ(j) ∪ i) when µ(j) is a singleton.

Definition 4. A matching µ is pairwise stable if it is
individual rational and there does not exist a pairwise block
in it [31].

If a many-to-one matching µ is pairwise stable, then no
participants have incentives to deviate from the matching
outcome.

In our task scheduling problem (9), since the task nodes can
offload computation tasks to at most qn helper nodes and VMs
while each helper node or VM can only host the task from a
single task node, we can naturally transform the problem into a
many-to-one matching problem. To be specific, the task nodes
and the union of helper nodes and VMs correspond to the two
distinct sets of agents aforementioned, i.e. M, N , respectively.
Due to the space limit, we do not explicitly define such a
many-to-one matching mathematically. In the following, we
will explain the DATS algorithm for problem (9), which is
based on the stable matching theory, in detail.

B. DATS Algorithm

1) Overview: We first have an overview of the DATS
algorithm. As shown in Fig. 2, the DATS algorithm mainly
consists of two phases: the computing resources competition,
i.e., PCRC algorithm, and the tasks assignment, i.e., the
STS algorithm. And the latter depends on the former. In the
beginning, task nodes, helper nodes and VMs discover the
resources and collect the required information for calculating
PE, which will be discussed in detail next, and constructing the

Calculate PE, λ

Computing

Resources

Competition

PMCS

Unmatched helper

node, VM with non-empty

candidate list

STS

No

Update

candidate list

Yes

Tasks

Assignment

Input: Set of task nodes,

helper nodes and VMs

Output: Task allocation

vectors

PCRC

Matching

result

Fig. 2. The flow chart of DATS algorithm.

preference profile. This can be accomplished by exchanging
hello messages periodically [27]. Then, in the first phase of
DATS, i.e., computing resources competition, taking the PEs
as input, a global iterative algorithm named PCRC is called
to obtain a pairwise stable matching between task nodes and
helpers. Particularly, within the PCRC algorithm, the PMCS
algorithm is iteratively called to efficiently determine the most-
preferred set of helper nodes and VMs for task nodes. In the
following tasks assignment phase, given the matching results,
the delay-minimization-oriented STS algorithm is called to
determine the optimal task allocation vector of each task
for minimizing the service delay. The detailed principles and
process of DATS algorithm will be discussed in the following.

2) Preference Profile: We next introduce the preference
profile. To this end, we define a new concept, PE.

As mentioned above, we can naturally transform the original
problem into a many-to-one matching problem. To adopt the
stable matching theory to solve our problem, we first need to
construct the preference profiles for the task nodes and the
union of helper nodes and VMs.

For helper nodes and VMs, their goal is to reduce the delay
of task nodes so as to enhance users’ experience. Each helper
node or VM prefers to help the task node which it can provide
the highest processing efficiency, i.e., PE. Since the computa-
tion offloading includes two phase: the communication phase
and the computation phase, the PE must consider both the
communication efficiency and the computation efficiency.

As a result, we define the PE of helper node m when
executing task n as

λ(n,m) =
1

rn,m
+

ηn
fm

+
µn

rm,n
. (10)

And the PE of VM k when executing task n solely can be
written as

λ(n, k) =
1

rtn
+

ηn
fk

+
µn

rrn
. (11)

The PE λ signifies the time cost processing per bit data,
including transmitting inputs, computing tasks and receiving
results.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

6

Therefore, for helper nodes and VMs, we can construct a
preference relation over all task nodes as follows.

n ≻m n
′
, if λ(n,m) < λ(n

′
,m), ∀m ∈ H,

n ≻k n
′
, if λ(n, k) < λ(n

′
, k), ∀k ∈ V.

(12)

For task nodes, we define the preference relation over all
subsets of helper nodes and VMs, instead of single helper
node or VM. A task node prefers the coalition of helper nodes
and VMs which minimizes the delay. Thus, we can build a
preference relation over all coalitions of helper nodes and VMs
as follows.

Cn ≻n C
′

n, if Tn(Cn) < Tn(C
′

n), ∀n ∈ T , (13)

where Tn(Cn) is the minimum delay that can be achieved
by offloading computation tasks to the coalition Cn. That is,
Tn(Cn) satisfies

Tn(Cn) = Tn(Cn,α∗
n) = min

αn

Tn(Cn,αn), (14)

where α∗
n is the optimal task allocation vector given the

coalition Cn. We define Tn(Cn) as the minimum delay of task
n with coalition Cn.

However, formulas (13) and (14) do not provide us with any
insights to efficiently determine the most-preferred coalition of
helper nodes and VMs. In the worst case, we have to solve
the following optimization problem in (15) for every subset of
the helper nodes and VMs set, which is undesirable.

min
αn

Tn(Cn,αn), (15a)

s.t. C1 : αn ∈ R|Cn|
+ , (15b)

C2 : 1Tαn = 1. (15c)

To efficiently determine the most-preferred coalition of
helper nodes and VMs for task nodes, we will develop an
effective algorithm called PMCS in the following.

3) PMCS Algorithm: We then show the details of PMCS
algorithm in this section. To proceed, we first propose four
propositions. Proposition 1 and proposition 2 reveal the struc-
ture of the optimal task allocation vector given the coalition
Cn, while proposition 3 and proposition 4 show how to find
the most-preferred coalition of helper nodes and VMs.

Proposition 1. For a given Cn, αn is a feasible task
allocation vector. There exists a feasible task allocation vector
α

′

n, satisfying T c
n,k′ (Cn,α

′

n) = T c
n,k(Cn,α

′

n) for ∀k, k
′ ∈ CV

n ,
being at least as good as αn, i.e. Tn(Cn,α

′

n) ≤ Tn(Cn,αn).
Proposition 1 implies that the (optimal) task allocation

vector should be VMs-load-balanced, i.e., T c
n,k′ (Cn,α

′

n) =

T c
n,k(Cn,α

′

n) for ∀k, k
′ ∈ CV

n . We refer to such a α
′

n as a
VMs-load-balanced version of αn. For convenience, we only
consider the VMs-load-balanced version of task allocation
vectors in the following context.

Proposition 2. For a given Cn, αn is the optimal task allo-
cation vector, if it satisfies that the local execution delay, the
helper nodes offloaded delay, and the cloud offloaded delay are
identical, i.e. Tn(Cn,αn) = Tn,l(Cn,αn) = Tn,m(Cn,αn) =
Tn,c(Cn,αn), ∀m ∈ CH

n .

Algorithm 1 Progressive Most-preferred Coalition Selection
(PMCS) Algorithm
Require: An, qn, λ(n, x), ∀x ∈ An.
Ensure: Cn.

1: if |An| ≤ qn then
2: Cn = An.
3: else
4: Maintain two sequences AH

n and AV
n for the helper

nodes and VMs, respectively.
5: Sort AH

n and AV
n in ascending order of PE λ.

6: Initialize AH
n and AV

n as the first min(|AH
n |, qn) and

min(|AV
n |, qn) elements, respectively.

7: Maintain two pointers p1, p2 pointing to the end of AH
n

and AV
n , respectively. mp1 and kp2 are the correspond-

ing helper node and VM.
8: while |AH

n |+ |AV
n | > qn do

9: if |AV
n | = 1 then

10: if λ(n,mp1) < λ(n, kp2) then
11: Remove kp2 from AV

n .
12: else
13: Remove mp1 from AH

n .
14: end if
15: else
16: Calculate the PE λ(n,AV

n) and λ(n,AV′

n), where
AV′

n = AV
n\kp2 .

17: if 1 + λ(n,mp1)

λ(n,AV′
n)

− λ(n,mp1)

λ(n,AV
n)

> 0 then
18: Remove kp2 from AV

n .
19: Point p2 to the end of AV

n .
20: else
21: Remove mp1 from AH

n .
22: Point p1 to the end of AH

n .
23: end if
24: end if
25: end while
26: Cn = AH

n ∪ AV
n .

27: end if
28: Return Cn.

Proposition 2 indicates that the optimal task allocation
vector should be task node, helper nodes and cloud load-
balanced, i.e., Tn,l(Cn,αn) = Tn,m(Cn,αn) = Tn,c(Cn,αn),
∀m ∈ CH

n .

Proposition 3. For an arbitrary coalition of helper nodes
and VMs, say Cn, with |Cn| < qn, we can reduce the final
minimum delay Tn(Cn) by adding an arbitrarily available
helper node or VM to the coalition Cn.

Proposition 3 shows that more helper nodes or VMs (no
more than the quota) participate in the task execution, lower
delay can be achieved.

Proposition 4. For an arbitrary coalition of helper nodes
and VMs, say Cn, with |Cn| = qn, we can reduce the final
minimum delay Tn(Cn) by

Case 1: replacing an arbitrary helper node mr ∈ CH
n

with another available helper node ms satisfying λ(n,ms) <
λ(n,mr).

Case 2: replacing an arbitrary VM kr ∈ CV
n with another

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

7

available VM ks satisfying λ(n, ks) < λ(n, kr). Actually, it
is equivalent to f c

ks
> f c

kr
in this case.

Case 3: replacing an arbitrary helper node mr ∈ CH
n with

another available VM ks satisfying λ(n,mr)

λ(n,CV′
n)

− λ(n,mr)
λ(n,CV

n)
− 1 >

0. CV′

n = CV
n ∪ ks. When CV

n = ∅, then it degenerates to
λ(n, ks) < λ(n,mr).

Case 4: replacing an arbitrary VM kr ∈ CV
n with another

available helper node ms satisfying 1+ λ(n,ms)

λ(n,CV′
n)

− λ(n,ms)
λ(n,CV

n)
> 0.

CV′

n = CV
n \kr. When CV′

n = ∅, then it degenerates to
λ(n,ms) < λ(n, kr).
λ(n, CV

n) is the PE of the coalition CV
n when executing task

n and defined as

λ(n, CV
n) =

1

rtn
+

ηn∑
k∈CV

n

fk
+

µn

rrn
. (16)

Proof: See appendix A-D.

Based on the aforementioned four propositions, we can
develop the PMCS algorithm to efficiently determine the task
nodes’ most-preferred coalition of helper nodes and VMs in
polynomial time. To be specific, if the helper nodes and VMs
are less than the quota, then the most-preferred coalition is just
the set of helper nodes and VMs according to the proposition
3 (line 1-2). Otherwise, we maintain two sequences: the helper
nodes sequence and the VMs sequence (line 4). We first sort
the helper nodes and VMs in ascending order of the PE λ (line
5). Then, we take the first quota elements of the helper nodes
sequence and the VMs sequence, respectively. If the helper
nodes or VMs are less than the quota, then take all of them
(line 6). Next, we maintain two pointers pointing to the last
element of the helper nodes sequence and the VMs sequence,
respectively (line 7). If these two elements satisfy the case 3
in the proposition 4, then we remove the last element from
the helper nodes sequence (line 13, line 21-22). Otherwise,
they must be in the case 4, and we remove the last element
from the VMs sequence (line 11, line 18-19). The algorithm
iterates until the number of helper nodes and VMs equals to
the quota. The whole procedure runs as shown in algorithm 1.

4) PCRC Algorithm: After defining the PE concept and
developing the PMCS algorithm to construct the preference
profile for task nodes, helper nodes and VMs, we formally in-
troduce the PCRC algorithm to allocate computing resources,
i.e. helper nodes and VMs, to task nodes. The whole algorithm
is based on the deferred acceptance (DA) algorithm [33] and
runs as follows. In the first round, each helper node or VM
applies to the favourite task node in its candidate list (line 6-
9), where candidate lists represent the available and acceptable
partners. Among all applicants, each task node runs the PMCS
algorithm to determine the most-preferred coalition of helper
nodes and VMs (line 12). Each task node puts the most-
preferred coalition in the waiting list and rejects the others
(line 13-14). In the following rounds, each rejected helper
node or VM applies to its most-preferred task node which
has never rejected it before (line 6-9). Each task node with
new applicants (nonempty current proposer list) updates its
most-preferred coalition of helper nodes and VMs and rejects
the others (line 12-14). This process is repeated until all helper

Algorithm 2 Progressive Computing Resources Competition
(PCRC) Algorithm
Require: λ(n, x), ∀n ∈ T , x ∈ H ∪ V .
Ensure: µ.

1: Initialization:
2: Construct the candidate lists (preference profile) Lm, Lk,

∀m ∈ H, k ∈ V , for helper nodes and VMs.
3: µ(n) = ∅, µ(m) = ∅, µ(k) = ∅, ∀n ∈ T , ∀m ∈ H,

k ∈ V . The waiting list Wn = ∅, the current proposer list
Pn = ∅, ∀n ∈ T .

4: while ∃ unmatched helper node, VM with non-empty
candidate list do

5: for all unmatched helper node m, VM k with non-
empty candidate list do

6: n := the most-preferred task node in the candidate
list.

7: Helper node m or VM k proposes to task node n.
8: Add helper node m or VM k to task node n’s current

proposer list Pn.
9: Remove task node n from the helper node m’s or

VM k’s candidate list.
10: end for
11: for all task node n with nonempty current proposer list

Pn do
12: Call the PMCS algorithm to select the most-preferred

coalition Cn from the set Wn∪Pn with An = Wn∪
Pn.

13: Update waiting list, i.e. Wn = Cn.
14: Reject other applicants and clear the current proposer

list.
15: end for
16: end while
17: for all task node n ∈ T do
18: µ(n) = Wn.
19: end for
20: for all helper node m ∈ H, VM k ∈ V do
21: µ(m) = {n|m ∈ Wn, ∀n ∈ T }.
22: µ(k) = {n|k ∈ Wn,∀n ∈ T }.
23: end for
24: Return µ.

nodes and VMs have exhausted their applications. The whole
procedure runs as shown in algorithm 2. For detailed principle
of the above algorithm, please refer to [33]. Notably, the whole
algorithm can be implemented in a distributed way [28], [33].

5) STS Algorithm: We finally describe the STS algorithm
for task assignment. Once obtaining the matching result be-
tween task nodes and helpers, we can derive the STS algorithm
to determine the optimal task allocation vector of each task
node according to the proposition 1 and 2 above. Due to the
space constraint, we omit the details of derivation here.

αn,l =
1

1 +
∑

m∈CH
n

λ(n,l)
λ(n,m) +

λ(n,l)
λ(n,CV

n)

, (17)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

8

Algorithm 3 Synchronized Task Scheduling (STS) Algorithm
Require: µ, λ(n, x), ∀n ∈ T , x ∈ H ∪ V .
Ensure: {αn}n∈T .

1: for all task node n ∈ T do
2: Calculate αn,l according to (17).
3: Calculate αn,m, ∀m ∈ CH

n according to (18).
4: Calculate αn,k, ∀k ∈ CV

n according to (19), (20).
5: end for
6: Return αn, ∀n ∈ T .

αn,m =
1

1 + λ(n,m)
λ(n,l) +

∑
m′∈CH

n \m

λ(n,m)

λ(n,m′)
+ λ(n,m)

λ(n,CV
n)

, ∀m ∈ CH
n ,

(18)∑
k∈CV

n

αn,k =
1

1 +
λ(n,CV

n)
λ(n,l) +

∑
m∈CH

n

λ(n,CV
n)

λ(n,m)

, (19)

and,

αn,k =
1

1 +
λ(n,CV

n)
λ(n,l) +

∑
m∈CH

n

λ(n,CV
n)

λ(n,m)

× fk∑
k∈CV

n

fk
, ∀k ∈ CV

n fk,

(20)
where λ(n, l) is the local PE of task node n and defined as

λ(n, l) =
ηn
fn

. (21)

C. Stability Analysis

Proposition 5. The DATS algorithm is pairwise stable.
Proof: We complete the proof by contradiction. Suppose

there exists a block pair of helper node m and task node n,
i.e., n /∈ µ(m), m /∈ µ(n), m ∈ Chn(µ(n) ∪m) and n ≻m

µ(m). Since n ≻m µ(m) and m /∈ µ(n), helper node m
must propose to task node n which rejects m afterwards. And
according to the principle of the PMCS algorithm, task node
n would never accept helper node m even if helper node m
proposed to task node n again. Thus, m /∈ Chn(µ(n) ∪ m).
In conclusion, µ is pairwise stable. The proof for the case of
VM k and task node n is the same and omitted here.

Actually, the DATS algorithm is pairwise stable because the
rejections of task nodes are definitive. Besides, the proposed
algorithm with helper nodes and VMs proposing produces an
optimal stable matching for helper nodes and VMs [32]. Since
helper nodes and VMs are voluntary to participate in, it may
be convincing to let helper nodes and VMs be the proposing
side.

D. Complexity Analysis

Proposition 6. The DATS algorithm is guaranteed to con-
verge, and the running time is O(N(M +K)2 log(M +K)).

Proof: The convergence and computational complexity
of the DATS algorithm are determined by the computing
resources competition phase, i.e., the PCRC algorithm. In

TABLE II
SIMULATION PARAMETERS.

Parameter Value
M +N (# of FNs) 200

K (# of VMs) 50
qn (quota of computation offloading) [1, 2, 3, 4, 5, 6] [12]

fn, fm
(computational capability of FNs)

[1.0, 1.5, 1.8, 2.0, 2.5] GHz

fk (computational capability of VMs) [10, 15, 20, 25, 30, 35] GHz
B (bandwidth of subcarrier) [15, 30, 45, 60, 75, 90] KHz

pt (transmitting power)
100-350mw, for FNs
20w, for base station

N0 (noise power spectral density) -174 dBm/Hz
In (input data size) [1000, 6000]KB

processing density of light tasks 500 cycle/bit
processing density of medium tasks 2000 cycle/bit
processing density of heavy tasks 3000 cycle/bit

µn (output-input-ratio) [0.01, 0.5]

each round of the PCRC algorithm, there exists at least one
unmatched helper node or VM proposing to one task node
and removing it from its candidate list. Thus, each helper
node or VM will eventually become matched or exhaust
its applications. Therefore, the proposed DATS algorithm is
guaranteed to converge.

In the worst case where only one application happens in
each round, the PCRC algorithm will iterate for (M +K)N
times. In addition, the PMCS algorithm mainly contains the
sort operation and the while loop. For the sort operation, its
running time is O((M +K) log(M +K)). In each iteration
of while loop, we remove an element from the helper nodes
sequence or the VMs sequence. Since the number of helper
nodes and VMs is reduced from 2qn to qn after the while
loop, the while loop will run for max

n
qn times. Considering

that max
n

qn is usually much less than M + K, the PMCS
algorithm costs O((M +K) log(M +K)) time.

In conclusion, the running time of the proposed DATS
algorithm is O(N(M+K)2 log(M+K)), which is polynomial
time.

IV. PERFORMANCE EVALUATION

In this section, simulation results of the proposed algorithm
are presented and analyzed in comparison with several baseline
schemes. For simulations, we consider a scenario where 200
FNs are uniformly scattered within a 200m×200m square area.
Each FN can connect to neighboring FNs and the remote cloud
via a BS in the middle of the area. Given the small coverage,
an OFDMA system is considered here so that interference
among FNs can be ignored. The computational capability of
a FN is randomly selected from the set [1.0, 1.5, 1.8, 2.0, 2.5]
GHz to account for the heterogeneous computing capability
of FNs. There are K = 50 VMs available at the cloud [34].
Each FN can offload tasks to multiple neighboring FNs and
VMs which are no more than the quota.

Each FN can use a subcarrier to transmit tasks and receive
results. The data rate can be expressed as

r = B log2(1 +
gpt
BN0

) (22)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

9

where, B is the bandwidth of the channel. g is the channel
gain. pt is the transmitting power and N0 is the noise power
spectral density. The channel is given by a large scale fading
model [35]:

PL = 20 log(dkm) + 20 log(BkHz) + 32.45(dB). (23)

To take the heterogeneity of tasks into consideration, three
different types of tasks are considered here: the light workload
task (e.g., video transcoding), the medium workload task(e.g.,
chess game) and the heavy workload task (e.g., face recogni-
tion), which are in accordance with the real measurements in
practice [34]. All parameters are summarized in TABLE II.

The locations of FNs vary in each task scheduling interval
to mimic dynamics of nodes. In each interval, task nodes
are randomly chosen from whole FNs according to the active
ratio, i.e., the percentage of task nodes, which is an indicator
of network workload. Tasks are generated randomly based
on parameters aforementioned. Here, the initialization phase,
which can be accomplished during the network access, is
considered. We set the delay caused by the initialization phases
as 200 ms [36], [37]. All numerical results are averaged over
1000 simulations.

Fig. 3 compares the performance of the random task
scheduling (RTS) scheme, the indexed task scheduling (ITS)
scheme and the proposed DATS scheme. For the RTS scheme,
helper nodes and VMs are first randomly allocated to task
nodes, and then task nodes run the STS algorithm to determine
the optimal task allocation vectors. For the ITS scheme, tasks
nodes first run the PMCS algorithm to choose the most-
preferred coalition in ascending order of the node index, and
then run the STS algorithm to determine the optimal task
allocation vectors. Besides, the same extra time cost of the
initialization phase is considered for both the RTS scheme
and the ITS scheme. As shown in Fig. 3, the DATS scheme
can achieve higher latency reduction ratio compared with the
RTS scheme and the ITS scheme. Here, the latency reduction
ratio is defined as the total latency reduction compared with
the total latency of local execution. To be specific, the DATS
scheme can reduce about 65% latency when the active ratio is
low, i.e., less than 0.3. When the active ratio is medium, i.e.
0.4-0.5, the DATS scheme can reduce more than 15% latency
over the RTS scheme and the ITS scheme. Even though when
the active ratio is high, the DATS scheme can still achieve
additional 5% − 10% latency reduction compared with the
RTS scheme and the ITS scheme. The reason is: (i) the PE
incorporates both the computing resources and communication
capabilities of helper nodes and VMs, and (ii) the DATS
scheme enables task nodes to select the optimal coalitions
from helper nodes and VMs and guarantees a stable outcome.
As a result, the DATS scheme can achieve effective tradeoff
between computing resources and communication capabilities
of helper nodes and VMs among different task nodes.

It is worth noting that when the active ratio is low, the
computing resources are abundant. Thus, the RTS scheme,
the ITS scheme and the DATS scheme can all achieve a
superior performance. However, since the ITS scheme and
the DATS scheme can both select the optimal coalition for
task nodes, both of them achieve higher latency reduction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Active ratio

0

10

20

30

40

50

60

70

L
a

te
n

c
y

 r
e

d
u

c
ti

o
n

 r
a

ti
o

(%
)

RTS

ITS

DATS

Fig. 3. DATS verse ITS, RTS (qn: 1-6, B: 15 KHz, pt: 100-350 mw, fk:
10 GHz, In: 1000-6000 KB).

ratio than the RTS scheme. This also explains why the ITS
scheme can achieve nearly the same performance with the
DATS scheme under low active ratio and substantiates the
efficiency of the PMCS algorithm. On the other hand, when
the network workload is heavy, the computing resources are
scarce, and hence all three schemes perform badly. However,
when the workload is medium, the tradeoff between com-
puting resources and communication capabilities of helper
nodes and VMs among different task nodes becomes the key.
Consequently, the superiority of the DATS scheme becomes
more pronounced. Besides, it is worth noticing that there is
a steep drop in performance of the ITS scheme when the
active ratio increases from 0.2 to 0.3. It is because that the
ITS scheme leads to the unfairness of the resources allocation
among task nodes when the network load becomes heavier.
This also indirectly demonstrates the superiority of the two-
sided matching and the stable outcome of the DATS algorithm.

Due to the superior performance of the DATS, we investi-
gate the relationship between the performance of DATS and
different system configurations in the following Fig. 4-Fig. 9.

Fig. 4 illustrates latency versus quota under different active
ratios. The cases of quota being zero imply that tasks are
computed locally. As shown in Fig. 4, the optimal quota,
i.e., quota making latency minimum, varies with the active
ratio. Generally speaking, the optimal quota decreases with
the increase of active ratio. For instance, the optimal quota
is 6 when the active ratio is 0.1, but it reduces to 2 if the
active ratio rises up to 0.5. This is because that computing
resources are abundant when active ratio is low. In this case,
the more computing resources are available, i.e., quota is
larger, smaller the latency is. While, computing resources
become inadequate when network workload becomes heavy.
As a result, the large quota will result in the unfairness of
computing resources allocation between task nodes so as to
decrease the performance of system. This also explains why
the latency increases with quota when workload is heavy. From
Fig. 4, we can conclude that a fair allocation of computing
resources between task nodes may be a good choice.

Fig. 5 demonstrates the effects of bandwidth on latency
under different active ratios. The cases of bandwidth being

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

10

0 1 2 3 4 5 6

Quota

0

100

200

300

400

500

600

L
a

te
n

c
y

 (
s

)

active ratio: 0.1
active ratio: 0.2
active ratio: 0.3
active ratio: 0.4

active ratio: 0.5
active ratio: 0.6
active ratio: 0.7
active ratio: 0.8

Fig. 4. Latency versus quota under different
active ratio (B: 15 KHz, pt: 100 mw, fk: 10 GHz,
In: 1000 KB).

0 15 30 45 60 75 90

Bandwidth (KHz)

0

100

200

300

400

500

600

L
a

te
n

c
y

 (
s

)

active ratio: 0.1
active ratio: 0.2
active ratio: 0.3
active ratio: 0.4

active ratio: 0.5
active ratio: 0.6
active ratio: 0.7
active ratio: 0.8

Fig. 5. Latency versus bandwidth under differnet
active ratio (qn: 3, pt: 100 mw, fk: 10 GHz, In:
1000 KB).

0 50 100 150 200 250 300 350

Transmitting power (mw)

0

100

200

300

400

500

600

L
a

te
n

c
y

 (
s

)

active ratio: 0.1
active ratio: 0.2
active ratio: 0.3
active ratio: 0.4

active ratio: 0.5
active ratio: 0.6
active ratio: 0.7
active ratio: 0.8

Fig. 6. Latency versus transmitting power under
different active ratio (B: 15 KHz, qn: 3, fk: 10
GHz, In: 1000 KB).

0 5 10 15 20 25 30 35

Computational capability of VMs (GHz)

0

100

200

300

400

500

600

L
a

te
n

c
y

 (
s

)

active ratio: 0.1
active ratio: 0.2
active ratio: 0.3
active ratio: 0.4

active ratio: 0.5
active ratio: 0.6
active ratio: 0.7
active ratio: 0.8

Fig. 7. Latency versus computational capability
of VMs under different active ratio (qn: 3, B: 15
KHz, pt: 100 mw, In: 1000 KB).

10 15 20 25 30 35

Computational capability of VMs (GHz)

30

50

70

90

110

130

150

170

190

210

L
a

te
n

c
y

 (
s

)

no offloading

bandwidth: 15KHz

bandwidth: 30KHz

bandwidth: 45KHz

bandwidth: 60KHz

bandwidth: 75KHz

bandwidth: 90KHz

Fig. 8. Latency versus computational capability
of VMs under different bandwidth (qn: 3, pt: 100
mw, active ratio: 0.3, In: 1000 KB).

1000 2000 3000 4000 5000 6000

Input data size (KB)

0

10

20

30

40

50

60

70

80

L
a

te
n

c
y

 r
e

d
u

c
ti

o
n

 r
a

ti
o

 (
%

)

active ratio: 0.1
active ratio: 0.2
active ratio: 0.3
active ratio: 0.4

active ratio: 0.5
active ratio: 0.6
active ratio: 0.7
active ratio: 0.8

Fig. 9. Latency reduction ration versus input data
size under different active ratio (B: 15 KHz qn:
3, pt: 100 mw).

zero imply that tasks are computed locally. As illustrated in
Fig. 5, the latency decreases with the increase of bandwidth
and levels off under all active ratios. The reason is that the
communication capability, i.e., data rate, increases with the
bandwidth at the beginning. However, when the communica-
tion capability increases to certain extent, the efficiency of
computation offloading is limited by the computation capabil-
ity of helper nodes and cloud.

Fig. 6 depicts the relationship between latency and transmit-
ting power of FNs under different active ratios. The cases of
transmitting power being zero imply that tasks are computed
locally. From Fig. 6, we can observe that the transmitting
power of FNs with rather large values has little effect on laten-
cy. This is because in this region, the computation capability
dominates the latency instead of the transmission power.

Fig. 7 shows latency under different computational capa-
bility of VMs and active ratios. The cases of computational
capability of VMs being zero imply no offloading. It is
interesting to note that the computational capability of VMs
has little effect on latency, which is counter-intuitive. It may
be attributable to the fact that the communication capability
is the bottleneck of latency. Even though the computational
capability of cloud is high, the final efficiency of computation
offloading is decided by the communication capability in this
case. What’s more, it is observed that the latency increases
slightly with the computational capability of VMs under high
active ratios. This may be caused by that the increase of

VMs’ computational capability will exacerbate the unfairness
of computing resources allocation between task nodes in our
algorithm, which will decrease the efficiency of computation
offloading as mentioned above. Such an unfair resource al-
location stands out when computing resources are scare, i.e.,
active ratio is high.

Fig. 8 substantiates the inter-constraint relationship be-
tween communication capability and computation capability.
As demonstrated in Fig. 8, the computational capability of
VMs nearly has no effect on latency when bandwidth is under
30 KHz. In contrast, the bandwidth has an significant effect
on latency. The reason is that, in this case, the computation
capability is abundant so that the efficiency of computation
offloading is decided by the communication capability. Simi-
larly, when bandwidth is over 30 KHz, the bandwidth nearly
has no effect on latency because the communication capability
is abundant. As a result, the computational capability of VMs
dominates the efficiency of computation offloading. It can be
observed that the decline degree of latency with the VMs’
computational capability under 90 KHz bandwidth becomes
larger, compared with that under 15 KHz bandwidth.

Fig. 9 compares the effect of input data size on the efficiency
of computation offloading under different active ratios. From
Fig. 9, we can see that the latency reduction ratio decreases
with the decrease of input data size. It is due to the fact that the
local execution time decreases with the input data size. As a
result, the influence brought about by the extra time cost of the

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

11

initialization phase becomes significant. Besides, we observe
that the latency reduction ratio decreases with the increase
of active ratio. This is because that less FNs are available
to participate in computation offloading as the active ratio
increases. It is suggested that local execution may be a better
choice under light tasks, i.e., small data size.

V. CONCLUSION

In this paper, we investigated a service delay-minimization
task scheduling problem in a typical heterogeneous fog net-
work, where dispersive task nodes could simultaneously of-
fload tasks to multiple neighboring helper nodes and the
cloud so that each task could be executed in parallel. We
defined a new concept named PE to incorporate computing
resources and communication capabilities, and further pro-
posed a scalable, stable and decentralized algorithm called
DATS which consists of two key components: (i) the PCRC
algorithm for computing resources allocation and (ii) the
STS algorithm for tasks assignment. Concretely, we first
formulated the computing resources allocation as a many-
to-one matching and developed the PMCS algorithm based
on the PE to tackle the critical difficulties in constructing
the preference profile. Then, taking PMCS as a key step,
we proposed the PCRC to obtain a pairwise stable resources
allocation result based on the DA algorithm. Finally, we
derived the STS to determine the optimal task assignment for
each task, based on the PE and computing resources allocation
result. Extensive simulations were conducted to demonstrate
the performance of the proposed DATS algorithm. Theoretical
proofs and simulation results showed that the DATS algorithm
achieved effective tradeoff between computing resources and
communication capabilities, thus significantly reducing service
delay in heterogeneous fog networks.

In our future work, we will investigate how to take the
energy consumption into consideration when constructing the
preference profile to deal with the energy-latency tradeoff
problem in heterogeneous fog networks.

REFERENCES

[1] Y. Yang, J. Xu, G. Shi, and C.-X. Wang, 5G wireless systems: simulation
and evaluation techniques. Springer, 2017.

[2] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, no. 5, pp. 2795–2808, 2016.

[3] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
communications and mobile computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pp. 13–16, ACM, 2012.

[5] M. Chiang and T. Zhang, “Fog and iot: an overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, 2016.

[6] J. Ni, K. Zhang, X. Lin, and X. S. Shen, “Securing fog computing
for internet of things applications: challenges and solutions,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp. 601–628, 2017.

[7] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, “A comprehensive survey on fog computing: state-
of-the-art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 416–464, 2017.

[8] V. B. C. d. Souza, W. Ramı́rez, X. Masip-Bruin, E. Marı́n-Tordera,
G. Ren, and G. Tashakor, “Handling service allocation in combined fog-
cloud scenarios,” in Communications (ICC), 2016 IEEE International
Conference on, pp. 1–5, IEEE, 2016.

[9] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: towards
minimizing delay in the internet of things,” in Edge Computing (EDGE),
2017 IEEE International Conference on, pp. 17–24, IEEE, 2017.

[10] W. Masri, I. Al Ridhawi, N. Mostafa, and P. Pourghomi, “Minimizing de-
lay in iot systems through collaborative fog-to-fog (f2f) communication,”
in Ubiquitous and Future Networks (ICUFN), 2017 Ninth International
Conference on, pp. 1005–1010, IEEE, 2017.

[11] Y.-Y. Shih, W.-H. Chung, A.-C. Pang, T.-C. Chiu, and H.-Y. Wei,
“Enabling low-latency applications in fog-radio access networks,” IEEE
network, vol. 31, no. 1, pp. 52–58, 2017.

[12] G. Lee, W. Saad, and M. Bennis, “An online secretary framework for
fog network formation with minimal latency,” in Communications (ICC),
2017 IEEE International Conference on, pp. 1–6, IEEE, 2017.

[13] A.-C. Pang, W.-H. Chung, T.-C. Chiu, and J. Zhang, “Latency-driven
cooperative task computing in multi-user fog-radio access networks,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on, pp. 615–624, IEEE, 2017.

[14] L. Pu, X. Chen, J. Xu, and X. Fu, “D2d fogging: an energy-efficient
and incentive-aware task offloading framework via network-assisted d2d
collaboration,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3887–3901, 2016.

[15] X. Chen and J. Zhang, “When d2d meets cloud: hybrid mobile task
offloadings in fog computing,” in Communications (ICC), 2017 IEEE
International Conference on, pp. 1–6, IEEE, 2017.

[16] N. T. Ti and L. B. Le, “Computation offloading leveraging computing
resources from edge cloud and mobile peers,” in Communications (ICC),
2017 IEEE International Conference on, pp. 1–6, IEEE, 2017.

[17] X. Meng, W. Wang, and Z. Zhang, “Delay-constrained hybrid compu-
tation offloading with cloud and fog computing,” IEEE Access, vol. 5,
pp. 21355–21367, 2017.

[18] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–
1181, 2016.

[19] S. Zhao, Y. Yang, Z. Shao, X. Yang, H. Qian, and C.-X. Wang, “Femos:
fog-enabled multitier operations scheduling in dynamic wireless net-
works,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1169–1183,
2018.

[20] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang, “Debts:
delay energy balanced task scheduling in homogeneous fog networks,”
IEEE Internet of Things Journal, vol. 5, no. 3, pp. 2094–2106, 2018.

[21] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M.-T. Zhou, “Meets:
maximal energy efficient task scheduling in homogeneous fog networks,”
IEEE Internet of Things Journal, 2018.

[22] H. Shah-Mansouri and V. W. Wong, “Hierarchical fog-cloud computing
for iot systems: a computation offloading game,” IEEE Internet of Things
Journal, 2018.

[23] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education India,
2006.

[24] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory
for future wireless networks: fundamentals and applications,” IEEE
Communications Magazine, vol. 53, no. 5, pp. 52–59, 2015.

[25] A. Leshem, E. Zehavi, and Y. Yaffe, “Multichannel opportunistic carrier
sensing for stable channel access control in cognitive radio systems,”
IEEE Journal on Selected Areas in Communications, vol. 30, no. 1,
pp. 82–95, 2012.

[26] F. Pantisano, M. Bennis, W. Saad, S. Valentin, and M. Debbah, “Match-
ing with externalities for context-aware user-cell association in small cell
networks,” in Globecom Workshops (GC Wkshps), 2013 IEEE, pp. 4483–
4488, IEEE, 2013.

[27] K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching
games for proactive social-caching in wireless small cell networks,” in
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), 2014 12th International Symposium on, pp. 569–574, IEEE,
2014.

[28] H. Xu and B. Li, “Seen as stable marriages,” in INFOCOM, 2011
Proceedings IEEE, pp. 586–590, IEEE, 2011.

[29] Y. Chen, L. Jiang, H. Cai, J. Zhang, and B. Li, “Spectrum matching,” in
Distributed Computing Systems (ICDCS), 2016 IEEE 36th International
Conference on, pp. 590–599, IEEE, 2016.

[30] Z. Han, Y. Gu, and W. Saad, Matching theory for wireless networks.
Springer, 2017.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2884720, IEEE Internet of
Things Journal

12

[31] F. Echenique and J. Oviedo, “A theory of stability in many-to-many
matching markets,” Theoretical Economics, vol. 1, pp. 233–273, 2006.

[32] U. Kamecke, “Two sided matching: a study in game-theoretic modeling
and analysis,” 1992.

[33] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[34] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 12,
pp. 2510–2523, 2015.

[35] Y. Yu, J. Zhang, and K. B. Letaief, “Joint subcarrier and cpu time
allocation for mobile edge computing,” in Global Communications
Conference (GLOBECOM), 2016 IEEE, pp. 1–6, IEEE, 2016.

[36] E. U. T. R. Access, “Requirements for support of radio resource
management(release 10) 3gpp ts 36.133,” V10, vol. 3, 2011.

[37] T. Sakurai and H. L. Vu, “Mac access delay of ieee 802.11 dcf,” IEEE
Transactions on Wireless Communications, vol. 6, no. 5, 2007.

