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Abstract—Wireless communications between devices can be
lossy owing to a number of issues, such as channel fading,
interference or mobility of devices. In some scenarios, the lossy
characteristic of wireless communications can be random hence
better characterized from a stochastic perspective. In view of
this, lossy wireless networks have been studied recently, where
the transmission between each pair of nodes is successful with
a certain probability. This paper investigates the reliability of
broadcast in lossy networks, where the reliability is measured
by the probability that every node in the network receives
the packets of every other node. To improve the reliability,
nodes can cooperate with each other using network coding
techniques. In this paper, a neighbor network coding scheme
is proposed and network reliability under this coding scheme
is investigated analytically. This paper shows that reliability of
networks can be improved considerably by using the proposed
neighbor coding scheme. Further, closed-form upper and lower
bounds on the network reliability are presented. Moreover, an
optimal neighbor coding scheme that maximizes the reliability
of a given network is discussed.

Index Terms—Network coding; Cooperative; Broadcast; Re-
liability

I. Introduction

Wireless communication can be affected by a number of
issues, such as channel fading, interference or mobility of
devices, making reliability a major challenge in wireless
communications [1]–[4]. This work examines the reliability
of cooperative broadcast using network coding techniques,
where the reliability is measured by the probability that every
node in the network receives the packets of every other node.

Network coding is a technique that allows nodes in a net-
work not only to store and forward received messages but also
to process and combine several inputs into a single output.
It was first proposed in [5]; showing that in single-source
multicast wired networks, network coding brings benefits in
capacity. Afterwards, network coding has been applied in
wireless networks to improve throughput.

Another important benefit of network coding is to improve
network reliability. Conventionally, in a non-cooperative
wireless network, the successful reception of a packet relies
on multiple retransmissions of the same information from
the source node. Therefore, in literature, reliability is usually
improved by increasing the number of retransmissions. Lots
of research has been conducted to reduce the number of
retransmissions while maintaining a certain reliability. Most
recently, network coding is also employed to reduce the
number of retransmissions.

This work proposes a neighbor network coding scheme for
all-to-all broadcasting networks allowing nodes to cooperate
with each other. More specifically, a node can assist its
neighbor by broadcasting a network coded packet including
packets of its own and its neighbor. Then, a Markov chain is
established, using which, exact results of the reliability are
obtained. Additionally, upper and lower bounds are provided
and the optimal neighbor coding scheme which maximizes
the reliability of a given network is discussed.

The rest of the paper is organized as follows. Section
II reviews related work. Section III introduces the system
model. Theoretical analysis of the reliability is given in
Section IV, followed by the closed-form upper and lower
bounds on the reliability in Section V. Section VI presents
the simulation and numerical results. Section VII concludes
the paper and proposes future work.

II. Related work

In lossy wireless networks, network coding improves reli-
ability while reducing the number of retransmissions [1]–[4].

The network coding aided ARQ is studied in access point
(AP) based networks in [1], [2]. Network coding is utilized
in a source node to broadcast a selected combination of
unsuccessfully received packets to different receivers. In
[1], all users listen to all the packets, and intended users
may decode the network-coded packet using the overheard
packets. Ref. [2] considers the fairness of all users in terms
of the service time and goodput. The paper also implements
the network coding aided retransmission scheme in a real
environment and demonstrates its effectiveness.

In [3], [4], network coding is applied to networks with
tree topologies where each multicast tree has equal number
of children. The expected numbers of retransmissions by
the source node under different error control protocols are
computed. Based on numerical comparison, it is conjectured
that network coding achieves a logarithmic reliability gain
with respect to the number of receivers in a multicast group
compared with a simple ARQ scheme. This hypothesis is
then proved in the latter work [4].

Different from previous work [1]–[4], this paper considers
an all-to-all broadcasting model. Further, this work gives the
exact probabilities that every node in the network receives the
packets successfully of every other node, i.e. reliability, after
each retransmission, which is more general compared with
previous work [3], [4] that only consider the expected number
of retransmissions to achieve reliability of 100 percent.
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It is worth to note that in [6], Nistor et al. study the
delay probability distribution of message broadcasting in
wireless networks using random linear network coding [7].
The probability of successful decoding at individual delay
is similar to the reliability considered in this paper. They
consider a one-to-all case where a single source broadcasts
multiple packets to multiple receivers over erasure channels.
They use Markov chain to analyze a network with two
receivers only and a brute-force method for three receivers.
In contrast, this work considers arbitrary number of receivers.

III. System model

For a network consisting of n nodes, denote the kth node
by Nk. Each node acts as a source node and has a packet
to broadcast to all other nodes in the network. Denote
the original packet that Nk broadcasts by Xk. Further, it is
assumed that time is slotted and in each time slot only one
source node (say N j) broadcasts a single packet.

Due to lossy nature of wireless communications, the packet
broadcast from a source node may not be able to reach every
other node in one time slot. Let p ji, where p ji ∈ (0, 1], be the
probability that a packet sent from N j reaches Ni successfully
in one time slot. We refer readers to [8] for approaches on
obtaining p ji for all pairs of nodes in a network, known as the
probabilistic connectivity matrix. Since this work focuses on
the impact of network coding on the reliability, it is assumed
that p ji for every i, j ∈ {1, 2, ..., n} is known.

In the case that a packet does not reach all nodes in
one time slot, the source node has to broadcast more than
once. Assume that all nodes in the network transmit in a
round robin manner and a successful transmission is not
acknowledged, which is a common scenario for broadcasting.
A round is defined as a sequence of time slots during which
every source node broadcasts exactly once. Consequently, the
reliability of the network at round R (time slot t = nR) is
defined as the probability that every node in the network has
a copy of the packets of all other nodes at R.

It is worth noting that without cooperation, a source node
can only re-broadcast its original packet. With the use of net-
work coding, the source node may broadcast a combination of
its own packet and received packets. This work considers the
neighbor network coding scheme. Specifically, each node (say
N j) selects another node (say Nh), namely coding neighbor,
to perform the XOR coding. Note that the only constraints
on the selection of coding neighbor are: j , h and a pair
of nodes cannot mutually select each other. Therefore our
analysis is generally applicable to arbitrary neighbor selection
rules, where the optimal rule is discussed in Section VI.

A buffer is used at each node to store the received packets
(duplicated packets are dropped). Decoding is performed at
each node after receiving every packet. Note that if N j has Xh,
it broadcasts X j ⊕ Xh; otherwise, it broadcasts X j. Therefore,
the packet that node N j broadcasts at time t depends on the
packets received by N j from other nodes up to time t. This
creates challenge to the theoretical analysis, as shown in the
next section.

Index 1 2 3 4
State [100] [101] [102] [103]

Packets X1 X1, X3 X1, X3 ⊕ X2 X1, X3, X3 ⊕ X2
Index 5 6 7 8
State [110] [111] [112] [113]

Packets X1, X2 X1, X2 X1, X2 X1, X2
X3 X3 ⊕ X2 X3, X3 ⊕ X2

Index 9 10 11 12
State [120] [121] [122] [123]

Packets X1, X2 ⊕ X1 X1, X2 ⊕ X1 X1, X2 ⊕ X1 X1, X2 ⊕ X1
X3 X3 ⊕ X2 X3, X3 ⊕ X2

Index 13 14 15 16
State [130] [131] [132] [133]

X1 X1 X1 X1
Packets X2 X2, X2 ⊕ X1 X2, X2 ⊕ X1 X2, X2 ⊕ X1

X2 ⊕ X1 X3 X3 ⊕ X2 X3, X3 ⊕ X2

TABLE I
The states of N1 and corresponding packets for a network with three
nodes, where the coding neighbor for N1, N2 and N3 are N3, N1 and N2
respectively. For example, the 5th state is [110], which represents that N1

has packets X1 and X2.

IV. Theoretical analysis

In this section, we study the reliability by examining the
packets received by a node (say Ni) from an arbitrary source
node (say N j).

Suppose that the coding neighbor of N j is Nh. Then, N j

may broadcast either X j or X j⊕Xh, depending on the packets
that N j has. It follows that the state of node Ni in a time slot,
viz. the packets received by Ni, depends only on the states of
Ni and N j in the previous time slot and the packet reception
in this time slot. Therefore, the transmission can be modeled
by a Markov chain.

A. Construction of the states

Let the state of a node (say Ni) be the combination of
packets it has. More specifically, a state is expressed by a
1×n vector, [ξ1, ..., ξn], where an entry ξk indicates the packets
received and stored from node Nk. There are four possible
values for each ξk where k , i, which are: ξk = 0, 1, 2
and 3 representing the cases that the node Ni has received
no packet, original packet, XORed packet, and both original
and XORed packets from Nk respectively. Note that ξi = 1
in every state of Ni, because Ni always has its own packet.
The total number of states L for each node is equal to 4n−1.

Once a source node has the packet of its designated coding
neighbor, it starts to broadcast the XORed packet. Conse-
quently, it is impossible for a node to receive the original
packet (X j) from a source node (N j) after receiving the
XORed packet X j⊕Xh. Therefore, there exist some absorbing
states which cannot exit after entering. The absorbing states
of node Ni have the characteristic that ξk = 2 or 3 for all
k ∈ {1, 2, . . . , n} \ {i}.

Take a network with three nodes as an example. Suppose
that the coding neighbors for N1, N2 and N3 are N3, N1 and
N2 respectively. There are L = 16 states for each node. The
states of N1 and their corresponding packets are listed in
Table I.

B. Transition matrices

Consider that in time slot t, N j broadcasts. Next we
examine the transitions of the states of a receiving node, say
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Ni. Denote a as the state of Ni in time slot t and b as the
state of Ni in time slot t + 1.

Denote by Q ji (t) the transition matrix governing the tran-
sitions of the states of Ni when N j broadcasts. It is worth
noting that Q ji (t) depends on the packet N j broadcasts, which
can be either its original packet or the XORed packet. Con-
sequently, denote Mµ1

ji and Mµ2
ji as the conditional transition

matrices representing the transition matrices of the state of
Ni conditioned on the event that N j broadcasts its original
packet and the XORed packet respectively. Mµ1

ji and Mµ2
ji are

L×L matrices. Denote elements of Mµ1
ji and Mµ2

ji as Pµ1
M (b |a )

and Pµ2
M (b |a ) respectively.

Then, Q ji (t) can be computed as follows according to total
probability theory:

Q ji (t) = µ1 (t)Mµ1
ji + µ2 (t)Mµ2

ji , (1)

where µ1 (t) (resp. µ2 (t)) is the probability that N j transmits
its original packet (resp. the XORed packet) in time slot t.

The probabilities µ1 (t) and µ2 (t) will be discussed in the
next sub-section. The conditional transition matrices are time-
invariant and can be constructed according to the following
algorithms.

Each element of Mµ1
ji , say Pµ1

M (b |a ), can be constructed
by comparing states a and b, according to Algorithm 1. In
the algorithm, a{k} denotes the kth element of state a and we
say a = b if a{k} = b{k} for all k ∈ {1, 2, . . . , n}. Similarly,
each element of Mµ2

ji , say Pµ2
M (b |a ), can be constructed by

comparing the states a and b, according to Algorithm 2.

Algorithm 1 Construct Mµ1
ji

for each Pµ1
M (b |a ) in Mµ1

ji do
if a = b and a{ j} = b{ j} = 0 then Ni does not

receive the packet from N j, which happens with probability
Pµ1

M (b |a ) = 1 − p ji;
else if a{ j} = 0, b{ j} = 1, while a{k} = b{k} for all

k ∈ {1, 2, . . . , n} \ { j} then Ni receives the packet from N j,
which happens with probability Pµ1

M (b |a ) = p ji;
else if a = b and a{ j} = b{ j} , 0 then the state

transition does not depend on whether or not Ni receives
the packet from N j, hence Pµ1

M (b |a ) = 1;
else let Pµ1

M (b |a ) = 0.
end if

end for

C. The probability vectors

Denote the probability vector of node Ni in time slot t as
S i (t). A probability vector is a 1 × L row vector whose lth

entry represents the probability that Ni is at the lth state in
time slot t. Suppose that N j broadcasts in time slot t, then
using Eq. (1), the probability vector of Ni in time slot t + 1
can be calculated by:

S i (t + 1) = S i (t)Q ji (t)

= S i(t)
(
µ1 (t)Mµ1

ji + µ2 (t)Mµ2
ji

)
. (2)

Next, we need to obtain µ1(t) and µ2(t). Denote B j as a L×1
indicator vector, whose lth entry is set to one if N j broadcasts

Algorithm 2 Construct Mµ2
ji

for each Pµ2
M (b |a ) in Mµ2

ji do
if a = b and a{ j} = b{ j} = 0 or 1 then Ni does not

receive the packet from N j, which happens with probability
Pµ2

M (b |a ) = 1 − p ji;
else if a{ j} = 0 and b{ j} = 2 or a{ j} = 1 and

b{ j} = 3, while a{k} = b{k} for all k ∈ {1, 2, . . . , n} \ { j}
then Ni receives the packet from N j, which happens with
probability Pµ2

M (b |a ) = p ji;
else if a = b and a{ j} = 2 or 3 then the state transition

does not depend on whether or not Ni receives the packet
from N j, hence Pµ2

M (b |a ) = 1;
else let Pµ2

M (b |a ) = 0.
end if

end for

the XORed packet in the lth state; otherwise it is set to zero.
On the other hand, let A j be a L × 1 indicator vector, whose
lth entry is set to one if N j broadcasts its original packet in
the lth state; otherwise it is set to zero. Then we have:

µ1(t) = S j (t) A j,

µ2(t) = S j (t) B j. (3)

Consequently, the probability vector of Ni in time slot
t + 1 can be generated by a recursive formula including the
probability vectors of Ni and N j in time slot t:

S i (t + 1) = S i (t)
(
S j (t) × A j × Mµ1

ji + S j (t) × B j × Mµ2
ji

)
.
(4)

The initial state of Ni contains packet Xi only. Then, in the
initial probability vector S i(0), the initial state is assigned
with probability one and all other states are with probability
zero. For example, if the states of N1 are arranged as shown
in Table I, the initial state is [100]. Therefore, S 1(0) is a 1×16
vector whose first entry is one and all other entries are zero.

D. Reliability

Denote by ψi(t) the probability that Ni has packets of every
other node in time slot t. Then, it can be calculated by:

ψi(t) =
∑
x∈χ

S x
i (t), (5)

where S x
i (t) is the xth entry of S i (t), the set χ includes the

indexes of states in which Ni has the packets from every other
node. Take i = 1 as an example, as shown in Table I, we have
χ = {4, 6, 7, 8, 10, 11, 12, 14, 15, 16}.

Finally, the reliability of the network in time slot t, i.e., the
probability that every node receives packets of every other
node can be expressed by:

ψ(t) =
∏

i∈{1,2,...,n}

ψi(t). (6)

V. Bounds on the reliability

The theoretical results presented in the previous section
are exact results but the computation can be complicated. To
shed more insights into the impact of fundamental network
parameters, e.g. the connectivity between nodes pi j and the
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selection of coding neighbor, on the network reliability, we
present closed-form results of upper and lower bounds on the
network reliability in this section.

The analysis starts with the reception of a single packet X j

at a node Ni. Assume that node N j selects Nh as its coding
neighbor and N j is selected by Nd as coding neighbor. Then,
there are two possible processes for the packet X j to reach Ni.
The first one is through the path N j to Ni, via the reception
of packets X j or X j ⊕ Xh; and the second one is through the
path N j to Nd and then through the path Nd to Ni, via the
reception of packet Xd ⊕ X j.

Denote F ji(R) as the probability that Ni receives and
decodes X j by round R and denote f ji(R) as the probability
that Ni receives and decodes X j at round R.

A. The upper bound

Theorem 1. Suppose that Nd selects N j as coding neighbor.
The probability that node Ni receives X j in Rth round satisfies:

F ji (R) ≤ (1 − p ji)R
R∑
α=1

(
1 − (1 − pdi)R−α

)
(1 − p jd)α−1 p jd

+
(
1 − (1 − p ji)R

)
, U ji(R). (7)

Proof: To obtain an upper bound on the probability
F ji(R), we consider that Ni can decode X j upon receiving
any packet from N j.

Denote by ΞR (resp. ΓR) the event that a packet containing
X j (either X j or a XORed packet containing X j) reaches Ni

by round R via the first (resp. the second) process.
Then, it is straightforward that Pr(ΞR) = 1 − (1 − p ji)R,

Pr(ΓR) =

R∑
α=1

(
1 − (1 − pdi)R−α

)
f jd(α), (8)

where α is the round at which the packet broadcast by
N j reaches Nd for the first time. It is evident that f jd(α)
follows a geometric distribution with success probability p jd.
Therefore, Eq. (8) becomes:

Pr(ΓR) =

R∑
α=1

(
1 − (1 − pdi)R−α

)
(1 − p jd)α−1 p jd. (9)

Then, Eq. (7) can be obtained using F ji (R) ≤ Pr(ΞR ∪ ΓR) =

Pr(ΞR) + (1 − Pr(ΞR)) Pr(ΓR).
Finally, the upper bound of the reliability of the network

at the Rth round, denoted by U (R), can be calculated by:

U (R) =
∏

i, j∈{1,2,...,n}

U ji (R), (10)

where U ji (R) is given by Theorem 1.

B. The lower bound

Theorem 2. Suppose that the coding neighbors of N j, Nd

and Nh are Nh, N j and Ng respectively. The probability that
node Ni has packet X j at the Rth round satisfies:

F ji (R) ≥

R∑
β=1

(Pr(ΩR|β) + Pr(ΨR|β) − Pr(ΩR|β) Pr(ΨR|β))

× f L
h j(β) , L ji(R), (11)

where Pr(ΩR|β), Pr(ΨR|β) and f L
h j(β) are given by Eq. (12),

Eq. (13) and Eq. (15) respectively.

Proof: Similarly to the proof of Theorem 1, we sepa-
rately investigate the two processes described at the beginning
of this section. Denote α as the round at which Nd first has
X j and begins to broadcast Xd ⊕ X j. Further, denote β as the
round at which N j first receives Xh from Nh and begins to
broadcast X j ⊕ Xh. To obtain a lower bound on the network
reliability, we consider only the cases when Nh broadcasts its
original packet in the first β rounds and omits the probability
that Nh broadcasts coded packets.

Regarding the first process, it is obvious that the XORed
packet broadcast by N j, i.e., X j⊕Xh, can be decoded by Ni if
Ni has packet Xh. Denote by ΩA

R the event that Ni receives the
packet X j via the first process by round R. Further, denote by
ΩB

R the event that Ni receives the packet X j ⊕ Xh via the first
process by round R but Ni only stores the packets received
from Nh in the first β rounds.

Denote by Pr(ΩA
R |β) the probability that event ΩA

R occurs
conditioned on the event that β is the round at which node
N j receives Xh for the first time. It is straightforward that
Pr(ΩA

R |β) = 1 − (1 − p ji)β. Similarly, we have that Pr(ΩB
R |β) =(

1 − (1 − p ji)R−β
) (

1 − (1 − phi)β + (1 − phi)β
(
1 − (1 − p ji)β

))
.

Further, because events ΩA
R and ΩB

R are correlated,
we have Pr(ΩA

R ∩ ΩB
R) = Pr(ΩB

R |Ω
A
R) Pr(ΩA

R) =(
1 − (1 − p ji)R−β

) (
1 − (1 − p ji)β

)
. Finally, it is evident

that the probability Pr(ΩR|β), defined as:

Pr(ΩR|β) , Pr(ΩA
R ∪ΩB

R |β) (12)
= Pr(ΩA

R |β) + Pr(ΩB
R |β) − Pr(ΩA

R ∩ΩB
R |β),

provides a lower bound on the probability that Ni receives
and decodes X j by round R via the first process.

Regarding the second process, denote by ΨR the event that
Ni receives X j via the second process by round R but Ni only
receives Xd from Nd when Nd broadcasts its original packet.
Then, the probability that event ΨR occurs conditioned on the
event that N j receives Xh for the first time at round β is:

Pr(ΨR|β) =

β∑
α=1

(1 − (1 − pdi)α)
(
1 − (1 − pdi)R−α

)
f jd(α) (13)

=

β∑
α=1

(1 − (1 − pdi)α)
(
1 − (1 − pdi)R−α

) ((
1 − p jd

)α−1
p jd

)
,

Therefore, the probability that node Ni receives X j in the
Rth round satisfies:

F ji (R) ≥
R∑
β=1

φh j(β) Pr(ΩR ∪ ΨR|β) (14)

=

R∑
β=1

φh j(β) (Pr(ΩR|β) + Pr(ΨR|β) − Pr(ΩR|β) Pr(ΨR|β)) ,

where φh j(β) is the probability that N j receives Xh from Nh

at round β for the first time, which satisfies:

φh j(β) ≥ (1 − ph j)β−1 ph j(1 − Fgh(β)) , f L
h j(β), (15)
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VI. Numerical results and discussion
In this section, simulations are conducted to validate

our theoretical analysis. Moreover, the benefits in reliability
of neighbor network coding over non-coded networks are
shown, followed by discussions about the relation between
the selection of coding neighbors and network reliability.

The probabilistic connectivity matrices indicating channel
conditions can be arbitrary. In this section, the entries are
chosen randomly to generate numerical results. The matrix
used in each figure is given in the respective caption.

The reliability of networks with arbitrary number of nodes
at arbitrary round can be calculated using Eq. (6). In Fig. 1,
the theoretical results for networks with 3, 4 and 5 nodes.
The coding scheme is that Nk chooses N(k+1 mod n) as coding
neighbor. It shows that the theoretical results match with the
simulation results well, which in turn validates theoretical
analysis.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

R
el

ia
bi

lit
y

 

 

simulation n=3
theoretical n=3
simulation n=4
theoretical n=4
simulation n=5
theoretical n=5

Fig. 1. Simulation and theoretical results of the reliability of networks when
n = 3, 4, 5, where the probabilistic connectivity matrix is [1 0.3 0.6 0.5 0.4;
0.4 1 0.5 0.7 0.3; 0.7 0.4 1 0.3 0.5; 0.3 0.6 0.4 1 0.6; 0.6 0.5 0.3 0.4 1].

In order to examine the reliability benefits of the proposed
neighbor network coding, the coded networks with different
coding neighbors which give the best and the worst reliability
are plotted together with the corresponding non-coded net-
works, as shown in Fig. 2. It shows that the coded networks
have better reliability than the non-coded networks in every
case, and the reliability gain can be considerable in some
scenarios. For example, in the network of four nodes, the
neighbor network coding brings reliability gain of more than
200 percent over the non-coded network at round R = 10.

Additionally, the selection of neighbors affects the network
reliability. Based on numerous simulations, it is conjectured
that if every node selects the node to which the connection
probability is the lowest as coding neighbor, the reliability
gain can be maximized.

Lastly, the bounds on the probability that X1 is received by
N3, given by Theorem 1 and Theorem 2, are shown in Fig. 3.
The coding scheme is the same as that in Table I. It can be
seen that the bounds are valid. Moreover, the bounds can be
further improved and be used to characterize the reliability
gain and further to facilitate the proof of the aforementioned
conjecture on the optimal neighbor selection rule, which is
not a trivial task hence left as future work.

VII. Conclusion and future work
In this paper, a neighbor network coding scheme is pro-

posed for cooperative broadcasting. Network reliability is
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n=5, worst neighbors {4,1,5,3,2}
n=5, best neighbors {2,5,4,1,3}
n=4, worst neighbors {4,1,2,3}
n=4, best neighbors {2,3,4,1}
n=5, no coding
n=4, no coding

Fig. 2. Networks reliability on different neighbor selections, where
probabilistic connectivity matrices for n = 4 and 5 are [1 0.1 0.5 0.4; 0.6 1
0.2 0.6; 0.7 0.3 1 0.1; 0.1 0.3 0.2 1 ] and [1 0.3 0.6 0.5 0.4; 0.4 1 0.5 0.7
0.3; 0.7 0.4 1 0.3 0.5; 0.3 0.6 0.4 1 0.6; 0.6 0.5 0.3 0.4 1] respectively.
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Fig. 3. Bounds on the probability that N3 receives X1 where n = 3 and the
probabilistic connectivity matrix is [1 0.2 0.3; 0.4 1 0.1; 0.7 0.4 1].

investigated analytically and it has been shown that the
proposed neighbor coding scheme can improve network reli-
ability significantly. We also provide bounds on the reliability
of the network applying the proposed coding scheme. In
the future, the framework of analyzing network reliability
established can be applied to study the reliability of networks
applying different coding schemes. Moreover, it is important
to develop a theoretical proof for the optimal coding scheme
that maximizes the reliability of a given network.
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