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Abstract—In this paper, we propose a novel network coded
non-binary low-density generator matrix (LDGM) code structure
for a multi-access relay system, where multiple sources transmit
lattice signals to a destination with the help of a relay. Specifically,
we first develop a network coded non-binary LDGM code
structure by jointly considering lattice-signal transmissions at the
sources and the relay. Then we derive the achievable computation
rate (ACR) for the proposed system and on that basis optimize the
key parameters in the proposed structure to maximize the ACR.
Furthermore, we optimize the network coded non-binary LDGM
codes based on lattices to approach the ACR. Simulation results
show that the optimal setting of the parameters is consistent with
that obtained from our analysis and the proposed code structure
outperforms the designed reference scheme.

I. INTRODUCTION

Wireless network coding [1] has attracted significant atten-
tion among the research community for its spectral efficiency.
An important category of wireless network coding is called
nested codes [2], which enables a destination to decode all the
sources’ information from a network coded packet forwarded
by a relay. The authors in [3] proposed a code structure
that jointly combined the convolutional codes and the nested
codes and designed a criterion to optimize the code profiles.
However, the coding scheme is only applicable to binary codes
and transmissions in orthogonal channels. Thus, the spectral
efficiency is relatively low.

An evolutionary coding method, called high-dimensional
lattice network codes, can provide a relatively large coding
gain and increase the spectral efficiency [4]. In [5], the authors
proposed a class of novel nested convolutional lattice codes,
which is designed based on lattices to achieve a high spec-
tral efficiency. However, the decoding complexity increases
exponentially with the lattice dimensions. Since low-density
generator matrix (LDGM) codes can be regarded as a special
type of low-density parity-check (LDPC) codes with a linear
encoding complexity, constructing lattices based on LDGM
codes guarantees a manageable encoding/decoding complexity
with a good error performance.

Based on the above observation, in this paper, we are
interested in the design of network coded LDGM codes over a
finite field with a high spectral efficiency and a low decoding
complexity. Specifically, we construct novel nested non-binary
LDGM codes based on lattices in a multi-access relay system.
A potential application of the proposed code structure is
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to improve the instant messaging services (IMS) [6], i.e.,
MSN and Tencent QQ, by network coding multiple small
packets together to obtain a single nested coded packet with
a good error performance. Our contributions in this paper
are summarized as follows. We first develop a nested non-
binary LDGM code structure by jointly considering lattice-
signal transmissions at the sources and at the relay. Then we
derive the achievable computation rate (ACR) for the proposed
system and optimize the key parameters in the proposed code
structure to maximize the ACR. Furthermore, we optimize the
nested non-binary LDGM codes based on lattices to approach
the ACR with a designed low complexity decoder. Simulation
results show that (1) the optimal setting of the parameters
is consistent with that obtained from our analysis; (2) the
proposed code structure performs 2dB better than the reference
scheme at an average symbol error rate of 10−4.

II. SYSTEM MODEL

We consider a multi-access relay system with L sources, a
single relay and a destination, as shown in Fig. 1, where the
relay receives transmissions from the L sources and forwards
a network coded message to the destination.

The transmission process is conducted in two time slots.
Let boldface lowercase and uppercase letters denote vectors
and matrices, respectively. In the first time slot, messages are
transmitted from their respective sources to the relay, i.e.,

ysr =
∑L

�=1 h�x� + zsr, where ysr is the received signal
at the relay from all the sources, h� is the complex channel
coefficient of the link between the �th source and the relay,
x� is the transmitted message from the �th source, and zsr
represents a vector of additive white Gaussian noise (AWGN)
samples, in which each element is an AWGN with a zero
mean and one-sided variance σ2. The transmission power at
the �th source is subject to the constraint 1

nE
[‖x�‖2

] ≤ P ,
where n denotes the message length. In the second time slot,
the network coded message is transmitted from the relay to
the destination, i.e., yrd = hrdxr + zrd, where yrd is the
received signal at the destination from the relay, hrd is the
complex channel coefficient of the link between the relay and
the destination, xr is the transmitted message from the relay,
and zrd is a vector of AWGN samples, in which each element
is an AWGN with a zero mean and one-sided variance σ2.
The transmission power at the relay is subject to the constraint
1
nE

[‖xr‖2
] ≤ P . We define the SNR as γ = P/(2σ2).
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Fig. 1. A multi-access relay network model with multiple sources, one relay, and one destination.

III. NESTED LDGM CODES BASED ON LATTICES

In this section, we first present the mapping relationships
between the values in a finite field and the points on a lattice.
Then, we design the coding rules for the non-binary nested
codes. At last, we elaborate the code structure of the nested
LDGM codes based on lattices.

Let Λ′ denote a coarse lattice, which is a subset of a fine
lattice Λ, i.e., Λ′ ⊂ Λ. Let the message space be W = Λ/Λ′,
where Λ/Λ′ denotes the set of all the cosets of Λ′ in Λ. Let
Fq denote a finite field of size q, where q is a positive prime
integer and q > 2. Let �q(w) be an operation over Fq and let
�Λ′(λ) be an operation over the fundamental Voronoi region
of Λ′ [4], denoted by V(Λ′), where w ∈ Fq and λ ∈ Λ. Thus,

�q(w) = [w] mod q, �Λ′(λ) = [λ] mod Λ′,
�Λ′(λ) = ψ (�q(w)) , and �q(w) = ψ−1 (�Λ′(λ)) ,

(1)

where ψ(·) denotes a map labeling the message over Fq to the
points over V(Λ′) and ψ−1(·) denotes the inverse process [5].

Based on the bit-wised nested codes [2], we expand the
coding field from the binary to Fq . Let w� denote the message
generated independently and uniformly over Fq by the �th
source and let G� denote the generator matrix over Fq at the
�th source. The mathematical operation of nested codes over
Fq can be expressed by

�q

(
L∑

�=1

w�G�

)
= �q (WG) , (2)

where W = [w1,w2, · · · ,wL], G =
[
GT

1 ,G
T
2 , · · · ,GT

L

]T
,

G1, · · · ,GL are mutually linearly independent generators at
different sources, and GT denotes the transpose of G.

For the nested non-binary LDGM codes based on lattices,
we regard the finite field Fq of the nested non-binary LDGM
codes as the message space W of the lattices. Thus, the coded
message w�G� is uniformly distributed over an equivalent
field with the message space W . We define the message rate
for each source to be the same as R� � 1

n log2 |W| = r� log2 q,
where r� is the LDGM code rate at the �th source.

At the �th source, let t� denote the coded message on Λ
and let d� denote a dither generated independently according
to a uniform distribution over V(Λ′). Then we have

t� = ψ(w�G�) and x� = �Λ′(t� + d�). (3)

At the relay, as in [4], we optimize the system performance
by choosing some scale factor α and coefficient vector a �

(a1, a2, · · · , aL), where α ∈ C, C denotes the complex field,
and a ∈ Λ. It is worth noting that, to guarantee the successful
decoding of all the messages at the destination, it is assumed
that a� �= 0, ∀� ∈ {1, 2, · · · , L}. Then, we obtain

�Λ′

(
αysr −

L∑
�=1

a�d�

)
= �Λ′

(
L∑

�=1

a�t� + n

)
, (4)

where n =
∑L

�=1(αh� − a�)x� + αzsr.
Thus, the transmitted network coded message from the relay

to the destination is xr = �Λ′
(∑L

�=1 a�t� + n+ dr

)
, where

dr is a dither generated independently according to a uniform
distribution over V(Λ′) at the relay.

At the destination, we remove the dither by choosing some
scalars β ∈ C and b ∈ Λ, and obtain the received lattice
signal v (see Fig. 1) given by

v = �Λ′ (βyrd − bdr) = �Λ′

(
b

L∑
�=1

a�t� +m

)

= �Λ′(u+m),

(5)

where the effective noise m = bn+ (βhrd − b)xr + βzrd.
We then define a function τ(·) that converts the received

ith lattice signal vi, vi ∈ v in (5), into the log-likelihood ratio
vector L(ui) as the input of the decoder, i.e.,

L(ui) = τ(vi), ∀i ∈ {1, · · · , n}, ui ∈ u, vi ∈ v, (6)

where L(ui) �
[
L(ui = λ(1)), · · · , L(ui = λ(q−1))

]
. Let λ(ξ)

denote the ξth non-zero fine lattice point in V(Λ′), and we

have L(ui = λ(ξ)) � ln
Prob(ui=λ(ξ))
Prob(ui=0) , ∀ξ ∈ {1, · · · , q − 1}.

The detailed process of τ(·) function is given as follows.
First, we expand (5), corresponding to the ith signal, as

vi = �Λ′(ui +mi)

= �Λ′(ui,rl + jui,im +mi,rl + jmi,im)

= �Λ′(vi,rl + jvi,im), mi ∈ m,

(7)

where mi,rl and mi,im are approximated as the realizations of
Gaussian random variables with the same variance σ2

m. The
joint probability density function of vi,rl, vi,im is

p(vi|ui)

=
1

2πσ2
m

k1=∞∑
k1=−∞

k2=∞∑
k2=−∞

exp

(
− (vi,rl − ui,rl − qk1)

2

2σ2
m

)

× exp

(
− (vi,im − ui,im − qk2)

2

2σ2
m

)
,

(8)
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where q is the size of the finite field, as well as the number
of fine lattice points over V(Λ′).

Second, according to the Bayes’ theorem, we can have

Pr(ui|vi) = p(vi|ui)Pr(ui)

Pr(vi)

=gi

k1=∞∑
k1=−∞

k2=∞∑
k2=−∞

exp

(
− (vi,rl − ui,rl − qk1)

2

2σ2
m

)

× exp

(
− (vi,im − ui,im − qk2)

2

2σ2
m

)
,

(9)

where gi = Pr(ui)/(2πσ
2
mPr(vi)) is a constant if all the

signals in V(Λ′) are transmitted with equal probability. The

normalized constant gi ensures Pr(ui = 0|vi)+
∑q−1

ξ=1 Pr(ui =

λ(ξ)|vi) = 1. Based on (9), we have the function τ(·) as

τ(vi) = L(ui)

=

[
ln

Pr(ui = λ(1)|vi)
Pr(ui = 0|vi) , · · · , ln Pr(ui = λ(q−1)|vi)

Pr(ui = 0|vi)
]
.

(10)

Hence, given the assumption that the destination knows all
the assigned generators a priori and can obtain a sequence of
corresponding coefficients, according to (2), it can extract all
the messages from all the sources. It should be noticed that the
proposed code structure is significantly different with that in
[4]. Following the analysis in [4], only with sufficiently linear
combinations of the transmitted signals sent from multiple
relays, the destination can decode the messages individually.
However, due to the joint design of the nested LDGM codes
and lattices, the destination in our proposed code structure
can decode all the messages from one network coded signal
forwarded by the relay. Interested readers can refer to [3], [5]
for further information regarding such a nested code structure.

IV. ACHIEVABLE COMPUTATION RATE (ACR)

In this section, we will analyze the ACR and optimize the
key parameters α, a, β and b in the proposed code structure to
maximize the ACR. The ACR is defined as follows: a message
rate R� is said to be achievable if and only if for any ε > 0 and
n large enough, the destination can recover all the messages
with an average probability of error ε.

Theorem 1. For the complex-valued channels, the ACR of the
proposed system can be expressed by

R(h,a, hrd, b) =

log+
(

γ

|b|2‖αh− a‖2γ + |b|2|α|2 + |βhrd − b|2γ + |β|2
)
,

(11)

where log+(x) � max(log2(x), 0).

Proof : Let h = [h1, · · · , h�, · · · , hL]. The ACR is obtained
based on the observation that the destination can decode
the message with arbitrary coefficients a and b on Λ/Λ′.
Therefore, the message rate is within the ACR as

R� < min
a,b �=0

R(h,a, hrd, b). (12)

The effective noise observed at the destination is expressed
by m = bn+ (βhrd − b)xr + βzrd. Thus, the average power
of the effective noise is Ne = E

[‖m‖2∣∣h, hrd

]
= |b|2‖αh−

a‖2P + 2σ2|b|2|α|2 + |βhrd − b|2P + 2σ2|β|2. The rate that
can be achieved by the lattice code is less than that in [4]

R� < min
a,b �=0

1

2
log+

(
P

G(Λ)4πeσ2
m

)
, (13)

where σ2
m is the one-side variance of the effective noise m,

G(Λ) is the normalized second moment of the lattice Λ and
limN→∞G(Λ(N)) = 1

2πe . With ∀δ > 0, as the dimensions N
is large enough, we have that G(Λ)2πe < (1+δ). Meanwhile,
2σ2

m converges to Ne. It follows that for N large enough,
2σ2

m < (1+ δ)Ne. Thus, by choosing δ small enough, for the
complex-valued channels, the ACR is given by (11). �

To maximize the ACR, the related parameters α, a, β and
b are optimized by the following propositions.

Proposition 1. The parameters α and β that maximize the
ACR are given by

α =
aγhH

γ‖h‖2 + 1
and β =

bγhH
rd

γ|hrd|2 + 1
, (14)

where a is chosen by a greedy approach to maximize the ACR
and hH denotes the Hermitian transpose of h.

Proof : First, we show that maximizing the ACR is equiv-
alent to minimizing Ne. From (5), we have

�Λ′

(
b

L∑
�=1

a�t� +m

)
= Θ−QΛ′ (Θ) , (15)

where Θ = b
∑L

�=1 a�t� + m and the mapping QΛ′(Θ) �
argminλ′∈Λ′ ‖Θ−λ′‖. Since QΛ′ (Θ) is a point on the coarse
lattice Λ′ and ψ−1 (QΛ′ (Θ)) = 0, we can regard QΛ′ (Θ) as
a regular shift of the signal. Hence, α and β should be chosen
to minimize Ne, which is equivalent to maximizing the ACR.

It is apparent that Ne is jointly convex in α and β. By
solving ∂Ne

∂α = 0 and ∂Ne

∂β = 0, we can have (14). �
Proposition 2. Given channel coefficient parameters h and
hrd, the ACR is maximized by choosing the lattice network
coding coefficient b to be the closest point to the origin on Λ.

Proof : Inserting the expressions of α and β into (11),
we have another expression of the ACR. Then maximizing
R(h,a, hrd, b) can be regarded as an equivalent to the fol-
lowing minimization problem,

min
b �=0

{
|b|2‖a‖2 − |b|2γ|hHa|2

1 + γ‖h‖2 + |b|2 − |b|2γ|hH
rd|2

1 + γ|hrd|2
}
. (16)

By extracting |b|2, as b ∈ Λ, it is optimum to choose b as the
closest point to the origin on the fine lattice Λ. �

The ACR is derived and used as a theoretical limit for the
optimization of the proposed codes. Here, different from [4],
which only considers the optimization of parameters α and a
at the relay, we consider a different system model and optimize
all the parameters α, a, β and b by maximizing the ACR for
the entire system at the destination.
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V. CODE OPTIMIZATION

To optimize the proposed nested non-binary LDGM codes
based on lattices, we first develop a corresponding low com-
plexity decoder. Note that a conventional low complexity
decoding algorithm, such as the Fast Fourier Transform (FFT),
requires that the size of the finite field should be a power of
two. However, in the case of our proposed code structure, the
size of the finite field q is a prime. Therefore, we employ and
expand the Extended Min-Sum algorithm in [7] to a Lattice-
based Extended Min-Sum (L-EMS) algorithm, where the size
of the finite field is a prime. The initialized channel input
of the L-EMS decoder is estimated on the lattice by (10)
and the exchanged messages between variable nodes and
check nodes are truncated vectors with a length nm ≤ q.
With the L-EMS decoder, the computational complexity is
dominated by O(nm log2(nm)), compared with that of the
Belief Propagation (BP) algorithm denominated by O(q2) [8].

We then optimize the proposed codes with the L-EMS
decoder. It should be noted that the structure of the nested
non-binary LDGM codes based on lattices is identical to that
of a single “stacked” non-binary LDGM code based on lattices.
In particular, we consider only the average column weight wc

of the single “stacked” non-binary LDGM code, because it is
intractable to locate the optimal code among a huge irregular
LDGM matrix set. For a given LDGM code rate, we will
optimize wc with respect to SNR under a certain symbol
error rate. Formally, we write wc,opt = argminwc

{γ(wc)}.
As stated in [9], simulation based approaches have to be used
to solve this optimization problem. In this paper, a lattice-
based Monte Carlo method is employed, where the initialized
channel input on lattices is estimated as (10).

VI. REFERENCE SCHEME

This section presents a reference scheme based on amplify
and forward (AF) protocol1 to compare with the proposed code
structure. For the AF, the received signal at the relay is still
(1) and the received signal at the destination can be written as

yd = hrdA
(

L∑
�=1

h�x� + zsr

)
+ zrd, (17)

where A is the amplification factor given by A =
√

γ
γ‖h‖2+1 .

Then, to successfully decode the messages at the destination,
analogue to the proposed code structure, we introduce a
scale factor ρ ∈ C as well as a coefficient vector c �
(c1, c2, · · · , cL), where c ∈ Λ and c� �= 0, and then obtain

�Λ′

(
ρyd −

L∑
�=1

c�d�

)
= �Λ′

(
L∑

�=1

c�t� + nAF

)
, (18)

where nAF =
∑L

�=1(ρhrdAh� − c�)x� + ρhrdAzsr + ρzrd.
Based on Proposition 1, the scale factor ρ can be obtained as

ρ =
AcγhHhH

rd

A2γ‖h‖2|hrd|2 +A2|hrd|2 + 1
, (19)

1Decode and forward (DF) protocol is not considered for comparison
because, to the best knowledge of the authors, there is not feasible method
except the proposed code structure can be implemented to decode the
messages at the relay.
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Fig. 2. The ACR performance of the proposed system with an optimal a and
different choices of b, compared with that of the reference scheme.

where c can be readily obtained via a greedy approach. Thus,
based on Theorem 1, the ACR of the reference scheme based
on AF, denoted by RAF , can be obtained as

RAF = log+
(

γ

‖ρhrdAh− c‖2γ + |ρ|2|hrd|2A2 + |ρ|2
)
.

(20)

VII. NUMERICAL AND SIMULATION RESULTS

In the simulations, a multi-access relay system with two
sources, one relay and one destination is considered. As in
[10], the channels are set as h1 = −1.17+2.15j, h2 = 1.25−
1.63j and hrd = 0.77 + 1.12j. The lattice partition is chosen
to be a typical Gaussian integer W ∼= Z[�]/ηZ[�] as in [11],
where η = 2 + 3�. The finite field is F13. The LDGM code
rate for each source is set as 0.25 and the LDGM code length
is 2000. Thus the message rate R� = 0.25 log2 13. According
to Propositions 1 and 2, the optimal lattice network coding
coefficients2 for the proposed code structure are computed by
a = [−1, 1] and b = 1. For the reference scheme, we have
c = [−1, 1]. Using the lattice-based Monte Carlo method,
we obtain an optimal average column weight wc = 2.4 for
the proposed codes over F13. Subsequently, we construct the
generator matrix G of the corresponding single “stacked”
LDGM code. To assign each source with different linearly
independent LDGM codes, we divide the generator matrix of
the single “stacked” LDGM code as3

G1000×2000 =

[
G500×2000

1

G500×2000
2

]
.

Fig. 2 show the ACR performance of the proposed system
with an optimal a and different choices of b, and that of
the reference scheme is also plotted for comparison. It is

2Note that the optimal lattice network coding coefficients are the points on
the fine lattice and there are multiple choices for optimal a or b that maximize
the ACR. Here we just present one optimal result of a or b.

3Here, we simulate symmetric case only where the rates for G1 and G2

are equal. However, it can be readily extended to asymmetric scenarios by
assigning G1 and G2 with different rates.
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illustrated that the curve with the optimal b achieves higher
ACR than that with b = −1 + 1i and b = 2i, respectively,
which validates the result in Proposition 2 that b should be
the closet point to the origin on Λ. It also can be observed
that the proposed system with optimal lattice network coding
coefficients performs better than the reference scheme.

Fig. 3 shows the average detection error performance of the
proposed system with the lattice network coding coefficients
chosen as b = 1, b = −1 + 1i, and b = 2i, respectively.
Each curve hereafter is obtained by averaging over 1000
runs. The detection error is defined as the average symbol
error rate at the input of the decoder (i.e., the output of the
function τ(·), see Fig. 1). Fig. 3 shows that the best average
detection error performance is realized by choosing optimal
b = 1 compared with b = −1 + 1i and b = 2i, which is
consistent with the result of Proposition 2 and the analysis for
Fig. 2. Besides, the average detection error performance of the
reference scheme is also shown for comparison, which reveals
a worse performance than that of the proposed system.

In Fig. 4, the average symbol error performance of the
optimized codes via Section V with the L-EMS decoder are de-
picted with the truncated message length nm = 3, 5, 7, and 13,
respectively. A tradeoff exists between the code performance

corresponding to the value of nm and the decoding complexity.
It is shown that a further increase of nm from nm = 7 to 13
only results in a marginal performance improvement, which
indicates that nm = 7 can be a good choice for the codes.
Concerning the complexity, based on the analysis in Section V,
the L-EMS decoder with nm = 13 is 2.44 times more complex
than the L-EMS decoder with nm = 7. Furthermore, the
performance of the reference scheme based on AF protocol
with nm = 7 are also simulated in Fig. 4 for comparison.
The reference scheme employs the same codes adopted by
the proposed system. It is shown that the SNR required by
the proposed code structure to achieve an average symbol rate
of 10−4 is about 2dB less than that required by the reference
scheme to achieve the same error rate.

VIII. CONCLUSION

In this paper, we proposed novel nested non-binary LDGM
codes based on lattices for a multi-access relay system.
Specifically, we first constructed this novel codes by jointly
considering lattice-signal transmissions at the sources and at
the relay. Besides, we derived the ACR and optimized related
parameters to maximize the ACR for the proposed system.
Furthermore, we optimized the proposed codes by the lattice-
based Monte Carlo method to approach the ACR with the low
complexity L-EMS decoder. Finally, simulation results showed
that the optimal setting of the parameters is consistent with
that suggested in our analysis and the proposed code structure
performs 2dB better than the reference scheme at an average
symbol error rate of 10−4.
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