
Socially Aware Distributed Caching in
Device-to-Device Communication Networks

Chuan Ma�†, Ming Ding†, He Chen�, Zihuai Lin�, Guoqiang Mao†�, Xu Li§
� School of Electrical and Information Engineering, University of Sydney, Sydney, NSW, Australia

† Data61, CSIRO, Australia
� School of Computing and Communications, University of Technology, Sydney, NSW, Australia

§ State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
Email: {chuan.ma, he.chen, zihuai.lin}@sydney.edu.au, Ming.Ding@data61.csicro.au, g.mao@ieee.org, xli@bjtu.edu.cn

Abstract—Content caching in user devices with device-to-
device (D2D) communication capacities is becoming a promising
technique to address the data traffic explosion problem in the next
generation mobile networks. In this paper, we develop a socially
aware distributed caching strategy based on a decentralized
learning automaton, referred to as the Discrete Generalized
Pursuit Algorithm (DGPA), to optimize the cache placement
operation in D2D networks. Different from existing caching
schemes, the proposed algorithm not only considers the file
request probability and the closeness of devices as measured by
their distance, but also takes into account the social relationship
between D2D users. Furthermore, we characterize the mutual
impact between the contents cached in different D2D users.
Simulation results show that the proposed algorithm converges
quickly and outperforms its counterparts using deterministic
caching and random caching. Our work sheds new insights on
the optimal design of D2D cache placement operations.

I. INTRODUCTION

With the increasing popularity of tablets and smart phones,

mobile data traffic has been increasing dramatically in the past

few years. According to Cisco, this unprecedented worldwide

growth of mobile data traffic is expected to continue at an

annual rate of 45% and exceed 30 exabytes per month by

2020 [1]. Traditional cellular networks alone cannot support

such dramatic increase of traffic demands [2]. Distributed data

caching, which becomes viable due to the availability of high

capacity and low-cost storage devices, has been proposed as

an efficient way to offload a significant amount of traffic from

cellular networks to other networks [3].

Caching schemes in the literature can be broadly classified

into two categories, i.e., small Base Station (BS) caching

[4], [5] and device-to-device (D2D) caching [6], [7]. Caching

content at small BSs can increase the quality of experience

(QoE) of the users and alleviate congestion in the small BSs’

backhaul connection, by means of storing data that may be

possibly requested by a user at the nearest BS to such user.

For example, Marini et al. in [4] proposed to use a discrete

generalized pursuit algorithm (DGPA) to optimize the cache

placement in the small BS caching. Nevertheless, the small

BS caching may suffer from long latency and slow update of

popular contents.

Compared with the small BS caching, D2D caching pro-

vides an alternative solution, where the contents are cached in

the storage of D2D users and shared via D2D transmissions.

D2D transmissions in cellular networks allow one or multi-

ple pairs of nearby users to communicate directly without

going through the BS. D2D users can either use the same

bandwidth as the cellular users (underlaying) or use dedicated

bandwidth reserved for D2D communication only (overlaying)

[8]. Different from small BS caching, in D2D networks,

social relationships among users are key factors that encourage

successful D2D transmissions [9]. In this case, besides the

common factors that have been considered in the small BS

caching (e.g., file popularity and physical distance), the social

relationship among users should also be taken into account in

the design of D2D caching strategy. Therefore, it is interesting

and challenging to investigate which users should be selected

for content caching that can benefit as many users as possible.

Furthermore, compared with small BSs, the storage capacities

at users are much smaller. Thus, the optimization of the

content placement (i.e., which file should be cached) among

the selected users becomes more critical in the design of

D2D caching strategies. In [7], a learning automaton was

used to solve the content placement problem and optimize the

download delay in the D2D underlaying networks. However,

different challenges and objectives need to be considered if

caching is used in the D2D overlaying networks. Particularly,

dedicated bandwidth resources are occupied by the D2D users,

and therefore, it is important to maximize the throughput of

the D2D links. Moreover, the commonly used assumption that

all the D2D links generate the same transmission rate in the

D2D underlaying scenario is no longer practical in the D2D

overlaying scenario, as the D2D users can communicate with

each other with their distances varying from 10 to 1000 meters

[10]. As such, the physical distances between transmitter and

receiver pairs should to be considered when evaluating their

transmission rates.

Motivated by the aforementioned observations, in this paper

we develop a socially aware distributed caching framework for

the D2D overlay networks. Specifically, the main contributions

and novelties of this paper compared with the existing works

are described as follows. First, a subset of users, referred to

as important users (IUs) are selected to pre-cache files. Then,

inspired by the DGPA, we proposed a distributed caching

algorithm for the IUs to learn their caching strategies in a

decentralized manner. The learning process of each IU decides

which files to cache according to its local and aggregate

environment feedback. In the proposed algorithm, we design

a new and practical feedback scheme by taking into account

three key factors: (i) file request probability, (ii) physical dis-

tance between D2D transmitters and receivers and (iii) social

influence. Moreover, in order to apply the proposed scheme in

large-scale networks, we also characterize the mutual impact

of the cached files among nearby IUs. Specifically, when a

new IU starts to cache, the files which have not been cached

by its nearby IUs will be cached with a higher probability,

so as to increase the diversity of the cached contents in the

network. Finally, simulation results are provided to show that

the proposed algorithm not only outperforms its counterparts

using deterministic and random caching, but also exhibits a

performance gain compared with the algorithm in [7].

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a content downloading scenario assisted by

D2D overlay communications, where dedicated bandwidth

are allocated for D2D communications. As such, there is

no interference between the cellular and the D2D links. We

further assume that there are N users randomly distributed

in the network, each of which carries a smart device with

D2D communication and multi-radio capability. A D2D link

can be established only if the transmission rate of such link

is above a predefined threshold Rt and these two users have

positive social relationship. Throughout the paper, a user is

called a neighbor of another user if there is a positive social

relationship between them.

According to [11], in social networks, the distribution of the

node degree, i.e., the number of neighbors of a node, decays

according to a power law distribution given by

p(k) = ck × k−ω, (1)

where
∞∑
k=0

ckk
−ω = 1, and p(k) is the probability that a

randomly chosen node has k neighbors, and ω is the decaying

coefficient. Let M be the number of nodes in a total of N
nodes that have at least k neighbors. Using the aforementioned

power law degree distribution, M can be approximately cal-

culated as

M = �N ×
N−1∑
i=k

p(i)�, (2)

where �x� is the floor function, retrieving the largest integer

that is equal or smaller than x. We assume that these M users

can download contents directly from BSs and they are regarded

as the important users (IUs). Moreover, these M IUs are sorted

by their equipment’s available storage capacity Ci. We denote

the sequence of the IUs by the list C (C = {C1, C2, ..., CM}).

The rest of users who request data via the D2D com-

munications are treated as content downloaders, denoted by

D = {1, 2, ..., D}. Note that, BSs are treated as content

providers that host all contents, obtainable via the Internet

connection to the content servers. To maximize the traffic

offloading for cellular networks, we consider the “D2D-first”

strategy, where any downloaders will first ask nearby IUs

for help via the D2D links, and then turn to small BSs for

downloading if the required files cannot be provided by the

IUs.

B. Problem Formulation

The D2D propagation channel model is characterized as

a frequency-flat Rayleigh fading channel. The additive white

Gaussian noise (AWGN) at each user is assumed to be i.i.d.

and with the same variance σ2. Let ζm,d represent the distance

between the mth IU and the dth content downloader, and let

λm,d denote the path loss exponent of this D2D link.

The nominal transmission rate of this link between the mth

IU and the dth downloader (if the IU m and the downloader

d has positive social relationship) can be expressed as :

rm,d = BW × log2

⎛
⎜⎝1 +

Pm|hm,d|2∑
m′ �=m,m′∈M

Pm′ |hm′,d|2 + σ2

⎞
⎟⎠ ,

(3)

where BW denotes the bandwidth allocated by the BS,

|hm,d|2 = (ζ
−λm,d

m,d) × |h0|2 denotes the channel coefficient

of the D2D link and |h0|2 is the multi-path channel gain of

the Rayleigh fading. Besides, Pm represents the transmission

power of IU m.

In order to calculate the system throughput, each nominal

D2D transmission rate will settle down as an effective D2D

transmission rate on condition that (i) the transmission rate is

above the threshold Rt and (ii) the IU has cached the required

file of the downloader. Note that, it is possible that more than

one adjacent IUs cache the same files and what they cache

may influence each other. Let gm denote the hitting rate of the

mth IU, which is essentially the probability of the event that

a downloader can find the required file from its neighbor IU

m. Therefore, based on the above definitions, the throughput

of the entire D2D transmission system using the dedicated

resources can be expressed as:

TD2D =
∑

m∈M,d∈D

�{rm,d ≥ Rt} × rm,d × gm, (4)

where �{�} is the indicator function, which takes the value

of 1 if the condition � is satisfied. .

As can be observed from (4), the system throughout can

be improved by increasing either the hitting rate of each IU

gm or the transmission rate rm,d. The resource allocation

problem has been well studied to satisfy the requirement of

transmission rate, such as the algorithms proposed in [8]. In

this paper, we focus on the cache placement optimization at

the IUs to improve the hitting rate, which in turn improves the

system throughput.

III. DISTRIBUTED AND SOCIALLY AWARE

STRATEGY FOR CACHING

In this section, we propose a decentralized learning automa-

ton, which helps each IU to optimize its cache placement

according to its local demands. The proposed algorithm is

inspired by the DGPA. In the following, we first provide some

preliminaries of the DGPA before formally presenting the

proposed algorithm. Then, we design a scheme to characterize

the mutual impact of cache placement between nearby IUs,

which enables the proposed algorithm to be applied in large-

scale networks.

A. Discrete Generalized Pursuit Algorithm

The goal of the DGPA is to determine an optimal action out

of a set of allowable actions F = [1, 2, ..., F]. The DGPA has a

probability vector P(t) = [p1(t), p2(t), ..., pF (t)], where pi(t)
is the probability that the automaton will select the action i at

iteration t with
F∑
i=1

pi(t) = 1. This learning algorithm will con-

verge when any action i achieves the probability of one, i.e.,

pi = 1. The updating of the probability vector is performed

based on the reward estimation d(t) = [d1(t), d2(t), ..., dF (t)]
and each reward estimation is determined by the environment

feedback [12]. In the considered D2D caching system, at

each learning process, an action of each IU is to choose one

popular file from the file library to cache. This action is taken

considering the file request probability. A certain action will

get a positive reward from the aggregate environment feedback

if it is beneficial to the system.

The DGPA generalizes the concepts of the pursuit algorithm

by “pursuing” all the actions that have higher reward estimates

than the current chosen action. In this algorithm, the action

probability vector P(t) is recursively updated by the following

equation:

P(t+1) = P(t)+
Δ

K(t)
× e(t)− Δ

F −K(t)
× [u− e(t)], (5)

where u is a vector in which ui = 1, i = 1, 2, ..., F , and e is

a direction vector given by:

ei(t) =

{
1, if di(t) = max{dj(t)}, j ∈ 1, ...F ;

0, otherwise.

ej(t) =

{
0, if dj(t) ≤ di(t);

1, if dj(t) > di(t).

(6)

According to (5), the probabilities of the chosen action i and

other action j are updated as follows:⎧⎪⎪⎨
⎪⎪⎩

pj(t+ 1) = min{pj(t) + Δ
K(t) , 1}, if dj(t) > di(t);

pj(t+ 1) = max{pj(t)− Δ
F−K(t) , 0}, if dj(t) < di(t);

pi(t+ 1) = 1− ∑
j �=i

pj(t+ 1).

(7)

At each iteration of the DGPA, the number of actions which

has a higher reward estimation d(t) than the current chosen

one is counted, denoted by K(t). At the end of iteration, the

probability of all actions with a higher reward estimation d(t)
will increase by an amount of Δ/K(t), and the probability of

all the other actions except the chosen one will decrease by

an amount of Δ/(F − K(t)), where F is the action library

size. Besides, Δ = 1/Fδ and it is a resolution step and δ is

the resolution parameter.

In order to update the probability of each action, the reward

estimation d(t) should be estimated at first. The updating

equations of reward estimation d(t) for the chosen action i
are given as follows:⎧⎪⎨

⎪⎩
Zi(t+ 1) = Zi(t) + 1;

Wi(t+ 1) = Wi(t) + β(t);

di(t+ 1) = Wi(t+1)
Zi(t+1) ,

(8)

where Zi(t) represents the number of times that action i has

been chosen, and Wi(t) represents the number of times that

action i has been rewarded. β(t) ∈ {0, 1} is a binary factor

reflecting a positive or negative feedback. If the feedback is

positive (i.e., β = 1), then this action i is rewarded.

In the next subsection, based on the preliminaries of the

DGPA, we will design the functions of the aggregate environ-

ment feedback in the proposed socially aware D2D networks.

B. Aggregate Environment Feedback

In our model, we assume that BSs can get the position of

every IU and every downloader, thus BSs can provide each

IU with its relevant downloaders’ information, such as the

file request probability, and each IU can broadcast the list

of cached file to its neighboring downloaders. Thus, different

cached files (actions) at a certain IU would have different

impacts on its neighbors and other IUs.

In the process of learning, when the mth IU caches the file

f according to its downloader neighbor d’s request, we define

the aggregate environment reward Rf
m,d as a weighted sum

of the request probability (pfd) of file f , the physical distance

influence (1
1+ζλ

m,d

) between the IU m and its neighbor d, and

the social influence (sm,d) between them, which is intuitively

defined as:

Rf
m,d = τ × pfd + θ × hm,d + η × sm,d, (9)

where τ , θ and η are tunable parameters and they satisfy τ +
θ + η = 1. We provide detailed explanation for each term in

(9) as follows.

1) The request probability pfd : We use the Zipf distribu-

tion, which has been commonly used in the literature (e.g.,

[6]), to model the file request probability. Specifically, for the

f th file, its file request probability pf for the downloader d is

written as

pfd =

1
fγ

Fd∑
i=1

1
iγ

, (10)

where Fd is the file library size of downloader d and γ
is the discounted rate in the Zipf distribution. Note that,

each downloader has different file library size F and different

discounted rate γ, where γ ∈ [0.4, 1] [6].

2) The physical distance influence hm,d: Intuitively speak-

ing, there will be little influence if the physical distance

between IU m and downloader d is large. In this case, the

physical distance influence can be model as

hm,d =
1

1 + ζλm,d

, (11)

where ζm,d represents the distance between IU m and down-

loader d and λ is the path loss exponent.

3) The social influence sm,d: The degree of similarity

among users has an important impact in information dis-

semination [13]. For example, when the degree of similarity

between two users is lower, more time would be required for

transmitting information of the same length. As a result, we

use the degree of similarity to determine the social influence

sm,d.

The degree of similarity can be measured by the ratio of

common neighbors between individuals. According to [13],

we suppose that IU m is connected with downloader d. Let

V (m), V (d) denote the set of neighbors of user m and d,

respectively. Let z be one of the common neighbors of them

and let X(z) denote the number of z′s neighbor, including m
and d. We then can define the similarity between IU m and

its neighbor d as [13]:

qm,d =
∑

z∈V (m)∩V (d)

1

X(z)
. (12)

If m and d have no common neighbors, such that V (z) =
0, then qm,d = 0. In order to make the three factors of the

environment feedback comparable, we normalize the similarity

sm,d as follows:

sm,d =
qm,d∑

m∈M

qm,d
. (13)

Now, we are ready to calculate the environment feedback

using the reward functions. We first denote the neighbor set

of IU m by Nm. Then IU m will choose a file f to cache

according to its request probability, and its neighbors will also

ask a file to download according to their own file request

probabilities. If IU m and one of its neighbor d choose the

same file, such as the file f , we can define this action as a

positive one, which brings a positive reward. If not, this action

will be determined as a negative action. Mathematically, the

reward functions are defined as:{
ΨP = Rf

m,d, if m and d choose the same file;

ΨN = −Rf
m,d, if m and d choose different files.

(14)

Thus, for IU m, the aggregate environment feedback func-

tion of choosing file f can be expressed as :

�
f
m =

Nm∑
d=1

(ΨP +ΨN). (15)

If �
f
m > 0, then β = 1 and this action that IU m cache file

f can get a positive feedback from the environment. In this

case the estimation vector d(t) can be updated.

IU m will keep learning and get the optimal request files

from the BS according to the aggregate environment feedback

until its available storage is full.

C. The Mutual Impact of Nearby IUs

The decision of content placement for IU m will impact its

nearby IUs, which have common neighbors with IU m. If there

are two IUs, the content placement of these two IUs should be

made different as much as possible to serve different requests

of their common neighbors. In this case, the BSs should update

the file request probability of the common neighbors according

to the former IUs who have already cached contents.

IUs start learning in the order determined by the list C. To

update the file request probability of the common neighbors,

all the IUs should report the cached files to the BS after

learning. This updating information can be considered as a

combined information of the cached files and the physical

distance. For example, if two previous IUs m and m′ have

already cached files f and f ′, respectively, then for the next

IU n, it should first estimate which IU has a larger physical

influence (a shorter distance) to IU n. If IU m has a larger

physical influence than IU m′, i.e., ζ−λ
n,m > ζ−λ

n,m′ , then the file

f cached by IU m should be considered when updating the

file request probability of their common neighbors. Let Nm,n

denote the set of the common neighbors of IU m and IU n,

then the request probability (Y
Nm,n

f) of file f for the common

neighbors (Nm,n) can be updated as

Y
Nm,n

f = Y
Nm,n

f · 1

1 + ζλn,m
, (16)

where ζn,m represents the physical distance between the nth

IU and the mth IU, and λ is the path loss exponent.

After updating the probability of every cached files by IU m,

the file probabilities Y Nm,n of the common neighbors between

IU m and IU n will be normalized, and IU n can start its

learning process.

D. Convergence

Due to the paper limitation, the proof of the convergence

will be relegated to the journal version of this paper.

IV. PERFORMANCE EVALUATION

In this section, numerical and simulation results of the

proposed scheme are presented for various scenarios.

A. Simulation Scenario

A wireless network consisting of one omnidirectional BS

and a number of D2D users is considered. The D2D users

are randomly distributed in an area of 5 × 5km2. The social

similarities among users are randomly generated according to

the power law distribution with a parameter κ = 2.42 [11]

and the file request probability follows the Zipf distribution

with a discounted rate γ = 0.5. Note that the physical layer

parameters in our simulations, such as the path-loss exponent,

noise power and transmit power of the IUs and the BS, are

chosen to be practical and in line with the values set by 3GPP

2 4 6 8 10 12 14 16 18 20
0

50

100

150

File Library Size

It
er

at
io

ns
δ=0.5
δ=1
δ=2
δ=2 in [7]

Fig. 1. The average convergence iterations for various resolution parameters
δ

standards. For instance, the transmission power of IUs is 25
dBm. Unless specified otherwise, we set the path loss exponent

λ = 3, and the noise to σ2 = −95 dBm. All the simulations

are executed using MATLAB.

B. Convergence and Reward Probability

We first verify the convergence of the proposed algorithm.

A small-scale mobile network is considered, which consists 3
IUs and each of them has 6 neighbor downloaders. Each IU

chooses one file to cache from a file library of at most 20 files.

The algorithm is considered to converge when the probability

of taking one action (caching one file) is larger than 0.999 and

the number of the required iterations has been recorded.

Fig. 1 shows the average convergence iterations for various

resolution parameters, i.e., δ. As shown in Fig. 1, the average

number of iterations of 3 IUs are recorded in different file

library sizes. We consider various resolution parameters δ
to verify the convergence. As the file library size grows,

the average number of iterations for the 3 IUs increase. For

example, when the resolution parameter δ = 1, the average

iteration number for 20 files is about 2.6 times of that number

for 10 files, which means that if there are more requested

files, more iterations will be needed to finish the learning.

Moreover, different resolution parameters δ show different

increasing trends, and require different numbers of iterations

to converge. For example, when δ = 0.5, the average number

of iterations is nearly half (49.2%) of that when δ = 1. We

also compare the proposed algorithm with [7] when δ = 2.

As can be observed from Fig. 1, the algorithm presented in

[7] requires fewer iterations on average compared with the

proposed algorithm in this paper. This is because the algorithm

in [7] was based on a simple environment feedback functions,

in which the physical distance influences were not considered.

As can be observed from Table II, after each learning

process, each IU will cache one popular file from 10 files.

Then we collect the number of times that each IU has been

rewarded with different resolution parameters. Thus the aver-

age reward probability can be calculated for each file library

size. Here, the reward probability represents the probability

that the learning result can get a positive feedback from each

TABLE I
REWARD TIMES AFTER REPEATING 50 TIMES LEARNING WHEN THE FILE

LIBRARY SIZE IS 10

IU1 IU2 IU3 Average reward probability
δ = 0.5 17 19 17 0.362
δ = 1 23 22 22 0.446
δ = 2 26 27 26 0.514

δ = 2 in [7] 23 23 22 0.453

2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

File Library Size

R
ew

ar
d

Pr
ob

ab
ili

ty

δ=0.5
δ=1
δ=2
δ=2 in [7]

Fig. 2. The average reward probability for various resolution parameters δ

learning process. Fig. 2 depicts the average reward probability

of different resolution parameters δ. It is shown that with

the increasing size of the file library, the average reward

probability decreases. Also it can be observed from this figure

that the proposed algorithm can get a higher reward probability

than [7]. Considering both Fig. 1 and Fig. 2, although a larger

resolution parameter δ implies more time to converge, it can

achieve a higher reward probability. For example, when δ = 1,

its reward probability is about 1.22 times of that when δ = 0.5,

while it needs 3 ∼ 7 more iterations to converge. Moreover,

for the proposed algorithm, although it takes more time to

converge compared with [7] with the same δ, the reward

probability is much better. Finally, it can be observed that the

proposed algorithm strikes a more beneficial balance between

performance and complexity compared with the algorithm

presented in [7]. This is because the proposed algorithm

requires less iterations than the algorithm in [7] to achieve

a similar reward probability performance. For example, the

proposed algorithm only needs about 26 iterations to converge

while the algorithm in [7] needs about 52 iterations to get a

similar reward probability.

C. Hitting Rate and System Throughput

In this subsection, we compare our proposed algorithm

with [7], as well as determined caching, random caching

and the optimal caching algorithms. Here, determined caching

means caching the most popular files, which follows the Zipf
distribution. Random caching is to cache files randomly from

the file library following the probability p = 1
F , where F

is the file library size. The optimal caching is performed by

the noncausal algorithm, in which we assume the IUs have the

whole knowledge of the network, so they can make the optimal

choices. Same as previous subsection, we pose a constraint

2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

File Library Size

H
itt

in
g

R
at

e

Random
Determined
The proposed algorithm
The algorithm in [7]

Fig. 3. The hitting rate of the considered caching strategies

that each IU can store at most three files. Fig. 3 shows the

hitting rate of different caching strategies with different file

library size. The simulation environment is similar as the

previous scenario and δ = 0.5. From the simulation results, we

can observe that the performance gaps between our proposed

algorithm with other three strategies are enlarged with the

increase of the file library size. Our proposed strategy performs

better than the other three benchmark strategies. When there

are more files need to be considered, it could bring more

flexibility and performance improvement for managing the

caching contents.

Fig. 4 shows the simulation results of the system throughput

with the file library size set to 10. From this figure, we can

see that the system throughput increases with the increas-

ing number of IUs M , and our proposed algorithm always

performs better than the other three investigated strategies

except the optimal one. For example, in comparison with the

counterparts using determined caching and random caching,

the system throughput of the proposed algorithm is increased

by 1.24 and 5.27 times, respectively, when M = 400. Also,

the gap between the proposed algorithm and the algorithm

in [7] grows as the number of IUs increases. As shown in

this figure, the algorithm in [7] is able to achieve almost

the same system performance compared with the proposed

algorithm when the number of IUs is small. However, it is

not the case for a large number of IUs. This is because

the algorithm in [7] no mutual impact is considered, thus,

nearby IUs may cache similar contents, and cannot provide

downloading service for other popular contents. In contrast, the

proposed algorithm encourages nearby IUs to cache different

content in order to achieve caching diversity. Moreover, the

gap between the proposed algorithm and the optimal one is not

big and narrowing slowly with the increasing number of IUs.

Thus, our caching strategy is effective to increase the hitting

rate, which in turn largely boosts the system throughput.

V. CONCLUSION

In this paper, we developed a distributed and socially aware

framework based on a decentralized learning automaton to

solve the optimum cache placement problem in D2D over-

laying networks. In the process of learning, in order to solve

0 50 100 150 200 250 300 350 400 450
105

106

107

108

Number of Important Users

Sy
st

em
 T

hr
ou

gh
pu

t (
bp

s)

Random
Determined
The proposed algorithm
The algorithm in [7]
The optimal caching

Fig. 4. The system throughput of the considered caching strategies

the problem of unsuccessful transmission in D2D commu-

nications, we combined our algorithm with the aggregate

environment feedback. Also the mutual user impacts were

considered in this scheme to enable its application in the large-

scale networks. Simulation results showed that our algorithm

has fast convergence speed and can achieve considerable

system throughput gains when compared with the existing

caching strategies.

REFERENCES

[1] Cisco, “Visual networking index forecast, 2015–2020,” 2015.
[2] C. Xu, L. Song, Z. Han, Q. Zhao, X. Wang, X. Cheng, and B. Jiao, “Effi-

ciency resource allocation for device-to-device underlay communication
systems: A reverse iterative combinatorial auction based approach,”
IEEE Journal on Selected Areas in Communications, vol. 31, no. 9,
pp. 348–358, 2013.

[3] U. Niesen, D. Shah, and G. W. Wornell, “Caching in wireless networks,”
IEEE Transactions on Information Theory, vol. 58, no. 10, pp. 6524–
6540, 2012.

[4] L. Marini, J. Li, and Y. Li, “Distributed caching based on decentralized
learning automata,” in IEEE International Conference on Communica-
tions (ICC). IEEE, 2015, pp. 3807–3812.

[5] B. Bharath, K. Nagananda, and H. V. Poor, “A learning-based approach
to caching in heterogenous small cell networks,” IEEE Transactions on
Communications, vol. PP, no. 99, pp. 1–1, 2016.

[6] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless d2d networks,” IEEE Transactions on Information Theory,
vol. 62, no. 2, pp. 849–869, Feb 2016.

[7] C. Ma, Z. Lin, L. Marini, J. Li, and B. Vucetic, “Learning automaton
based distribued caching for mobile social networks,” in IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 2016.

[8] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” Communications Surveys & Tuto-
rials, IEEE, vol. 16, no. 4, pp. 1801–1819, 2014.

[9] B. Zhang, Y. Li, D. Jin, P. Hui, and Z. Han, “Social-aware peer
discovery for d2d communications underlaying cellular networks,” IEEE
Transactions on Wireless Communications, vol. 14, no. 5, pp. 2426–
2439, May 2015.

[10] D. Feng, L. Lu, Y. Wu-Yuan, Y. G. Li, S. Li, and G. Feng, “Devive-
to-device communications in cellular networks,” Communications Mag-
azine, IEEE, vol. 52, no. 4, pp. 49–55, 2014.

[11] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[12] M. Agache and B. J. Oommen, “Generalized pursuit learning schemes:
new families of continuous and discretized learning automata,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 32, no. 6, pp. 738–749, 2002.

[13] T. Zhou, L. Lü, and Y.-C. Zhang, “Predicting missing links via local
information,” The European Physical Journal B-Condensed Matter and
Complex Systems, vol. 71, no. 4, pp. 623–630, 2009.

