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Abstract—As a response to the challenge of data traffic explo-
sion in wireless networks, content caching in device-to-device
(D2D) communication networks has emerged as a promising
solution. However, in practical deployment, D2D content caching
has its own problems. In particular, not all of the user devices are
willing to share the content with others due to numerous concerns
such as security, battery life, and social relationship. In this paper,
we consider the factor of social relationship in the deployment of
D2D content caching. First, we apply stochastic geometry theory
to derive an analytical expression of downloading performance
for the D2D caching network. Specifically, a social relationship
model with respect to the physical distance is adopted in our
analysis to obtain the average download delay performance using
random and deterministic caching strategies. Second, to achieve
a better performance in more practical and specific scenarios,
we develop a socially aware distributed caching strategy based
on a decentralized learning automaton, to optimize the cache
placement operation in D2D networks. Different from the existing
caching schemes, the proposed algorithm not only considers the
file request probability and the closeness of devices as measured
by their physical distance but also takes into account the social
relationship between D2D users. Our simulation results show that
the proposed algorithm can converge quickly and outperforms
the random and deterministic caching strategies. With these
results, our work sheds insights on the design of D2D caching in
the practical deployment of 5G networks.

Index terms— Caching, Device-to-device, Social Networks,
Stochastic Geometry

I. INTRODUCTION

With the skyrocketing number of tablets and smart phones,
wireless traffic has been increasing dramatically in the past
few years. According to Cisco, an unprecedented worldwide
growth of mobile data traffic is expected to continue at
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an annual rate of 45% over the next decade, surpassing
30 exabytes per month by 2020 [1]. Video traffic will be
the major traffic source due to the growing success of on-
demand video streaming services. The huge demand pushes
operators to provide high-throughput wireless access services
in 5th generation (5G) networks. However, the current wireless
access technologies have almost approached their theoretical
limits and it is imperative to develop new communication
strategies to meet the ever-increasing demand from mobile
subscribers [2].

One of the promising approaches to tackle this problem in
5G is content caching, as this technology can significantly
offload the network traffic by optimally and intelligently
storing the content files in the small base stations (SBSs) [3]-
[5] and/or in mobile users’ devices [6]-[21] that are closer
to end-users. As a result, network congestion can be eased
and users’ quality-of-experience (QoE) can be significantly
improved. The authors in [3] introduced the ideas of caching
in heterogeneous networks, wherein one macro cell is divided
into multiple small cells. Within each small cell, one low
power base station, termed as the SBS, is deployed to serve
the users within its coverage. The requested files by users are
first transmitted from the macro BS to the SBSs through the
backhaul connections between them in off-peak period and
then transmitted from the SBSs to the users. To optimize the
cache content placement in the SBSs, two algorithms have
been proposed in the literature: a) discrete generalized pursuit
algorithm (DGPA)-based scheme proposed in [4] for which the
SBSs can place the content according to the local demands; b)
belief propagation (BP) algorithm based on the factor graph
[5], which allows the file placement to be arranged in a
distributed manner between the users and SBSs. Nevertheless,
it may be costly to setup and maintain the SBSs as well as
the backhaul. Furthermore, the SBS caching may suffer from
long latency and slow update of popular contents, which could
hinder its application in practice.

With the emergence of 5G, exchanging the cached files
among mobile devices through D2D communications, termed
as D2D caching, has attracted considerable attention recently
[6]. In [7], Ji et al. considered the D2D caching from the
perspective of information theory and proposed deterministic
and random caching schemes, both of which are shown to
be able to achieve the information theoretic bound within
a constant multiplicative factor. In addition, Ji et al. in [8]
analyzed the basic principle and system performance of the
D2D caching networks, and demonstrated that the gain from
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the unicast transmission is comparable to the gain from the
coded BS multicast in [9]. However, in practice, due to limited
memory and energy resources, users may be unwilling to
serve data over the aforementioned D2D transmission unless
they can obtain benefits (e.g., monetary incentives) from the
operator [10] or other incentives (e.g., social relationship) from
the users [11], [12]1, and [13]. In [14], Chen et al. proposed an
incentive mechanism in which the BS rewards those users that
share contents with others using D2D communication. But the
social relationships among users are not considered. Compared
with SBSs, the storage capacities at users are much smaller.
In this context, different from the existing works on SBS and
D2D caching (e.g., [6]-[13]), it is not optimal and practical
to store same files in all users, and hence the optimization
of the content placement becomes more critical and complex
in the design of D2D caching strategies. Furthermore, the
interactions between users should also be carefully taken into
consideration [15].

To address the aforementioned issues, social relationship
among mobile users can be a useful tool. The ideas of applying
social characters to promote D2D communications and to
design D2D caching was first proposed in [16]. In [17], [18]
and [19], the social community aware D2D resource allocation
framework was proposed. By using the close social ties in
the same community, the resource allocation problem of D2D
pairs was formulated and optimized by a two step coalitional
game. Besides, the use of positive social relationship among
mobile users was investigated in [11], which helps to reduce
malicious or irrational users in the system. Moreover, a content
dissemination scheme based on the common interest of users
in a social group was proposed in [20]. A considerable delay
reduction can be obtained when there is a large number
of users in the same social group. In addition, in [21], a
socially incentive mechanism for content distribution through
D2D communications have been proposed. The contract theory
investigated in this work can effectively incentivize user’s
participation, and increase capacity of the cellular network.
However, to our best knowledge, how to design the content
placement in D2D caching by incorporating the social charac-
ters between users remains to be an open question, and there
is a lack of performance analysis for the socially aware D2D
caching networks.

Motivated by the above observations, it is interesting and
challenging to investigate the system design and performance
analysis of the D2D caching networks. In this paper, we study
the caching placement problem among D2D users. First, using
the stochastic geometry tool, a probabilistic caching scheme
is analyzed when the social relationship between users is
distance-dependent. Then, a distributed caching algorithm is
proposed for a deterministic network scenario.

It is important to note that our first contribution is regarding
the theoretical performance bounds using the random and de-
terministic caching strategies. However, it still remains unclear
how to implement the 5G D2D caching in practice. And more
importantly, can we even do better than the derived analytical

1Part of this work was published in IEEE WCNC 2016 [11] and IEEE GC
wkshps 2016 [12].

results by means of more advanced algorithms? In practice, it
is desirable and might be feasible to optimize the D2D content
placement on the fly, and popular content can be thus placed
in particular devices to achieve high performance gains in
particular areas. Therefore, our second contribution is related
to devising a distributed algorithm for D2D caching with
known number and locations of users in realistic scenarios.
Specifically, the following contributions are made in the paper:

1) We derive an analytical expression of downloading per-
formance for the D2D caching network using stochas-
tic geometry. Specifically, by adopting the physical
distance-dependent social model wherein the probability
that two users have a social relationship is assumed to
be a decreasing function of their physical distance, the
average transmission probability for a D2D user is an-
alyzed and the average downloading delay performance
of the proposed scheme is derived using random and
deterministic caching strategies. An interesting finding is
that the successful transmission probability will become
stable when the density of user is large enough.

2) Following the theoretical finding, in order to reduce
the download delay, we optimize the caching strategy
in a deterministic network scenario. More specifically,
we develop a content caching algorithm based on a de-
centralized learning approach, termed DGPA. Different
from most papers on D2D caching (e.g., [4]-[20]), we
embrace several practical features of D2D communica-
tions, such as different cache sizes, different requesting
distribution and social interaction among users, into the
design of caching algorithm. To our best knowledge, the
proposed caching algorithm is the first one that considers
not only the file request probability and the closeness
of devices as measured by their physical distance, but
also takes into account the social relationship among
D2D users. Furthermore, to increase the diversity of
the cached contents in the network, the mutual impact
between the different cached D2D users is considered.
The convergence of the proposed caching algorithm is
also analyzed.

3) Simulations are conducted to validate the accuracy of the
analytical results. Both simulation and analytical results
show that the proposed algorithm not only outperforms
its counterpart using deterministic caching, but also
outperforms that in the existing literature.

The rest of this paper is structured as follows. We introduce
the system model and problem formulation in Section II, and
analyze the average performance of the D2D caching network
using stochastic geometry in Section III. In Section IV, we
propose the socially aware distributed caching algorithm. Then
we evaluate the performance of our scheme through extensive
simulations in Section V, and conclude the paper in Section
VI. To make clear the symbols used in this paper, we present
the definition of main symbols and parameters in Table I.
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TABLE I
TABLE I: PARAMETER AND SYMBOLS SUMMARY

Meaning Symbol
Transmit power of IU m Pm

Distance between IU m and user n rm,n

Request probability of file f pf

Social trust distance A
The importance of IU m Im

Probability of caching file i pi
Reward estimation of caching file i at time t oi(t)

Resolution parameter δ
Physical influence of IU m and user n xm,n

Social influence of IU m and user n sm,n

The set of common neighbor of user m and n Nm,n

Base Station

IU3

IU4

IU 1

IU 2

IU5
RBS

Desired Signal from BS to User

Interference from IUs to User

Desired Signal from IU to User

Important User (IU)

User

UserUser 2

UserUser 4

UserUser 1
UserUser 5

UserUser 2

Social Connection

Fig. 1. Illustration of the network deployment under consideration. Within
the transmission distance of the BS (RBS ), User 1 can acquire content either
from its adjacent IU 1 with social connection or from the BS. This connection
will suffer from interference from other IUs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Transmission Model

We consider a content downloading scenario assisted by
D2D overlaying communications, where dedicated radio re-
sources are allocated to D2D users by the BS as shown in
Fig. 1, and thus there is no interference between the cellular
and D2D links. There are a total of N users in the network.
Denote by N = {1, 2, · · ·, N} the set of mobile users
and it is assumed that each user carries a mobile device
with D2D communication capability. Furthermore, denote by
M = {1, 2, · · ·,M} the set of important users (IUs), which is
a subset of mobile users in this network. We assume that the
distribution of the IUs follows a homogeneous poisson point
process2 (HPPP) of density λ UEs/m2. The BS caches files

2We assume the UE number is a Poisson distributed random variable, and
the UEs are uniformly distributed on the plane. As the IUs are the subset of
UEs, we thus have the distribution of the IUs as a thinned HPPP.

into the memories of the IUs during the off-peak time. Once
the caching process is completed, the BS and IUs are ready
to act upon the downloading requests of users. The optimal
selection of IUs will be explained in Sec. IV-A.

We assume that a dedicated frequency band with a band-
width of W Hz is allocated to the downlink channels for
file-dissemination via D2D communications. Furthermore, we
consider a ”D2D-first” scheme, where each user will try to
download data from its adjacent IUs first and only turn to the
BS if no available D2D link exists or the requested file is not
available from its adjacent IUs.

We assume that the channel between an IU and a mobile
user is a Rayleigh fading channel. Furthermore, all downlink
channels from the IUs to the users are assumed to be inde-
pendent and identically distributed (i.i.d.). We consider the
fully-loaded network scenario, where the IUs keep transmitting
data to the users. This is because we intend to investigate
the performance in the worst case that each user is subject
to the interference imposed by all the other IUs in M. The
channel capacity between the mth IU and the nth user can be
calculated based on the signal-to-interference-plus-noise ratio
(SINR) as

Cm,n=W log2

1 +
Pmhm,nr

−α
m,n∑

m′ 6=m,m′∈M
Pm′hm′,nr

−α
m′,n + σ2

 ,

(1)
where hm,n is modeled as an exponential random variable
(RV) with the mean of one due to Rayleigh fading, Pm is the
transmit power of the mth IU, and σ2 is the noise power. The
path-loss between the mth IU and the nth user is modeled
as r−αm,n, where rm,n is the physical distance between the
mth IU and the nth user and α is the path-loss exponent.
Additionally, the channel capacity between the BS and the
nth user is denoted by C0,n.

The file library consists of F popular files, which the
popularity distribution is represented by P = {p1, p2, · · ·, pF }.
Users make independent requests of the f th file, f ∈ {1, 2, · ·
·, F}, with a probability of pf . We use the Zipf distribution,
which is commonly used in the caching literature, to model
this probability. Specifically, for the f th file, its file request
probability pf can be written as

pf =

1
fω

F∑
i=1

1
iω

, (2)

where F is the file library size and ω is the discounted rate in
the Zipf distribution [7]. All these popular files are assumed to
have the same size of L bits for simplicity. Also, we assume
that the BS has a sufficiently large memory and hence can
store the entire library of files, while the maximum storage
of the IU is limited to G files, where G < F . Denote by
θm,f ∈ {0, 1} the event whether the mth IU has cached the
f th file or not. Specifically, θm,f = 1 if file f is cached by the
mth IU, otherwise, θm,f = 0. A D2D link can be established if
the associated SINR of the link exceeds a predefined threshold
γ and these two users have social relationship, i.e., ςm,n = 1.
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B. Social Relationship Model
In this work, we investigate two social relationship models,

termed as the physically distance-dependent social model and
the deterministic social model, respectively.

1) The physically distance-dependent social model: It is
reported in [22] that only one-third of the social friendships
are independent of geography. Experimental studies have
verified this property in real social networks, and theoretical
models have since been proposed to capture this fact that the
probability of befriending with a particular person is inversely
proportional to the physical distance between them [23], [24].

Considering the practical social relations among different
users, we propose to model the probability of two users having
a social relationship with respect to their physical distance r
[22] as

PS(r) =

{
1, when 0 < r ≤ A;
A2/r2, when r > A.

(3)

Equation (3) indicates that if the distance r between the
receiver and the IU is smaller than a predefined distance A,
the two users are surely to have stable social relationship,
otherwise, this probability is dependent on their physical
distance.

Remark 1. The physically distance-dependent social model
will be used to analyze the average performance of the D2D
caching networks from Section III.

2) The deterministic social model: The deterministic social
model is widely adopted in open literature, e.g., [13], [25]
and [19]. In this model, social characters (such as the social
connections, the relationship closeness, etc.) are assumed to be
known as a prior information. As such, the average successful
transmission probability of the deterministic network scenario
can be obtained by substituting known parameters into the
analytical expression derived in Section III.

Remark 2. The deterministic social model will be used to
design a distributed caching algorithm in Section IV.

C. Problem Formulation
Given that the storage capacity of each IU is limited, it is

imperative to design an effective caching strategy to optimize
the QoE (defined as the average delay required to download
a file) of all users in the networks.

First, given the channel coefficients, and the specific loca-
tion and the nearby information of each user, the delay of
downloading a file f in F by the nth user can be calculated
as
Dn,f ={

min{ L
Cm,n

}, ∃ςm,n × θm,f 6= 0 and SINRm,n ≥ γ,
L

C0,n
, otherwise.

(4)

Mentioned here, the delay should be zero if the request file
is cached locally by the user itself, which is not considered
in the delay calculation. To analyze the average downloading
delay performance, we rewrite (4) as

D = ptrans × κ× L

CD2D

+ (1− ptrans × κ)× L

C0

, (5)

where ptrans is the average transmission probability, κ is the
average hitting rate used by the chosen caching strategy, CD2D

is the average transmission capacity of the D2D link, which
is captured by the average of the Cm,n, and C0 is the average
transmission capacity of the cellular link.

In order to reduce the downloading delay, it is important
to analyze the baseline network performance first. Based on
the average performance, the corresponding caching solutions
can be evaluated. In the subsequent two sections, we first
derive the successful transmission probability and the average
downloading performance. Under the deterministic network
scenario, we then focus on the cache placement optimization at
IUs by designing a socially aware distributed caching strategy,
which decreases the download delay.

III. STOCHASTIC GEOMETRY BASED PERFORMANCE
ANALYSIS

In this section, we first adopt the physical distance-
dependent social model in the D2D caching network and
apply the stochastic geometry theory to derive the analytical
expression for the average D2D transmission probability and
the average downloading delay performance under different
caching strategies.

A. Average D2D Transmission Probability

Recall that we use the following user association strategy
(UAS). Each D2D receiver should be associated with the IU
with the highest SINR. Also, each D2D link can be established
under two conditions: (1) the IU and the receiver have a
social relationship; (2) the SINR of this link is above the
threshold γ. Using the property of the HPPP, we study the
performance of the proposed socially aware D2D networks
by considering the performance of a typical receiver located
at the origin o. Under these assumptions, we first investigate
the average transmission probability that a typical receiver can
communicate with its associated IU. The average transmission
probability is defined as

ptrans(λ, γ) = Pr[SINR > γ], (6)

where the SINR is computed by

SINR =
Phr−α

Id + σ2
, (7)

where the path-loss of the channel from an IU to a receiver
is simplified to r−α, and each IU is assumed to have same
transmission power P . Furthermore, Id is the cumulative
interference given by

Id =
∑

i:bi∈Φ\b0

Phir
−α
i , (8)

where b0 denotes the IU serving the typical receiver and
located at distance r from the typical receiver. Besides, for
notation simplicity, we rewrite the rest parameters in (1): bi,
and ri denote the ith interfering IU and the distance between
bi and the receiver, respectively.

Given the definition of the average transmission probability
presented in (6), in the following we will analyze the perfor-
mance measures for the considered UAS. Base on the proposed
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social relationship model in (3), we present our main result of
ptrans(λ, γ) in Theorem 1.

Theorem 1. Considering the proposed social relationship
model in (3), ptrans(λ, γ) can be derived as

ptrans(λ, γ) =

∫ A

0

Pr
[
Phr−α

Id + σ2
> γ

]
fR1(r)dr

+

∫ ∞
A

Pr
[
Phr−α

Id + σ2
> γ

]
fR2(r)dr,

(9)

where fR1(r) and fR2(r) are the piece-wise PDFs of the
random variable (RV) R1 and R2, and R1 and R2 are the
distance that the typical receiver has a nearest IU with social
relationship, and they represent different distance intervals.
Moreover, fR1(r) and fR2(r) are represented by

fR1(r) = exp(−πλr2)2πλr, (0 < r ≤ A), (10)

and
fR2(r) = exp[−(πλA2 + 2πλA2(ln r − lnA)]

× 2πλA2 1

r
, (r > A).

(11)

Furthermore, Pr
[
Phr−α

Id+σ2 > γ
]

is computed by

Pr
[
Phr−α

Id + σ2
> γ

]
= exp

(
−γr

ασ2

P

)
LId

(
γrα

P

)
, (12)

where LId(s) is the Laplace transform of RV Id evaluated at
s.

Proof. See Appendix A.

Because the physically distance-dependent social model in
(3) takes the form of a piece-wise functions, we need to
evaluate the interference LId(s) for two regions of r, i.e.,
0 < r ≤ A and r > A.

To compute LId1(s) in (9) for the range of 0 < r ≤ A, we
attain Lemma 1.

Lemma 1. LId1(s) in the range of 0 < r ≤ A can be
calculated by

LId1(s) = exp

(
−2πλr2γ

α− 2
×∇1(α, γ)

)
, (0 < r ≤ A),

(13)
where ∇1(α, γ) = 2F1

[
1, 1− 2

α ; 2− 2
α ;−γ

]
, 2F1[·, ·; ·; ·] is

the hyper-geometric function [26] and α > 2.

Proof. See Appendix B.

Same as before, we have the following Lemma 2 to compute
LId2(s) in (9) for the range of r > A.

Lemma 2. LId2(s) in the range of r > A can be calculated
by

LId2(s) = exp

(
−2πλγ2 1

α

(
ln

(
1 +

1

γ

)
− ln

(
1

γ

)))
× exp

(
−2πλA2−αrαγ

α− 2
×∇2(α,A, r, γ)

)
× exp

(
2πλA2

α

[
ln(1 +

Aαr−α

γ
)− ln(

Aαr−α

γ
)

])
,

(r > A)
(14)

where ∇2(α,A, r, γ) = 2F1

[
1, 1− 2

α ; 2− 2
α ;−A−αrαγ

]
,

2F1[·, ·; ·; ·] is the hyper-geometric function [26] and α > 2.

Proof. See Appendix C.

Substituting equations (10)-(14) into (9), ptrans(λ, γ) for the
proposed model can be obtained.

Remark 3. The results showed in Theorem 1 reveal an
interesting finding. Specifically, the successful transmission
probability becomes stable when the density of users is large
enough. More discussion are relegated to Sec. V-A. In order to
reduce the download delay from (5), the following approach
is to optimize the caching content in IU, which will increase
the hitting rate.

B. Average Downloading Delay Performance

We first introduce two popular caching strategies to estimate
the average downloading performance.

1) Random Caching (RC): The random caching is realized
by randomly picking files from the file library to cache into
IUs, and we denote this hitting rate by κran, and κran = G/F .

2) Deterministic Caching (DC): The deterministic caching
is realized by caching the most popular files according to the
file request probability. Then we denote the hitting rate used in
the deterministic caching strategy by κdet, and κdet =

∑G
1 p

f ,
where pf is the file request probability and defined in (2).

Substituting different hitting rates into (5), we can get the
average downloading delay performances. Note that such an
average delay performance can be achieved by simple caching
schemes such as the RC and DC schemes, where every IU
caches same files and it provides a theoretical understanding
of the D2D caching network. With various numbers and
locations of users, the trends regarding to the user density
or file request probability are obtained. In practice, more
sophisticated content caching algorithms can be devised and
implemented when more information are available, such as
social relationship, physical distance, etc. In this case, each
IU may cache files according to its local feedback that in turn
increase the hitting rate.

In the following section, we will explore new implementa-
tion algorithms based on the decentralized learning technique
to optimize the caching content in IUs.

IV. SOCIALLY AWARE DISTRIBUTED CACHING
ALGORITHM

In the previous section, we adopt the physically distance-
dependent social model in the D2D caching network and
study the performance under different caching strategies. Such
analysis provides us a theoretical understanding of the network
performance for the considered D2D caching network with
various numbers and locations of users. As to be shown
in the section on simulations and discussions, our analysis
is useful to qualitatively predict the performance trend of
D2D caching in 5G. However, it still remains unclear how
to implement the 5G D2D caching in practice. And more
importantly, can we even do better than the derived analytical
results by means of more advanced algorithms? If yes, by how
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much better? Note that in our theoretical analysis conducted
in the previous section, only simple D2D caching strategies
such as RC and DC, have been analyzed, where each IU
caches the same files. In practice, it is desirable and might
be feasible to optimize the D2D content placement on the fly,
and popular content can be specifically placed in particular
devices to achieve high performance gains in particular areas.
Therefore, in this section, we consider a deterministic D2D
caching scenario with fixed number and locations of users, and
devise a distributed algorithm to enable each IU to optimize
its content placement.

To this end, we develop a distributed learning automa-
tion that enables each IU to optimize the cache placement
according to its local demands. The proposed algorithm is
inspired by the DGPA [27]. In the following, by adopting the
deterministic social network model, in which the successful
transmission probability among IUs and users is invariant, we
first introduce a scheme to select the IUs in the considered
network, then provide some preliminaries of DGPA before
formally presenting the proposed algorithm. Furthermore, we
also design a scheme to characterize the mutual impacts of
content placement in different IUs, which enables the proposed
algorithm to be implemented in large-scale networks.

A. Selection of The Important Users

The important users (IUs) in the proposed network will pre-
cache files from the BS during the off peak hours and transmit
these files to other users. We first determine the number of the
IUs in the network.

Throughout the paper, a user is called a neighbor of another
user if there is a social relationship between them. According
to [28], in social networks, the distribution of the node degree,
i.e., the number of neighbors of a node, decays according to
a power law distribution given by

p(k) = ck × k−ϕ, (15)

where
∞∑
k=0

ckk
−ϕ = 1, and p(k) is the probability that a

randomly chosen node has k neighbors, and ϕ is the decaying
coefficient. Let Mk be the number of nodes that have at
least k neighbors in a network with total N nodes. Using
the aforementioned power law degree distribution, Mk can be
calculated as

Mk = bN ×
N−1∑
i=k

p(i)c, (16)

where bxc is the floor function, retrieving the largest integer
that is equal or smaller than x. In the following, we ignore the
subscript of Mk, and rewrite as M for notational convenience.
We assume that these M users can download contents directly
from BSs and they are regarded as the important users (IUs).

Next, we present a scheme to sort these M IUs. In our
process of sorting the IUs, the betweenness centrality B and
the available storage capacity G are used to characterize the
importance, which is denoted by I. For the mth IU, the
importance is defined as

Im = µ×Bm + ν×Gm, (17)

where µ and ν are tunable parameters satisfying µ + ν = 1
[29]. Betweenness centrality B measures the social importance
of one user. According to [30], the betweenness centrality of
the mth user can be calculated as

Bm =
N∑
j=1

∑
j<k

gjk(m)

Gjk
, (18)

where Gjk is the number of shortest links between user j
and user k, and gjk(m) is the number of those shortest links
between user j and user k that include or pass user m.

After collecting each user equipment’s available storage
capacity Gi, the BS can get a list of the importance, which
is denoted by I = {I1, I2, ..., Im}. Then these M IUs are
sorted by the list I in the descending order.

B. Discrete Generalized Pursuit Algorithm

The goal of the DGPA is to determine an optimal action
out of a set of allowable actions F = [1, 2, ..., F ]. The
DGPA has a probability vector P(t) = [p1(t), p2(t), ..., pF (t)],
where pi(t) is the probability that the automaton will select

the action i at iteration t with
F∑
i=1

pi(t) = 1. The updating

of the probability vector is performed based on the reward
estimation o(t) = [o1(t), o2(t), ..., oF (t)] and each reward
estimation is determined by the environment feedback [27]. In
the considered D2D caching system, at each learning process,
an action of each IU is to choose one file from the file library
to cache. This action is performed according to the file request
probability. A certain action will get a positive reward from
the aggregate environment feedback if it is beneficial to the
system.

The DGPA generalizes the concepts of the pursuit algorithm
by “pursuing” all the actions that have higher reward estimates
than the current chosen action. In the algorithm, the action
probability vector P(t) is recursively updated by the following
equation:

P(t+1) = P(t)+
∆

K(t)
×e(t)− ∆

F −K(t)
× [u−e(t)], (19)

where u is a vector in which ui = 1, i = 1, 2, ..., F , and e is
a direction vector given by:

ei(t) =

{
1, if oi(t) = max{oj(t)} j ∈ 1, ...F ;
0, otherwise.

ej(t) =

{
0, if oj(t) ≤ oi(t);
1, if oj(t) > oi(t).

(20)

According to (19), the probabilities of the chosen action i and
other action j are updated as following:

pj(t+ 1) = min{pj(t) + ∆
K(t) , 1}, if oj(t) > oi(t);

pj(t+ 1) = max{pj(t)− ∆
F−K(t) , 0}, if oj(t) < oi(t);

pi(t+ 1) = 1−
∑
j 6=i

pj(t+ 1).

(21)

At each iteration of the DGPA, the number of actions which
has a higher reward estimation o(t) than the current chosen
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one is counted, denoted by K(t). At the end of an iteration, the
probability of all actions with a higher reward estimation o(t)
will increase by an amount of ∆/K(t), and the probability of
all the other actions except the chosen one will decrease by
an amount of ∆/(F − K(t)), where F is the action library
size. Besides, ∆ = 1/Fδ and it is a resolution step and δ is
the resolution parameter.

In order to update the probability of each action, the reward
estimation o(t) should be estimated at first. The updating
equations of reward estimation o(t) for the chosen action i
are as follows:

Zi(t+ 1) = Zi(t) + 1;

Wi(t+ 1) = Wi(t) + β(t);

oi(t+ 1) = Wi(t+1)
Zi(t+1) ,

(22)

where Zi(t) represents the number of times that action i has
been chosen, and Wi(t) represents the number of times that
action i has been rewarded. β(t) ∈ {0, 1} is a binary factor
reflecting the positive or negative feedback. If the feedback is
positive (i.e., β = 1), then this action i is rewarded.

In the next subsection, based on the above preliminaries
of DGPA, we will design the functions of the aggregate
environment feedback in the proposed socially aware D2D
networks.

C. Environment Feedback

In our model, the BS can acquire the position of every user,
thus BSs will provide each IU with its relevant downloaders’
information (e.g., the file request probability) and each IU
can broadcast the cached files to its relevant downloaders.
In this sense, different cached files (actions) at a certain IU
would lead to different influences on its neighbors and other
IUs. In the process of learning, when the mth IU caches the
file f according to its downloading neighbor n’s request, we
define the aggregate environment reward Rfm,n as a weighted
sum of the request probability (pfn) of file f , the physical
influence (xm,n) between IU m and its neighbor n, and the
social influence (sm,n) between them, which can be expressed
by:

Rfm,n = τ1 × pfn + τ2 × xm,n + τ3 × sm,n, (23)

where τ1, τ2 and τ3 are tunable parameters and they satisfy
τ1 + τ2 + τ3 = 1. We provide detailed explanation of each
term in (23) as follows.

1) The request probability pfn: The BS will record the
request files of each user, and provide this probability to
the IUs. According to (2), for the f th file, its file request
probability pf by user n can be written as

pfn =

1
fω

Fn∑
i=1

1
iω

, (24)

where Fn is the file library size of user n.

2) The physical influence xm,n: Intuitively speaking, there
will be significant influence if the distance between the mth
IU and user n is small [31]. In order to provide the shortest
download time, the request file by the nearest user n, for
example, should be cached by the IU m. In this sense, the
physical influence is modeled as

xm,n =
1

1 + rm,n
, (25)

where rm,n3 represents the distance between the mth IU and
the user n.

3) The social influence sm,n: The degree of similarity
among users has an important effect in information dissemina-
tion [32]. Particularly, when the degree of similarity between
two users is lower, more time would need for transmitting
the same length of information since they may not have the
required content. As a result, we use the degree of similarity
to characterize the social influence sm,n.

The degree of similarity can be measured by the ratio of
common neighbors between individuals. According to [32],
we assume that the mth IU is connected to user n. Let
V (m), V (n) denote the set of neighbors of users m and n,
respectively. Let z be one of the common neighbors of them
and let V (z) denote the number of user z′s neighbor. We can
then define the similarity between IU m and its neighbor n
as:

qm,n =
∑

z∈V (m)∩V (n)

1

V (z)
. (26)

If m and n have no common neighbors, then qm,n = 0. In
order to make the three factors of the environment feedback
comparable, we normalize the similarity sm,n as follows:

sm,n =
qm,n∑

m∈M
qm,n

. (27)

Now, we are ready to calculate the environment feedback
using the reward functions. Denote by Nm the neighbor set
of the mth IU, at each learning iteration, IU m will choose a
file f to cache, and its neighboring users will also ask a file
to download according to their own file request probabilities.
If the mth IU and one of its neighbors n choose the same
file, such as the file f , we define this action as a positive one,
which brings a positive reward (ΨP ). If not, this action will
be determined as a negative action (ΨN ). Mathematically, the
reward functions are defined as:{

ΨP = Rfm,n, if m and n choose the same file;

ΨN = −Rfm,n, if m and n choose different files.
(28)

Thus, for the mth IU, the aggregate environment feedback
function of choosing the file f can be expressed as :

zfm =

Nm∑
n=1

(ΨP + ΨN ). (29)

3Cm,n can be the considered parameter instead of rm,n if the channel
condition and other interference signals are known, and it will provide more
sense than the distance between users.
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If zfm > 0, then β = 1 and this action that the mth IU caches
the file f will get a positive feedback from the environment.
The estimation vector o(t) is updated by (22).

According to the aggregate environment feedback, the mth
IU will keep learning and acquiring the request files from BSs
until its available storage is full.

Remark 4. From (23) we can see that the design of environ-
ment feedback is important and different feedback functions
will lead to different learning results. More discussion are
relegated to Sec. V-D.

D. The Mutual Impact of Nearby IUs

The decision of content placement for the mth IU will
affect its nearby IUs, which have common neighbors with
the mth IU. If there are two IUs in the nearby area, the
content placement of these two IUs should be made different
as much as possible to serve different requests of their common
neighbors. In this case, the BS should update the file request
probability of the common neighbors according to the former
IUs who have already cached contents.

IUs start learning in the order determined by the list I. To
update the file request probability of the common neighbors,
all the IUs should report the cached files to the BS after
learning. This update should consider both the cached files
and the physical distance. For example, if two previous IUs
m and m′ have already cached files f and f ′, respectively, then
for the next IU n, it should first estimate which IU has a larger
physical influence (a shorter distance) to IU n. If IU m has a
larger physical influence than IU m′, i.e., rn,m < rn,m′ , then
file f cached by IU m should be considered when updating
the file request probability of their common neighbors. Let
Nm,n denote the set of the common neighbor of the mth IU
and the nth IU, then the request probability (Y Nm,nf ) of file f
for the common neighbor (Nm,n) can be updated as

Y
Nm,n
f = Y

Nm,n
f × 1

1 + rn,m
, (30)

where rn,m represents the physical distance between the nth
IU and the mth IU and α is the path loss exponent.

After updating the probability of every cached file by the
mth IU, the file probabilities Y Nm,n of the common neighbors
between the mth IU and the nth IU will be normalized, and
the nth IU can start its learning process.

To sum up, the proposed algorithm has been formally
presented in Algorithm 1 by using the variable definitions
presented in the previous subsections.

E. Convergence

We now analyze the convergence of the proposed algorithm.
If the algorithm converges, then the result would give the
optimal cached file decided by the environment feedback.
According to [27], if the algorithm possesses the moderation
and monotonicity properties, the algorithm is ε-optimal in all
random environments and it will converge. Therefore, we show
the proof of convergence in the following lemma.

Algorithm 1 Distributed and Socially Aware D2D Caching
Algorithm for the mth IU
Start
Initialization for the mth IU.
1: Choose one IU m′ in I, which has the biggest physical
influence to m, and update the file request probability of m
in (30).
2: Normalize the file request probability of m and set it as
P (0).
3: Randomly choose files according to P (0), and record the
aggregate environment feedback β, until each file is selected
at least Z(0) times.
4: Record the rewarded times of each file (Wi(0)).
5: Initializes of (0), where of (0) =

Wf (0)
Zf (0) .

Learning Process for the mth IU. Do:
1: At time t choose file f according to P (t). Let α(t) = αf .
2: updates P (t) according to equation (21).
3: updates o(t) according to equation (22).
Until: maxPf (t) > δ, where δ is a convergence threshold.

Repeat Initialization and Learning until the storage of
the mth IU is full.

Until: every IU finishes learning.
End

Lemma 3. The proposed algorithm possesses the moderation
and monotone property.

Proof. Please refer to Appendix A.

Since the proposed algorithm possesses the moderation
and monotony properties, the convergence is guaranteed [27].
Thus, after learning, each IU will cache the content according
to the learning results. To calculate the hitting rate of the
proposed algorithm, the learning result will be compared with
the target in the algorithm, and subsequently, the downloading
performance in the considered social model can be obtained
from the hitting rate.

V. PERFORMANCE EVALUATION

In this section, we first focus on the proposed network with
IUs distributed following a HPPP, where we investigate the av-
erage transmission probability and the average performance of
the two caching strategies, i.e., DC4 and RC. Then we consider
the network with a fixed number of IUs. Using the average
transmission probability, we investigate the delay performance
of the proposed caching algorithm and compare it to the
benchmarks, including DC and a simple reward function which
also uses the DGPA learning algorithm proposed in [11]. Note
that the physical layer parameters in our simulations, such as
the path-loss exponent, noise power and transmit power of the
IUs and the BS, are chosen to be practical and in line with

4Before caching, the macro BS will broadcast the most request files of the
past 24 hours to the IUs first. Then the IUs can cache the most popular files
according to this information.
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Fig. 2. The transmission probability ptrans(λ, γ) vs. density of the IU λ with
various SINR thresholds γ and different social trust distance A

the values set by 3GPP standards. For instance, the coverage
of the BS is 25 km2, and the transmission power of IUs is 25
dBm. Unless specified otherwise, we set the path loss exponent
α = 3, and the noise to σ2 = −95 dBm. All the simulations
are executed using MATLAB.

A. Average Transmission Probability of D2D Link

We first compare our simulation and analytical results in the
proposed network with different transmitter densities, different
social trust distances and various SINR thresholds. As can be
observed from Fig.2, our analytical results perfectly match
the simulation results. Due to the significant accuracy of
ptrans(λ, γ), we will only use analytical results of ptrans(λ, γ)
in our discussion later.

From Fig.2 we can observe that the transmission probability
first increases with the transmitters density because more
transmitters provide better coverage in noise-limited networks.
Then, when λ is large enough (λ > 10−1 users/m2), the
transmission probability becomes independent of λ since the
network is pushed into the interference-limited region. From
this finding, in order to reduce the download delay, we
should optimize the caching content in each IU. Another two
observations are that when the smallest social trust distance
A is same, the transmission probabilities of different SINR
thresholds show similar trends as they converge at same λ,
and when the SINR threshold γ is same, the transmission
probabilities of different small social trust distances saturate
to the same level at different λ.

B. Average Delay of Downloading Performance for the Phys-
ical Distance-dependent Social Model

We evaluate the average delay of downloading performance
for the RC and the DC strategy in Fig. 3. We also simulate the
no D2D caching scenario for comparison. For the simulation
results of this subsection, we assume a SINR threshold of
γ = 0 dB, a file size of L = 109 bits, an IU density of
λ = 10−2 users/m2 and a smallest social trust distance of
A = 10 m.
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Fig. 3. Average downloading delay D vs. the Zipf parameter ω under different
scenarios

Fig. 3 illustrates the average downloading delay associated
with different ω values. We can see that DC always out-
performs RC, and the performance gap between these two
strategies becomes larger with increasing ω, while the no D2D
caching scheme behaves the worst.

C. Convergence of the Socially Aware Distributed Caching
Algorithm

After presenting the system performance of the physical
distance-dependent social model, let us now focus on the
socially aware distributed caching algorithm which applies the
deterministic social model in the following subsections. We
first test and verify the convergence of the proposed algorithm.
A small-scale mobile network is considered, which consists
of 3 IUs and each of them has 6 neighboring downloaders.
The algorithm is considered to converge when the probability
of taking one action (caching one file) is greater than 0.999
and we record the number of the executed iterations and each
point in the figures is obtained by averaging the results over
50 independent run of the proposed algorithm.

Fig. 4(a) shows the executed iterations of different δ, in
which more complex algorithm will cost more iterations to
converge, and more time to finish the learning process. As
the file library size grows, the average number of iterations
increases. Moreover, different resolution parameters δ show
different increasing trends, and require different numbers of
iterations to converge. For example, when δ = 0.5, the average
number of iterations is nearly half (49.2%) of that when δ = 1.
We also compare the proposed algorithm with the work [11].
As can be observed from Fig. 4(a), the algorithm presented in
the work [11] requires fewer iterations on average compared
with the proposed algorithm in this paper. This is because the
algorithm in [11] was based on a simple environment feedback
functions, in which the physical distance influences were not
considered.

As can be observed from Table II, we present the reward
times of different δ when the file library size is 10. Using the
reward times, the average reward probability can be calculated
for different file library size. Fig. 4(b) depicts the average
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Fig. 4. The performances of the proposed algorithm for different resolution
parameters

TABLE II
REWARD TIMES AFTER REPEATING 50 TIMES LEARNING WHEN THE FILE

LIBRARY SIZE IS 10

IU1 IU2 IU3 Reward probability
δ = 0.5 20 17 16 0.353

δ = 0.5 in [11] 15 16 15 0.307
δ = 1 25 22 20 0.446

δ = 1 in [11] 20 19 20 0.393
δ = 2 29 26 25 0.514

δ = 2 in [11] 23 23 22 0.453

reward probability of different resolution parameters δ. It
is shown that with the increasing size of the file library,
the average reward probability decreases. Also the proposed
algorithm can get a higher reward probability than the al-
gorithm in [11]. Considering both Fig. 4(a) and Fig. 4(b),
although a larger resolution parameter δ implies more time to
converge, it can achieve a higher reward probability. Moreover,
for the proposed algorithm, although it takes more time to
converge compared with [11] with the same δ, the reward
probability is much better. Finally, it can be observed that the
proposed algorithm strikes a fine balance between performance
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Fig. 5. Average downloading delay D vs. the Zipf parameter ω under different
environment feedbacks

and complexity compared with the algorithm presented in
[11]. This is because the proposed algorithm requires less
iterations than the algorithm in [11] to achieve a similar reward
probability performance. For example, the proposed algorithm
only needs about 92 iterations to converge while the algorithm
in [11] needs about 124 iterations to get a similar reward
probability when there are totally 20 files.

D. Delay Performance of the Socially Aware Distributed
Caching Algorithm

In this subsection, we first investigate the parameters in
the environment feedback. As discussed in the Section IV-
C, different combinations of the proportions of the request
probability (pf ), the physical influence (x) and the social
influence of (s) will lead to diverse optimized caching content.

As shown in the Fig. 5, different environment feedbacks
are considered when the density of IU is 10−2 users/m2. In
this network scenario, the average transmission probability is
around 0.56. We consider 3 cases in this figure: Case 1 gives
the equal weights to all three components, while the physical
influence is not considered in Case 2 and the social influence
is not considered in Case 3.

We can see from Fig. 5, the proposed algorithm can reduce
the download delay when it allocates more weights on the
physical influence, as shown by the comparison between Case
2 and Case 3. Moreover, with the increasing value of ω, the
gap between these two cases is enlarged. This is because
the physical influence shows a more important effect when
we have a larger value of ω. In more details, users tend
to download the same files when we have a lager value of
ω, then the delay among IUs and users are mainly depend
on the physical distance. So if we allocate more weights on
the physical influence, the learning results will show a better
downloading performance.

In the following, we study the delay performance of the
socially aware distributed caching algorithm. The proposed
algorithm is compared with the work in [11]. The DC scheme
in the physically distance-dependent social model is used as
the benchmark. Same with the previous subsection, we assume
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Fig. 6. Average downloading delay D vs. the Zipf parameter ω under various
caching schemes

a file size of L = 109 bits, a IU at least has 5 neighbors (k =
5), equal environment feedback composition. In the process
of sorting IUs, we collect each IU’s social importance and
available storage capacity, and treat them as a descending order
according the importance list. As a result, the density of IU is
around 10−2 users/m2 and each IU can store 3 files at last.

Fig. 6 shows the simulation results of the delay perfor-
mance. From this figure, we can see that the average delay
decreases as the value of ω increases, and the benchmark
(i.e., DC scheme applied in the physically distance-dependent
social model) shows the worst performance. This figure
also demonstrates that the analytical results can qualitatively
predict and assess the performance. However, using more
advanced algorithms can achieve better performance in the
practical 5G settings. In addition, our proposed algorithm
always performs better than the algorithm in [11]. For ex-
ample, in comparison with the counterparts, the average delay
of the proposed algorithm is reduced by 7.8%. Furthermore,
the performance improvement between the proposed algorithm
and the algorithm in [11] is obvious. This is because in [11]
no mutual impact is considered, thus, nearby IUs may cache
similar contents, and cannot provide downloading service for
other popular contents. In contrast, our proposed algorithm
encourages the IUs to cache different contents in order to
achieve caching diversity.

Moreover, we provide an average downloading delay perfor-
mance using the optimal caching (OC) scheme in this figure.
The OC scheme is obtained by the non-causal algorithm [33],
in which we remove the limit on the storage of each IU and
IUs have the knowledge of the entire network. From the figure
we can find that the gap between the proposed algorithm and
the OC scheme is relatively large when ω is small, but it
becomes small as ω increases. This is because the proposed
algorithm considers a more practical situation than OC. In
the OC scheme, it only sets the downloading delay as an
optimization target regardless of other practical factors, such as
the social relationship among users. In the proposed algorithm,
a complex environment feedback consisting of multiple factors
are incorporated, which not only considers the average delay
performance, but also considers the feasibility in a practical

TABLE III
THE AVERAGE NUMBER OF FILES CACHED IN EACH IU

ω 0.3 0.4 0.5 0.6 0.7 0.8 0.9 average
OC 6.7 6.2 5.6 4.8 4.5 4.2 4.1 5.08

situation. For example, when ω is small, the popular files
are sparse and the proposed algorithm cannot satisfy all the
demands. With the decreasing number of popular files, such
as a large ω, the outcome of the proposed algorithm will
gradually satisfy the demands. To make a fair comparison
with these two schemes, we also record the average number
of files cached in each IU for OC in Table III, whereas the
IUs can only cache 3 files in our proposed algorithm. In
this sense, the proposed algorithm can achieve a performance
close to that of OC, while economizing the storage space.
For example, compared with the optimal caching scheme, the
proposed algorithm has a similar delay (1025s v.s. 1018s), but
only requires less caching storage (3 v.s. 4.1) when ω = 0.9.

VI. CONCLUSION

In this paper, we conducted performance analysis using
stochastic geometry to have a basic understanding of the
average network performance under varying numbers and lo-
cations of the users. Specifically, we adopted a social relation-
ship model considering the physical distance between users,
and developed an analytical result of downloading delay. To
achieve a better performance under practical 5G settings, we
developed a distributed and socially aware framework based on
a learning automaton to solve the optimum cache placement
problem in D2D overlaying networks. Specifically, in order
to promote content dissemination in D2D communications,
we updated our algorithm with the aggregate environment
feedback including the social relationship between users. Also
the mutual user impacts were considered in this scheme to
enable its application in the large-scale networks. The average
performance obtained by stochastic geometry analysis agreed
well with the simulations results. Furthermore, the proposed
algorithm has fast convergence speed and can achieve signifi-
cant system throughput gain when compared with the existing
caching strategies.

APPENDIX A
PROOF OF THEOREM 1

For clarity, we first summarize our ideas to prove Theorem
1. In order to evaluate ptrans(λ, γ), the first key step it to
calculate the distance probability density function (PDF) for
the event that the typical receiver is associated with a nearest
transmitter which also have social relationship with it, so that
the integral of Pr[SINR > γ] can be performed over the
distance r. The second key step is to calculate Pr[SINR > γ]
for the typical case conditioned on the distance r.
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From (3) and (6), we can derive ptrans(λ, γ) in a straightfor-
ward way as

ptrans(λ, γ) =

∫
r>0

Pr [SINR > γ|r] fR(r)dr

=

∫
r>0

Pr
[
Phr−α

Id + σ2
> γ

]
fR(r)dr

=

∫ A

0

Pr
[
Phr−α

Id + σ2
> γ

]
fR1(r)dr

+

∫ ∞
A

Pr
[
Phr−α

Id + σ2
> γ

]
fR2(r)dr,

(31)

where fR1(r) and fR2(r) are the different PDFs of the RV
R1 and R2, and R1 and R2 are in the different intervals with
respect of r.

According to our offline social relation model, when 0 <
R1 ≤ A, the PDF of R1 can be represented as following.
According to [34] and [35], the complementary cumulative
distribution function (CCDF) of R1 can be written as

F S
R1(r) = exp

(
−
∫ r

0

PS(µ)2πµλdµ

)
= exp

(
−πλr2

)
.

(32)

Taking the derivative of (1−F S
R1(r)) with regard to r, we can

get the PDF of R1 as

fR1(r) = exp(−πλr2)× 2πλr. (33)

When R2 > A, the PDF of R2 can be expressed as following.
Same as (32), the CCDF of R2 can be written as

F S
R2(r) = exp

(
−
∫ r

0

PS(µ)× 2πµλdµ

)
= exp

(
−
(
πλA2 + 2πλA2(ln r − lnA)

))
.

(34)

So taking the derivative of (1 − FSR2(r)) with regard to r,
we can get the PDF as

fR2(r)=exp[−(πλA2 + 2πλA2(ln r− lnA)]×2πλA2×1

r
(35)

Having obtained fR1(r) and fR2(r), we move on to evaluate
Pr
[
Phr−α

Id+σ2 > γ
]

in (31) as

Pr
[
Phr−α

Id +N0
> γ

]
= EId

{
Pr
[
h >

γrα(Id + σ2)

P

]}
= EId

{
exp

(
−γr

α(Id + σ2)

P

)}
= exp

(
−γr

α × σ2

P

)
LId

(
γrα

P

)
,

(36)

where LId is the Laplace transform of RV Id evaluated at s.
Our proof of Theorem 1 is completed by plugging (33), (35)

and (36) into (9).

APPENDIX B
PROOF OF LEMMA 1

Based on the considered UAS, it is straightforward to derive
LId1 as

LId1(s) = E[Φ,{hi}]

exp
−s ∑

i∈Φ/b0

Phid
−α


(a)
= exp

(
−2πλ

∫ ∞
r

(1− E[h]{exp(−sPhu−α)})udu
)

(b)
= exp

(
−2πλ

∫ ∞
r

(1− E[h]{exp(−rαγhu−α)})udu
)
(37)

where the step (a) is obtained from [35] and the step (b) is
plugging s = rαγP−1 into (37).

The part in (37)
(
E[h] {exp(−r−αγhu−α)}

)
consider inter-

ferences from both social and non-social paths, thus, LId(s)
should be further derived as

LId1(s) =

exp
(
−2πλ

∫ ∞
r

PS(u)

{
1− E[h]

{
exp(

−γh
rαuα

)

}}
udu

)
×

exp
(
−2πλ

∫ ∞
r

PNS(u)

{
1− E[h]

{
exp(

−γh
rαuα

)

}}
udu

)
(38)

where PNS(u) = 1−PS(u). Plugging (3) into (38), we can get

LId1(s) =

exp
(
−2πλ

∫ ∞
r

{
1− E[h]

{
exp(

−γh
rαuα

)

}}
udu

)
= exp

(
−2πλ×

∫ ∞
r

{
1− 1

1 + rαγu−α

}
udu

)
= exp

(
−2πλr2γ

α− 2
2F1

[
1, 1− 2

α
; 2− 2

α
;−γ

])
,

(39)

where 2F1[·, ·; ·; ·] is the hyper-geometric function [26] and
α > 2.

APPENDIX C
PROOF OF LEMMA 2

From Appendix B, the second part of (31) can be expressed
as ∫ ∞

A

Pr
[
Phr−α

Id + σ2
> γ

]
fR2(r)dr

=

∫ ∞
A

exp
(
−γ × r

α × σ2

P

)
LId2

(
γ × rα

P

)
,

(40)

where LId2(s) also need to consider the interferences from
both social and non-social paths.
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Thus LId2(s) can be expressed as

LId2(s) =

exp
(
−2πλ

∫ ∞
r

(1− E[h]{exp(−rαγhu−α)})udu
)

=exp
(
−2πλ

∫ ∞
r

A2

u2

{
1− E[h]{exp(

−γh
rαuα

)

}
udu

)
×

exp
(
−2πλ

∫ ∞
A

u2 −A2

u2

{
1− E[h]{exp(

−γh
rαuα

)

}
udu

)
= exp

(
−2πλγ2 1

α

(
ln

(
1 +

1

γ

)
− ln

(
1

γ

)))
× exp

(
−2πλA2−αrαγ

α− 2
×∇2(α,A, r, γ)

)
×

exp
(

2πλA2 1

α

(
ln(1 +

Aαr−α

γ
)− ln(

Aαr−α

γ
)

))
,

(r > A),

(41)

where ∇2(α,A, r, γ) = 2F1

[
1, 1− 2

α ; 2− 2
α ;−A−αrαγ

]
,

2F1[·, ·; ·; ·] is the hyper-geometric function [26] and α > 2.

APPENDIX D
PROOF OF LEMMA 3

In this appendix, we first prove that the proposed algorithm
possesses the moderation property. That is, the magnitude of
decrement of any action probability is bounded by a certain
value.

From equation (21), the amount that a probability decrease
is computed by

pj(t)− pj(t+ 1) =
∆

F −K(t)
=

1

Fδ
× 1

F −K(t)
<

1

Fδ
,

(42)
So the magnitude of decrement is bounded by the value 1/Fδ
and the proposed algorithm possesses the moderation property.

Then we prove that the proposed algorithm possesses the
monotone property. That is, if there exists an index i and a
time instant t′ <∞, such that

di(t) > dj(t), for j 6= i and t > t′, (43)

then there exists an integer F0 such that for all F > F0,
pi(t)→ 1 with probability one as t→∞. Consider

∆pi(t) = E[pi(t+ 1)− pi(t)|o(t)], (44)

where o(t) is the estimator vector.
From equation (21), pi(t+ 1) can be expressed as:

pi(t+ 1) = pi(t) +
∆

K(t)
,

if αj is chosen and di > dj .

pi(t+ 1) = 1−
∑
j 6=i

(pj(t)−
∆

F
)

= pi(t) +
∆(F − 1)

F
,

if αi is chosen and di is max.

(45)

Hence, for all t > t′ and F > K(t) ≥ 1, ∆pi(t) can be
expressed by:

∆pi(t)

=
∑
j 6=i

∆

K(t)
× pj(t) + ∆× (F − 1)

F
× pi(t)

=
∆

K(t)
(1− pi(t)) + ∆× (F − 1)

F
× pi(t)

>
∆

K(t)
+ ∆× pi(t)× (

K(t)2 −K(t)−K(t)

FK(t)
)

≥ ∆−∆
Pi(t)

F
= ∆× (1− Pi(t)

F
) > 0.

(46)

Therefore, pi(t) is a submartingale and according to the
submartingale convergence theorem [27], pi(t) will converge
to one with probability one. Therefore, the monotone of the
algorithm is proved.
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