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Abstract

Bufferless fluid flow model (bffm) is widely used in the literature for cell loss analysis. In this paper, we propose an efficient and effective
means of investigating cell loss in the bffm. We define the cell loss rate function (clrf) and use it to characterize the cell loss of traffic sources
in the bffm. Properties of clrf are discussed. These properties enable us to decompose the complex analysis of the multiplexing of several
traffic sources into the simpler analysis of the individual sources. A cell loss upper bound for heterogeneous ON—OFF sources is proposed
using clrf. The proposed cell loss upper bound is tighter than that proposed in previous literature. A connection admission control (CAC)
scheme using online measurements is designed based on the cell loss upper bound. Extensive simulations are carried out to study the
performance of the CAC scheme. Simulation results indicate that the proposed CAC scheme is time-efficient, can ensure QoS guarantee, and
is capable of achieving high network utilization. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

To date, many connection admission control (CAC)
schemes have been proposed [1-8]. These schemes can be
classified into two categories: traffic descriptor-based CAC
and measurement-based CAC. Traffic descriptor based CAC
uses the a priori traffic characterizations provided by sources
at connection setup phase to calculate the probabilistic
behavior of all existing connections in addition to the
incoming one. It achieves high network utilization when
traffic descriptions required by the CAC scheme are tight.
Measurement-based CAC uses the a priori traffic character-
izations only for the incoming connection and uses measure-
ments to characterize existing connections. Under
measurement-based CAC scheme, network utilization
does not suffer significantly if traffic descriptions are not
tight. However, because of the fact that source behavior is
not static in general, it is difficult for measurement-based
CAC to obtain traffic characteristics accurately from on-line
measurements. Measurement-based CAC can only deliver
significant gain in utilization when there is a high degree of
statistical multiplexing [1].

Considering the difficulty for both traffic descriptor-based
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and measurement-based CAC to obtain accurate traffic
characteristics, the performance of a CAC scheme should
not be measured only by the utilization achieved under ideal
circumstances where traffic sources are all tightly character-
ized. Also, one must consider whether enough accurate
traffic characteristics can be obtained from sources and/or
network practically, and, the robustness of the CAC scheme
against the inaccuracies in those traffic characteristics. In
addition to high network utilization an ideal CAC scheme
should satisfy the following requirements [9,10]:

e Simplicity: the scheme must be both economically
implementable and fast. The traffic characteristics
required by the CAC scheme should be easily and
reliably obtained from the traffic sources and/or network.

e Flexibility: the scheme must not only be able to satisfy
the current needs of network services but also be able to
adapt to new services which are likely to evolve.

e Robustness: the scheme must be able to handle imperfect
assumptions.

Cell loss and cell delay are often adopted as measures of
QoS. Cell delay can usually be controlled within a desired
bound by engineering the buffer size, hence cell loss is used
in most papers as the QoS index.
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Fig. 1. Cell loss in bufferless fluid flow model.

In this paper, based on the bufferless fluid flow model
(bffm) we first define the cell loss rate function (clrf) and
use it to study the cell loss in bffm. The properties of clrf are
introduced. The conjecture proposed by Rasmussen et al.
[11] about the cell loss of ON-OFF sources is proved.
Furthermore, we propose a tighter cell loss upper bound
than that proposed in previous literature for heterogeneous
ON-OFF sources. The upper bound is applied to design a
measurement-based CAC scheme. In the design of the CAC
scheme, the above guiding principles for CAC schemes are
addressed with particular attention given to the impact of
inaccuracies in declared traffic parameters.

The rest of the paper is organized as follows: in Section 2
the clrf is defined and its properties are introduced; in
Section 3 heterogeneous ON-OFF sources in bffm are
studied and the upper bound is developed; the CAC scheme
is designed in Section 4; Section 5 presents some simula-
tions using exponential ON—OFF sources; in Section 6
video sources are used to test the performance of our
CAC scheme; and finally conclusions are given in Section 7.

2. Evaluating cell loss in the bufferless fluid flow model—
cell loss rate function

There are mainly three methods to analyze the cell loss in
the network: queueing theory, large deviation approxima-
tion and bufferless fluid flow approximation. Queueing
theory provides exact analysis of cell loss in the network
but its analysis is too complex, hence assumptions have to
be made to simplify the analysis. In many studies, the
queueing theory depends heavily on the assumption of
Poisson processes for cell loss analysis.

Large deviation theory generates approximation for cell
loss. In large deviation theory the loss probability Py in a
finite buffer queueing system with buffer size B is approxi-
mated by P(Q > B), the tail of the queue length distribution
in the corresponding infinite buffer queueing system. For
Markovian traffic in the infinite buffer queueing systems it
has been shown that P(Q > B) is asymptotically exponen-
tial, i.e.

P(Q>B) ~Ae ™ as B — oo, (1)

where 7 is a positive constant called the asymptotic decay

rate, A is a positive constant called the asymptotic constant,
and f(x) ~ g(x) means lim,_., f(x)/g(x) = 1. Eq. (1) applies
only to large buffers and therefore limits the usage of large
deviation theory method. Effective bandwidth approach
assumes that A = 1, which is criticized as too conservative.

Bufferless fluid flow model is also used in many literature
to analyze cell loss in a network [7,12,13]. Since this
approach assumes that there is no buffer in the network, it
generates conservative estimate of cell loss. However, the
simplicity of bffm enables us to concentrate on the charac-
teristics of traffic sources themselves. In this paper, we use
bffm to analyze the cell loss.

Under bffm, cell loss due to overflow occurs if and only if
the sum of the traffic rates of all active connections, denoted
by X, exceeds the link capacity C. Fig. 1 illustrates the cell
loss in bffm.

Let us define a function F(y) as follows:

FO)2EX—»"] 2)

We call F(y) the cell loss rate function of X. Our study
shows that clrf is an effective tool for studying cell loss in
bffm. In this paper, since we are discussing traffic sources,
all random variables are non-negative random variables.
The clrf has many attractive features, which facilitates the
analysis of cell loss in the bffm. For example, F(C) denotes
the cell loss rate of a traffic source X on a link with link
capacity C. Traffic sources with similar clrf can be regarded
as equivalent in the cell loss analysis. From the definition of
clrf it can be shown that:

Fy)=F0)—y fory <0 3)
and
F(0) = EX). 4
The cell loss ratio (clr) can be calculated as:
F(O)
Ir= —=.
clr F(0) (@)

An important property of the clrf is given as follows.

Property 1. If f(x) and g(x) denote the traffic density
distribution of independent traffic sources X| and X, respec-
tively then the cell loss rate function of X| + X, equals F *
g(x), where F(x) is the clrf of X,, * denotes convolution.

Refer to Ref. [14] for a proof.

Definition 1. Given two traffic sources X and Y, we say
that X is smaller than Y with respect to the cell loss rate
function, written as X < Y, if for the clrf of X and Y,
denoted by F(y) and G(y),

F(y) = G(y) (0)
holds for any y € R.

X <.t Y implies that the cell loss of traffic source X on a
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link is smaller than or equal to that of Y. If in addition to
X <. Y, we also have E(X) = E(Y), then not only the cell
loss of traffic source X on the link is smaller than or equal to
that of Y, but also the clr of traffic source X on the link is
smaller than or equal to that of Y. From the definition given
above, it can be shown that:

Property 2. IfX <clrf Yand Y <Cll‘f Z, then X <Cll‘f Z.
Propterty 3. IfX < s Y,then X +7Z < 4 Y + Z.

Proof. Noting that the clrf of a traffic source is always
non-negative, the proof is straightforward using Property 1.
O

Using the above properties, it can be shown that for traffic
sources X; and Y;, i=1,...,n, X; <y Y; implies that
S X < Di=1 Yi- Another property of the clrf is given
in the following:

Property 4. If X <.+ Y and E(X) = E(Y), then o(X) =
a(Y), where o(-) denotes the standard deviation of random
variable -

Proof. It can be shown that for non-negative random
variable X:

X

=r<rwﬂu—awm

0 0

—2 Jm [Jw (- Fd(x)]dx]dy.
0 y

In the above equations, Fy(x) denotes the distribution func-
tion of X. Then noting that the clrf of X, denoted by F(y),
has:

EX% = J: KdF(x) = J: 2xU°° dFd(y)]dx

nw=ﬂa—wﬂzj(rdmmw

Therefore from X <+ Y, it can be shown that

j[jn—mwwhsj[ju—@wwha
0 y 0 y

where Gy4(x) denotes the distribution function of Y. So it can
be concluded that E(X*) < E(Y?). Then the proof is
completed by using the relationship:

a*(X) = EX%) — [EX).0

This property of the clrf will be used in the traffic
measurement analysis shown later.

3. Heterogeneous ON-OFF sources in the bufferless
fluid flow model

For simplicity, let us consider ON—OFF traffic sources.
According to the probability density distribution of ON
and OFF periods. ON-OFF source models can be further
classified into exponential ON—OFF source model, peri-
odic ON-OFF source model, Pareto ON-OFF source
model, etc. They are widely used for cell loss analysis
in CAC schemes [7,11,12,15-18]. ON-OFF source
model, have been successfully used to characterize the
ON/OFF nature of an individual source or source
element, like packetized voice and video [15,19,20].
They provide the worst case analysis of traffic sources
in terms of cell loss. Recent studies indicate that ON—
OFF source models are also suitable for modeling self-
similar traffic [21,22].

Many current modeling techniques model each traffic
source or source element by an ON—-OFF source. These
techniques fail to apply in high speed networks, simply
because of the exploded input state space when a large
number of diverse sources are multiplexed on each link.
Efforts have been made to reduce the input state space.
Rasmussen et al. [11] proposed an upper bound for
heterogeneous ON—OFF sources. Based on a conjecture
they propose that, for n heterogeneous ON—OFF sources
which have peak cell rates pcry,...,pcr,, and, the sum of
their mean cell rates is S, then the case of n homogeneous
ON-OFF sources, each source with peak cell rate pcr =
max{pcry,...,pcr,} and mean cell rate mcr = S/n, will
constitute the cell loss upper bound of the n heteroge-
neous sources. His approach results in great reduction in
input state space, hence great computational savings.
However, if sources with large bandwidth demands and
sources with small bandwidth demands are multiplexed,
the upper bound will be too conservative. Hwang et al.
[23] proposed a method of input state space reduction. In
their approach, 2-state Markov Chains are built to statis-
tically match with the power spectrum function and prob-
ability density function (pdf) of the aggregate traffic. The
state space of each traffic type on the link can be reduced
to 30 using their method. This is still too large to imple-
ment practically.

Lee et al. [12] proposed an algorithm which is suitable for
real-time estimation of cell loss of the multiplexing of
heterogeneous ON—OFF sources. However, their approach
can only be applied to traffic descriptor-based CAC, hence
tight characterization of mean cell rate (mcr) in traffic
descriptors is necessary in this approach. In real networks,
itis very difficult for all traffic sources to tightly characterize
their mcr, so their approach only has limited use. Moreover,
choosing the quantization unit remains a problem in their
approach. Small quantization unit will result in huge
computation efforts and large quantization unit will result
in too conservative cell loss estimate.

In this section, we try to solve these problems in a
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different approach. Using clrf defined in Section 2, we
develop a cell loss upper bound suitable for real-time
calculation for heterogeneous ON-OFF sources. The
upper bound is then applied to design a measurement-
based CAC.

An ON-OFF source generates cells at a peak cell rate
(pcr) denoted by pcr in active periods. In idle periods no
cells are generated. Let mcr denote the mean cell rate of the
ON-OFF source. The activity parameter of an ON-OFF
source is defined as the ratio of mcr to pcr:

mcr

pe— (N
per

Then the probability that an ON—OFF source is active or
idle is given by p or 1 — p, respectively.

Assume there are n independent ON-OFF sources
Xj,...,X, on the link, where X;;—; _, has peak cell rate
pcr;, mean cell rate mecr; and activity parameter p; =
mcr;/pcr;.  The probability mass function (pmf) of

Xi(i=1,..n) can be expressed as:
Di X = pcr;
) N R —0 g
Fipery ) pi X , (8)
0 otherwise

and the pmf of > /_; X; can be expressed as:
(P1--Pn) — D) (Pn)
f;l,(;crl ,...,pcrn)(x) - fl,(;)cr]) Hoee *fl,(pcrn)(x)' (9)

In this paper we use subscript n, subscript (pcr) and super-
script (p) to denote the number of ON—OFF sources, pcr of
sources and their activity parameters, respectively, when we
need to emphasize the dependence of one function on these
parameters.

Since an ON—OFF source or the multiplexing of several
ON-OFF sources, denoted by X, is a discrete random vari-
able, definition in Eq. (2) becomes

FO)LEX—y'12> @ —»'f, (10)

where f(x) is the pmf of discrete random variable X.

Eq. (5) shows the method of calculating the clr of the
aggregate traffic Y, X; using the clrf. For ON-OFF
sources, the clrf can also be used to calculate the clr of
individual connections, i.e. the clr of Xj4—; , on a link
with link capacity C is upper bounded by [13]:

+
E Z X; + per, — C
i=1,i#k _ F(C — pery)

Ir, =
Clry C C

(1)

where the function F(y) is the clrf of D'/ ;-; X;. It can be
shown that the clr of the aggregate traffic >, X; is

related to clry by:
_ Pk XF(C —per) + (A~ p)F(C)

)

X CXclr + (1 = p)F(C)

)

Denoting the clr objective of X; by clry o, if
P X CXclr g + (1 = p)F(C)

3)

is satisfied, the clr QoS of connection X, can be guaranteed.
We can further remove the term (1 — py)F(C) from Eq.
(12), i.e. if

clr

cr = (12)

niC

is satisfied, the QoS requirement of connection X; can be
guaranteed. Eq. (13) gives more conservative clr objective
for the aggregate traffic than that given by Eq. (12), however
Eq. (13) is much easier to implement practically. Since
F(C) < Cclry op, when py is not a very small value, the clr
objective for the aggregate traffic given by Eq. (13) is close
to that given by Eq. (12). In the rest of this paper, we limit
our discussion to the cell loss performance of the aggregate
traffic.

cr = X clry ob (13)

Proposition 1. Assume X is an arbitrary traffic source
such that E(X) = mecr and ||X|. = per, where ||X]o =
inf{x:Pr{X >x}=0}. Let Y represent an ON-OFF
source with mean cell rate mcr and peak cell rate pcr.
Then X <y Y and E(X) = E(Y).

A result to the same effect of Proposition 1 was proved in
Appendix B of Ref. [24].

This proposition implies that among traffic sources with
the same mcr and pcr, ON-OFF source constitutes the
worst-case in cell loss analysis.

We shall now introduce a lemma on the multiplexing of
two independent ON—OFF sources. This lemma is used in
many parts of this paper. The comparison of the multiplex-
ing of two independent ON—OFF sources constitutes one of
the basic cases for loss performance analysis of ON—OFF
sources, from which we can extend to the comparison of the
multiplexing of many ON-OFF sources.

Lemma 1. Letr X, X, be two independent ON-OFF
sources with peak cell rates a; X per, (1 — a;y) X per, and
activity parameters p, p, respectively, where 1 > oy = 0.5.
Let Yy and Y, be two independent ON—OFF sources with
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peak cell rates ay X per, (1 — a,) X per, and activity para-
meters qi, q, respectively, where 1 > a, = 0.5. Moreover,
EX, +X)=EY, +Yy)and o) = a,. Then X| + X5, <iii¢
Y, + Y, if and only if pi\py = q1q2 and py + py —pipy =
9t 92~ 19

See Ref. [25] for a proof. We shall now introduce an
important theorem about heterogeneous Bernoulli sources.
Bernoulli sources are ON—OFF sources with the same pcr.

Theorem 1. Let Xi,...,X, be n independent heteroge-
neous Bernoulli sources with activity parameters py,...,p,
respectively. Their activity parameters are subject to p; +
-+ +p,=P. Let Yy,..., Y, represent n independent homo-
geneous Bernoulli sources, where Y; has the same peak cell
rate as Xy, n and an activity parameter p = P/n. Then

EQ i1 X)=EQ = Y) and > X; <cur Dim1 Y.

See Ref. [14] for a proof. Theorem 1 states that homoge-
neous Bernoulli sources generate more cell loss than that of
heterogeneous Bernoulli sources. Theorem 1 was first proposed
as a conjecture by Rasmussen et al. [11]. Based on Theorem 1,
they proposed that the cell loss of n heterogeneous ON—OFF
sources, whose maximum peak cell rate is pcr, is upper
bounded by that of n homogeneous ON-OFF sources with
peak cell rate pcr, where the sum of mean cell rates remains
the same. In addition to [11], Theorem 1 is also used for loss
performance analysis in many other literature [7,26,27].

In real networks, many traffic sources of the same type have
the same pcr. However, because of their specific application
circumstances, they have different mean cell rates. Theorem 1
is very useful for analyzing this kind of traffic sources.

We shall now introduce another theorem about ON-OFF
sources.

Theorem 2. Let X and Y be two independent ON-OFF
sources with the same mean cell rate denoted by mcr. X and
Y have peak cell rates pcry and pery respectively. If pery =
pery, then X <y Y.

See Ref. [14] for a proof. In Ref. [12], a result to the same
effect of Theorem 2 was proved using another approach.
Here it is proved using the clrf. Comparing the proof here
and that in Ref. [12], the advantage of using cltf for cell loss
analysis in the bffm becomes clear.

Theorem 2 is used by Lee et al. [12] in their CAC scheme.
Based on it, they design a CAC scheme capable of real-time
estimation of cell loss of the multiplexing of heterogeneous
ON-OFF sources. Theorem 2 will be used for loss perfor-
mance analysis and CAC scheme design in this paper.

On the basis of the theorems, lemmas and properties shown
previously, we shall now introduce an important theorem
about independent heterogeneous ON—OFF sources.

Theorem 3. Let Xi,...,X, be n independent heteroge-
neous ON-OFF sources with peak cell rates pcry, ..., pcr,

and mean cell rates mcry,...,mcr, respectively. Let
Yi,...,Y, represent m independent homogeneous ON-
OFF sources with peak cell rate pcr and mean cell rate
mcr, where per = max{pery, ..., per, }, m =[ >, peri/per]
and mcr = Y'i_ mcry/m. Then

ix,. et i Y, and E(Z X,.) = E(i Y) (14)
i=1 i=1 i=1

i=1

See Appendix A for a proof. This theorem provides a cell
loss upper bound for heterogeneous ON-OFF sources. It
states that the cell loss of heterogeneous ON—OFF sources
is less than or equal to that of corresponding homogeneous
ON-OFF sources given in the theorem. The sum of mean
cell rates of the homogeneous sources remains the same as
that of heterogeneous sources, and the sum of peak cell rates
of the homogeneous sources is also substantially the same as
that of the heterogeneous sources. It is not difficult, using the
clrf, to prove that our upper bound is tighter than the upper
bound proposed by Rassussen et al. [11].

The proposed upper bound can also be explained intui-
tively as follows: substituting n independent heterogeneous
ON-OFF sources with [ >, per;/per] independent homo-
geneous ON—OFF sources, the sum of mean cell rates does
not change, i.e. the traffic load is unchanged. However, with
the decrease in the number of multiplexed ON—OFF sources
the aggregate traffic becomes more bursty. Therefore for the
same utilization cell loss will increase.

4. CAC scheme

The proposed upper bound can be applied to either traffic
descriptor-based CAC or measurement-based CAC. In real
networks, owing to policing functions and other regulatory
mechanisms, it is reasonable to assume that the declared
peak cell rates are tight. However, it is very difficult for
all traffic sources to tightly characterize their mean cell
rates. Since the upper bound involves both pcr and mcr,
we adopt CAC scheme using on-line measurements.

Measurement-based CAC has been a hot research topic in
recent years [1,4,7,8,28—32]. Shiomoto et al. [29] used a
low pass filter to obtain the instantaneous VP utilization
from crude measurements. A residual bandwidth is derived
from the maximum of the observed instantaneous VP utili-
zation. If the bandwidth requirement of the new connection
is smaller than the residual bandwidth, the new connection
is admitted, otherwise it is rejected. Gibbens et al. [7] used a
decision-theoretic approach for call admission control to
explicitly incorporate call-level dynamics into the model.
In their work, call acceptance decisions are based on
whether the current measured load is less than a precom-
puted threshold. In a study by Dziong et al. [30], Kalman
filter is used to obtain an optimal estimate of mcr and
variance. An aggregate equivalent bandwidth is then
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derived from the mean and variance estimate. A spare band-
width is set in the aggregate equivalent bandwidth to
account for the estimation errors. Grossglauser et al. [28]
studied a robust measurement-based admission control with
emphasis on the impact of estimation errors, measurement
memory, call-level dynamics and separation of time scales.
Their work [28,31] also identifies a critical time-scale T,
such that aggregate traffic fluctuation slower than T, can
be tracked by the admission controller and compensated
for by connection admissions and departures, fluctuations
faster than 7} have to be absorbed by reserving spare band-
width on the link. Using Gaussian and heavy traffic approx-
imations, the critical time scale is shown to scale as T}/ /i,
where T, is the average flow duration and # is the size of the
link in terms of number of flows it can carry.

In this section, based on the theoretical analysis in the
previous sections, we develop a CAC scheme using para-
meters from both traffic descriptors and measurements. The
principles introduced in Section 1 is used to govern the CAC
scheme design. Robustness, flexibility and simplicity
become major concerns in our CAC design and later simu-
lation validation.

Let us select a traffic rate unit « such that u is greater than
or equal to the maximum pcr of all traffic sources on the
link. From now on in this paper all traffic rates are normal-
ized with respect to u unless otherwise specified. Without
loss of generality we assume that link capacity C is an
integer multiple of u.

Suppose there are n independent heterogeneous ON—OFF
sources, denoted by X1, ..., X,,, on the link. The declared pcr
of ON-OFF source X;;—; ., is pcr;. We keep a list of the
declared pcr of all connections on the link and denote the
sum of the per by PCR, i.e. PCR = Y i pcr;. Realizing that
mcr can not be tightly characterized by traffic sources, we
obtain the sum of mcr from on-line measurements. This is of
course the mer of the link. We denote the measured mcr of
the link by r.

From Theorem 1,

n m
ZXi <Clrf Z Yis
i=1 i=1

where
m = [PCR], (15)

and Yy, is an independent ON—OFF sources with pcr
1 and activity parameter p. The choice of p should make the
mer of YL, Y; and the mcr of > X; equal. We will
describe later the method of estimating p from measure-
ments. The pmf of Y, ¥; is given by the following bino-
mial distribution:

( k )pk(l _p)m—k x=k
fx) =1 \m (16)

0 else

the clrf of Yi2, ¥; is calculated as follows:
mXp k=0

Fk) = (17)

k—1
Fk—1)—1+ > f) k=1
i=0

Eq. (17) comes directly from the definition of clrf for

discrete random variable given in Eq. (10). The clr of

>, Y; on a link is estimated using Eq. (5). As introduced

before, clr of >/, Y; is greater than or equal to that of
iz Xi-

4.1. Estimation of the activity parameter p

We shall now describe the estimation of p. Since we
obtain the mer of Y., X; from on-line measurements, p
can be directly estimated as follows:

r

p=— (18)
m

Increasing the measurement window size, T,,, will increase
the accuracy of the measured mcr r and the accuracy of
estimation of p. Yamada et al. [33] introduced a method
for finding the measurement window size. Estimation of p
using Eq. (18) is simple however for accurate estimation it
requires a large measurement window size. Here we use
another approach.

In an ATM network, traffic can only arrive in integer
multiples of an ATM cell. Therefore we first choose a
sampling period T; such that the impact of such granu-
larity on traffic rate measurements taken over T can be
ignored. In our analysis, T is chosen to be 100 cell unit
time. One cell unit time is the time required to transmit
an ATM cell on the link. Denote the mean and the
variance of the traffic rate sample r; measured over T
by St and o-%, and the mean and the variance of the
traffic rate sample rgx measured over a sampling period
of KX T, by Sk and oF, respectively.

Assuming that the aggregate traffic is stationary, then it
can be shown that Sk, ok, St and ot are related by Sx = St
and

T I T _
Ok =0T ?+FZ(K_l)pi’
i=1

where p; is the autocorrelation between traffic rate
samples taken over [0,7,] and over [(i — 1)T§,iX T].
ok decreases with the increase of K. In the above
analysis we ignored the impact of call level dynamics,
i.e. we assume no call is admitted into the network or
depart from the network during the measurement
window. The impact of call level dynamics is discussed
later at the end of this subsection.

Assume that the aggregate traffic is Gaussian. If the
following equation is chosen as an estimate of the mcr:

?:I"K‘{‘EXU'K,
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update clif ~ updateclrf  update clrf  update clrf

—r«— T ——>«——T1 —>
T, T —>

DE— T,
7 e S e

Fig. 2. Relationship between update interval and measurement interval.

time

where € is a constant, in order to satisfy the estimation
objective

P = Sg) = 0.95, (19)

we have to choose & = 1.65. If the aggregate traffic is not
Gaussian, a larger ¢ can be obtained using the Chebyshev’s
inequality. In the rest of the paper, we only consider the case
when the aggregate traffic is Gaussian traffic.

An estimate of oy can either be obtained directly from
on-line traffic measurements, or can be obtained from on-
line estimation of ot and autocorrelation of function p.
However, on-line estimation of these parameters is not an
easy task, so we take another approach. Using Property 4,
Theorem 3 and Proposition 1, it can be shown that
mSt/m(1 — Sp/m) is the maximum variance of the aggregate
traffic. Thus instead of measuring the variance directly, we
estimate o as follows:

6r= MK@—E) (20)
m m

When a large enough K is chosen such that traffic fluctuation

with time scale larger than K X T, are small, the estimated

o is larger than its true value despite possible fluctuations

in rg. 6% is then obtained as follows:

~2
grT

A2
i

(2D
where 0 is a constant between 0 and 1. 6 can be obtained by
inspecting the variance—time plot obtained from traffic
measurements [34,35]. In contrast to [34] and [35] which
study the self-similarity in network traffic, our interest is
mainly in the variance—time curve in a relatively small
time region from 107, to 10007;. In this region even for
short-range dependent traffic, a 6 much smaller than 1
may be observed. In our simulations shown later, 0 is a
very stable value. This is because the traffic mix in the
simulation is almost time-invariant. As a result, the
autocorrelation in network traffic does not change signifi-
cantly. However, our analysis on traffic measurement data
from real ATM networks' shows that the value of & will
change slowly with time within a day. In that case, the
smallest value of observed & should be used in Eq. (21).
For simulations using exponential ON—OFF sources shown

! These traffic traces are collected by Waikatp Applied Network
Dynamics group at the University of Auckland since November 1999.
The time-stamp of measurement data in the trace has an accuracy of
1 ps. More details about the traces can be found at their webpage http://
moat.nlanr.net/traces/Kiwitraces.

later, & is chosen to be 0.35; for simulations using Motion-
JPEG encoded video sources, 6 is chosen to be 0.4. The
advantage of this method is that the value of 6 can be
obtained from off-line traffic analysis, therefore on-line esti-
mation of the second order statistics is avoided. Here we
would like to comment that this method will not give an
accurate estimate of ogx. However, generally the estimated
value of oy is larger than its true value, which will satisfy
the estimation objective in Eq. (19).

Then an estimate of p can be obtained: p = 7/m.

To summarize the above analysis, if the measurement
window size is chosen to be T, = K X T,, an estimate of
p can be obtained as follows:

p=ta (22)
where
a=165xK %, (23)

and r is the mean traffic rate measured over T,.

This approach was first mentioned in Ref. [7]. The intro-
duction of the safety margin « enables us to greatly reduce
the required measurement window size while maintaining
the robustness of the estimation. Moreover, the safety
margin introduces additional benefits. Cell loss analysis
presented in this paper gave a cell loss upper bound of the
aggregate traffic based on bffm. The measurement scheme
shown above also gives a robust estimate of p. Therefore,
the above measurement scheme will give a tight QoS guar-
antee. However, for a network with large buffers, clr will
decrease due to large buffer size. The proposed CAC
scheme is conservative for network with large buffers. In
this case, safety margin « can be chosen to be smaller than
that given in Eq. (23), or even zero, to achieve higher
network utilization. Our simulations show that for a fixed
buffer size, controlling the safety margin « can control the
clr, as well as utilization. Choosing a safety margin « to
adapt to networks with large buffers is subject to further
study.

Therefore the introduction of a brings some flexibility
into the CAC scheme which enables us to efficiently utilize
network resources. For the above reasons we use Eq. (22) to
estimate p in our CAC scheme instead of [18]. The clrf of
>, Y; is updated using Egs. (16) and (17) every T, second.
Fig. 2 shows the relationship between the update period 7,
and measurement period T,. We suggest choosing a T, in
the range 27T, ~ 107T,,, depending on the network state.
When call level dynamics is high, i.e. connections enter
and leave the network very often, 7, should be chosen
close to 2T,,. On the other hand, for a network where call
level dynamics is low, T, should be chosen close to 107,.

Call level dynamics affects the measurements. If a new
connection request is admitted in the measurement window,
the new connection possibly generates traffic only during
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part of the measurement window, or does not generate traffic
at all. Therefore, the new connection will make the
measured mcr of the link smaller than its actual value,
which will affect the robustness of the CAC scheme with
regards to QoS guarantees. To solve this problem, when the
measurement window size T, is much smaller than the
connection setup time, we block the admission of new
connection during the measurement window. The admission
will be delayed till the end of the measurement window. In
the worst case, this will introduce a delay of T, to the
connection setup time. We use this method in our simula-
tions. Alternatively, if the delay caused by T, to the connec-
tion setup time becomes a concern, one can add the sum of
the declared mean cell rates, if available in the traffic
descriptor, or the sum of declared peak cell rates of the
connections admitted in the measurement window, divided
by m, to the estimated p in Eq. (22). In this case, we do not
need to block the admission of new connections in the
measurement window.

It is possible that during the measurement window some
existing connections are released, thus affecting the
measured mcr. Departing connections contribute to the
measured mcr of the link. However, PCR is the sum of
peak cell rates of connections on the link at the instant of
updating clrf, not including peak cell rates of the departing
connections. So if there are some connections that are
released during the measurement interval they will make
the estimated p larger, which in turn makes the CAC scheme
more conservative, assuring that QoS guarantees are not
affected. Another alternative is to update the clrf only
when no existing connections depart during the measure-
ment interval. We do not adopt this approach in our CAC
scheme because it may result in the clrf not being updated
for a long time, thus affecting the performance of the CAC
scheme.

In our CAC scheme, we do not update the clrf for depart-
ing connections. The departing connections will be caught
up by periodic updates of clrf.

4.2. Cell loss ratio estimation

We shall now show the method of estimating the clr when
a new connection request arrives. Suppose there are M
connections, denoted by Z,...,Z,, admitted into the
network since the last measurement interval. Let us use
Xi,...,X, to denote the connections existing in the network
at the instant when the last measurement interval finished,
and F(y) to be clrf of the corresponding upper bound of
X1,..s Xy, Dim1 Y;, which is calculated using Egs. (15)-
(17) and (22). When a new connection request arrives,
denoted by Zy.i, if PCR+ M| 'per, =C, where
pCrz =1, m+1) is the declared per of Z;, the new connection
can be admitted directly and no cell loss will occur. Other-
wise, the following method is used to estimate the clr if the
new connection is accepted and to determine whether the
new connection should be accepted:

Denote the updated clrf after the admission of Z by
Fy(y). The procedure of updating clrf is described later.
Denote the pcr and mcr of the new connection request
Zy+1 by perg,,, and mcry, . Zyy is smaller than, with
respect to the clrf, an ON—OFF source A with a pcr 1 and
mer mery, . The clrf of 32, Y; + 3L, Z; + A, denoted by
FyG(y) can be calculated as:

FyG(y) = Fy X g(y)

where g(y) is the pmf of A. Therefore, the clr, if the new

connection is admitted, is estimated as follows:

(I —merg, )Fy(C) + merg,  Fy(C—1)
Fy(0) + mery, ’

clr= 24)
If the estimated clr is less than the cell loss ratio objective
then the connection is admitted; otherwise the connection is
rejected. If the connection is admitted, clrf will be updated:

Fy(0) + mery,, | k=0
Fy1(k) = { .
(I = mery,, VFyk) + mery, Fy(k—1) k=1

(25)

For the special case of M = 0, the clrf Fy(y) is actually F(y),
the clrf of D2, Y.

Alternatively, one can also take 7 + zf‘ifr ! mcry as an
estimate of the sum of mean cell rates of all connections in
the network if the new connection request Z,, | is admitted;
and calculate the clrf Fy;4q(y) using Egs. (15)-(17) and
(22). Accordingly, in Eq. (15), PCR now means the sum
of peak cell rates of all connection in the network if connec-
tion request Zy;;; is admitted.

Updating of the clrf using Eq. (25) is computationally
much more efficient. However, since Eq. (25) actually
takes the pcr of Zi,....,Zy,Zy+1 as 1, it will generate
more conservative results.

Noting that in the estimation of cell loss ratio only the
computation of F(y) and f(x) from O to C is needed, we do
not need to calculate all values of F(y) and f(x) from O to
[PCR].

5. Simulation study

In this section, we study the performance of our CAC
scheme using simulations. Eq. (25) is used to update the
value of clrf. The aim of our simulation study is to evaluate
the performance of our CAC scheme with respect to
network utilization and its effectiveness in terms of its abil-
ity to guarantee the QoS constrains required by the connec-
tions.

The simulations are carried out using OPNET. The
following parameters are used for our simulations: cell
loss ratio objective is set to be 10™%; switching speed of
the ATM switch is set to be infinity, hence every incoming
cell is placed immediately in the output buffer; the output
buffer size is set to be 20 cells to absorb cell level congestion
[36,37]. The link utilization and clr are observed in our
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Table 1
Parameters of the three traffic types in saturation scenario

AGsThH per (Kb/s) Burstiness L (cells)
Type 1 10 100 10 100
Type 2 50 50 5 50
Type 3 100 10 2 20

simulations. Link utilization is calculated as the ratio of
instantaneous link traffic rate to link capacity; clr is
calculated as the ratio of the total observed cell loss to the
total cells offered to the link in a moving window with size
T.. More specifically, clr at time ¢ is the ratio of the number
of cell loss occurred in the interval (r — T, 1) to the total
number of cells offered to the link for transmission in the
same interval, where T, equals 500 s. The utilization data is
collected every 0.1 s, so it is actually the average utilization
over a 0.1 s interval. Clr data is collected every 1 s. In each
scenario, there are several types of traffic sources multi-
plexed onto the link. Each type of traffic has an exponen-
tially distributed arrival rate with the mean of A calls per
second. The connection holding time for all traffic types is
exponentially distributed with a mean of 100 s.

5.1. Simulation model

In this section exponential ON—OFF source model is used
in the simulations. The duration of the ON and OFF periods
are independent and exponentially distributed with means 3
and v, respectively. During each ON period an exponen-
tially distributed random number of cells, with mean L, are
generated at pcr. During off periods no cells are generated.
We define the burstiness of a traffic source as:

cr +
Burstiness = per _ Bty

mcr B

(26)

Furthermore, the following parameters are used for our
simulations: the link capacity is set to be 10 Mb/s, and the
measurement window size is chosen to be 0.08s. Clrf
update period is chosen to be 0.2 s. Safety margin « is
chosen to be 1.0. In the simulations, three types of traffic
sources are multiplexed onto the link. Traffic rate unit u is
set to be 100 Kb/s, which is the maximum pcr of the three
traffic types.

In this simulation scenario, referred to as the saturation
scenario, the call arrival rate is chosen to be very high. The
high call arrival rate and long call holding time mean that
the system is continually receiving new connection requests.
Thus, the CAC scheme is expected to achieve the maximum
utilization in the saturation scenario. This scenario is used to
establish the performance of our CAC scheme with regards
to QoS guarantees, because if calls are offered at a very high
rate, the rate at which calls are admitted in error becomes
very large too [7].

Utilization in the saturation scenario

100

90 ! ‘

y

IR

mIMLLL AT i.h,‘h HJU‘Hki.l \.M |

80 | |
|

50
3000 3250 3500 3750 4000
time (sec)

Fig. 3. Utilization achieved in the saturation scenario.

5.2. Saturation scenario

The parameters of the three traffic types of the saturation
scenario are listed in Table 1.

The mean burst length is chosen to be several times larger
than the buffer size. This is used as a trial to establish the
performance of the CAC scheme using on-line measure-
ment.

The simulation was run for 10,000 s. An average utiliza-
tion of 0.76 is achieved by our CAC scheme. Fig. 3 shows
the observed utilization during the period 3000—4000 s. Fig.
4 shows the observed clr. Fig. 5 shows the number of each
connection type on the link. Fig. 6 shows the admissible
region for the three types of calls as well as the number of
calls actually admitted by the CAC scheme. The numbers of
the admitted calls are close to the boundary of the admis-
sible region whilst within the admissible region. Therefore,
the CAC scheme is robust with regards to QoS guarantee,
and is capable of achieving a high network utilization.

This is also verified by the observed clr shown in Fig. 4.
The observed clr is within the same order of the clr objec-
tive.

6. Application of the CAC scheme to real traffic sources

In Section 5, we study the performance of our CAC
scheme using the exponential ON—OFF source model. In
this section, we will further study the performance of our
CAC scheme using variable bit rate video sources. Eight
Motion-JPEG (M-JPEG) encoded movies are used in the
simulation. Accordingly, there are eight traffic types.
Connections of each type has an exponentially distributed
duration with a mean of 100s, and connection requests
arrive exponentially with a mean rate of 1 call/s. When a
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Cell loss ratio ohserved in the saturation scenario (1e-003)
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Fig. 4. Cell Loss Ratio observed in the saturation scenario.

connection of a type is admitted, it starts reading the corre-
sponding M-JPEG encoded movie file from the beginning
and generates traffic according to the movie file. The statis-
tics of the M-JPEG encoded movie are shown in Table 2.
The frame rate of the M-JPEG encoded movies is 30 frames/
s. Details about the M-JPEG encoded movies can be found
in Ref. [38]. Traffic rate unit u is chosen to be 7.288 Mbps,
which is the maximum pcr of the movie sources. OC3 link is
used in the simulation. The measurement window size is
chosen to be 0.10s. Clrf update period is chosen to be
0.2 s. Safety margin « is chosen to be 0.5. The simulation
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Fig. 6. Comparison between admissible region and actually admitted calls.

was run for 6000 s. Fig. 7 shows the clr observed in this
scenario.

An average network utilization of 0.65 is achieved in this
scenario while QoS is guaranteed. The utilization achieved
is smaller than that achieved using the exponential ON—
OFF sources. There are mainly two factors affecting the
utilization. First, the pcr of the traffic sources are close to
10% of the link rate. As a rule of thumb, when the pcr of the
traffic sources are close to 10% of the link rate, the statistical
multiplexing gain which can be achieved is very small.
Second, ON-OFF source considered in the CAC scheme
is the worst case among all traffic sources with the same
peak and mean. In this scenario, each video source is
modeled by an ON-OFF source, which is actually the
worst case of the real source. This will also result in lower
utilization. It is worth noting that the aggregate traffic in this
simulation scenario presents significant self-similar beha-
vior with a Hurst parameter of 0.7 [35]. Fig. 8 shows the
variance—time plot of the aggregate traffic rate. Therefore, it
is possible that the proposed measurement-based CAC
scheme can be applied to self-similar traffic. Further study
is required to clarify this problem.

Table 2
Traffic rate of the M-JPEG encoded movies (bytes/frame)

100

Type Name Peak rate Mean rate
1 Sleepless in Seattle 16617 9477.6
2 Crocodile Dundee 19439 10772.9
3 Home Alone, 11 22009 11382.8
‘ | T | 4 Jurassic Park 23883 11363.0
0 025 0.5 0.75 1 5 Rookie of the Year 27877 12434.9
time (sec) (x10000) 6 Speed 29385 12374.4
: . . 7 Hot Shots, Part Deux 29933 12766.1
Fig. 5. The number of the three traffic types on the link observed in the 8 Beauty and the Beast 30367 12661.5

saturation scenario.
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Cell lnss ratio ohserved in the video source scenario (1e-0035)
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Fig. 7. Cell loss ratio observed in the video source scenario.

7. Conclusions

In this paper we proposed the clr function for studying
cell loss in the bffm. The clrf enables us to decompose the
complex analysis of the multiplexing of traffic sources into
simpler analysis of individual sources. Using the clrf, cell
loss of heterogeneous ON—OFF sources was studied. A cell
loss upper bound for heterogeneous ON—OFF sources was
proposed which may greatly simplify both theoretical analy-
sis and computation. We believe this theoretical analysis
forms a good basis for studying ON-OFF sources in the
bffm. The methodology presented in this paper also consti-
tute a good starting point for studying other traffic source
models in the bffm.

The proposed upper bound can be applied to either para-
meter-based CAC or measurement-based CAC. In this paper,
we used the upper bound to design a measurement-based

/ line with a slope of —-0.6693

variance ( (bit/s)? )

1 . . .
10'
time (sec)

10°

Fi

g. 8. Variance time plot of the aggregate traffic rate.

CAC. Many practical factors were considered in the design
of the CAC scheme. Extensive simulation studies were carried
out which were indicative of good performance of the CAC
scheme. Our CAC scheme proved to be time efficient, and
capable of achieving high network utilization. The proposed
CAC scheme has many attractive features which make it suita-
ble for implementation in real ATM networks.

The loss performance analysis presented in this paper is a
steady-state analysis, thus the proposed upper bound constitu-
tes the worst case in terms of average loss performance. Theo-
retically speaking, the average loss performance constraints
may not be meaningful, if the aggregate traffic exhibits long
range dependence. Specifically, if the aggregate traffic exhi-
bits long range dependence although average performance
may be deemed to be fine, there may be rare periods of time
in which performance is consistently poor.

However, there is considerable debate about the impact of
long range dependent traffic on bandwidth allocation and
network performance [39-42], especially the impact of
long range dependent traffic on the performance of a
measurement-based CAC scheme [28,31], because the
time scale of interest in real applications is limited. For
measurement-based CAC, Grossglauser et al. [28,31] iden-
tified a critical time-scale T}, such that aggregate traffic
fluctuations slower than 7', can be tracked by the admission
controller and compensated for by connection admissions
and departures. Following their analysis, only those traffic
fluctuations with time scale greater than measurement
window size T,, but less than T, will threaten the perfor-
mance of our CAC scheme. Our CAC scheme is based on an
upper bound, i.e. it will over-allocate bandwidth. Thus we
consider that if traffic fluctuations with time scale greater
than measurement window size T, but less than T, are
negligible, or their bandwidth requirement can be satisfied
by over-allocated bandwidth, then long range dependent
traffic will not affect the performance of the proposed
CAC scheme. Otherwise, the proposed CAC scheme will
fail to provide QoS guarantee in the presence of long-range
dependent traffic. The impact of the long range dependent
traffic on the performance of our measurement-based CAC
is in fact also problem for almost all measurement-based
CAC. Further studies are required to clarify this problem.
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Appendix A

In this appendix, we shall prove Theorem 3. First we
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introduce an important lemma which will be used in the
proof of Theorem 3.

Lemma Al. Let X,,X, be two independent ON-OFF
sources with peak cell rates oy X per, (1 — ay) X per, and
activity parameters py, p, respectively, where 0.5 = a; < 1.
Let oy be any value satisfying oy = ap, < 1. Then there
exists two independent ON-OFF sources Y,Y, with peak
cell rates o, Xper, (1 —ay)Xper, and E(Y, +Y,) =
EX, + X,), such that X| + X5 < Y1 + Y>.

See Chapter 3 of Ref. [25] for the proof. This lemma is
used in proving Theorem 3, which is about heterogeneous
ON-OFF sources. We shall now begin the proof of
Theorem 3.

Proof. 1t is easy to show that EG - X;)) = EQ L, Y)).
We prove > iy X; <arf Oim1 Y; using the induction method.

(1) Let us consider when n =1, then m = 1. We must
show that X; <. Y|, where X, is an ON-OFF source with
peak cell rate pcr; and mean cell rate mcry, and Y, is an ON—
OFF source with peak cell rate pcr; = pcr, and mean cell rate
mcr;. This in fact is a direct application of Theorem 2.

(2) Suppose inequality (14) holds for the case when n =
k, we must show that inequality (14) also holds for the case
whenn =k + 1.

First we point out that since max{pcry,...,pcr,} =
max{pcry,...pcry+1}, from our supposition that inequality
(14) holds for n = k and pcr = max{pcry,...pcr;}, it natu-
rally follows that it also holds for n =k and pcr =
max{pcry,...,pcry+1 }. Now let us consider the two ON—
OFF source X; and X, ., we shall consider the following
two cases:

(a) When per; + per4q = per, using Proposition 1, it can
be shown that

X + Xpr1 <ot Z

where Z is an ON—OFF source with peak cell rate pcr, =
per + pergy; and mean cell rate mer, = mer; + mcryy .
Then applying our supposition for k& ON-OFF sources
Xiy...s Xp—1,Z, we can show that inequality (14) holds for
the k + 1 ON-OFF sources X, ..., X;1, i.e.

Xl + +Xk*l +Xk +Xk+1 <clrf Xl + +Xk*1 +Z

<clrf Yl + -+ Y

Myt
where

k

-1 k+1
Z per; + per,
i=1

Z per;
_ _| =t
Mepr = |\ ——— |~ | ————

per per

and Yj;—i ) is an independent ON-OFF source with

peak «cell rate pcr and mean cell rate mcr=

k+1
i=1 MCr/myy.

(b) When pcry, + pery; > per, using Lemma Al, we are
able to find two independent ON—OFF source Z; and Z, and
Z, has peak cell rate per, = pery + pergy; — per and mean
cell rate mcr,. Z; has peak cell rate pcr and mean cell rate

mcr,,, mcr,, + mer,, = mcr, + mcry_ g, such that

X + Xir1 <aet Z1 T 2.

Here pcr = max{pcr,, pcry+; } is equivalent to the condition
in Lemma Al that o = .

From pcr = max{pcry,...,pcry+}, it is guaranteed that
pcr = per, .

Then apply our supposition for the k independent ON—
OFF sources Xi,...,X;_1,Z;, we get:
Xi+ o+ X +Zy < A+ A

m &

where

k=1 k+1
Z per; + pery,

2. per;
/ i=1 i=1

m=|—|= -1
per per

A= 1, ...,mk/) is an independent ON—-OFF source with
peak cell rate pcr and mean cell rate

k-1
Z per; + mer,
mer) = l=‘—/
my,

Here we note that A;(i = 1,...,mk') and Z, have the
same peak cell rate pcr, so using Theorem 1, it can
be shown that

MA o+ A + 2, < ¥y + -+,

Mt

where
k+1
S per
/ =1
My =my + 1=
per

and Yji—; ., is an independent ON-OFF source with
peak cell rate pcr and mean cell rate

k—1 k+1

z per; + mer, + mer,, Z per;
i=1 _ =l

mcr =
Myt Myt

So, from the supposition that inequality (14) holds
forn = k, we arrive at the conclusion that it should
also holds for n =k + 1.

Combining 1 and 2, we conclude that Eq. (14) holds for
alln. O
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