
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 1, FEBRUARY 2002 125

Loss Performance Analysis for Heterogeneous
ON–OFF Sources With Application to

Connection Admission Control
Guoqiang Mao, Student Member, IEEE,and Daryoush Habibi, Member, IEEE

Abstract—The bufferless fluid flow model (bffm) is often used
in the literature for loss performance analysis. In this paper, we
propose an efficient and effective means of investigating cell loss
using the bffm. We define the cell loss rate function (clrf) and use it
to characterize the loss performance of traffic sources in the bffm.
Stochastic ordering theory is used to study the clrf. The introduc-
tion of the stochastic ordering theory not only simplifies the the-
oretical analysis but also makes it possible to extend the scope of
applications and theoretical analysis presented in this paper. A cell
loss upper bound for heterogeneousON–OFF sources is proposed.
The proposed cell loss upper bound is tighter than those previously
proposed in the literature. A connection admission control (CAC)
scheme using online measurements is designed based on the cell
loss upper bound. Extensive simulation is carried out to study the
performance of the CAC scheme. Particular attention is paid to
the impact of inaccuracies in user-declared traffic parameters on
the performance of the CAC scheme. Simulation results indicate
that the proposed CAC scheme can ensure QoS guarantee, is ro-
bust to inaccuracies in declared traffic parameters, and is capable
of achieving high link utilization.

Index Terms—ATM, bufferless fluid flow model, measurement-
based CAC, QoS, stochastic ordering theory.

I. INTRODUCTION

T O DATE, many connection admission control (CAC)
schemes have been proposed [1]–[8]. These schemes can

be classified into two categories: traffic descriptor-based CAC
and measurement-based CAC. Traffic descriptor-based CAC
uses thea priori traffic characterizations provided by sources at
connection setup phase to compute whether a new connection
in addition to all existing ones can be supported. This approach
achieves high network utilization when traffic descriptors used
by the CAC scheme are “tight.” Measurement-based CAC
uses thea priori traffic characterizations only for the incoming
connection and uses measurements to characterize existing con-
nections. Under the measurement-based CAC scheme, network
utilization does not suffer significantly if traffic descriptions
are inaccurate. However, because source behavior may be
nonstationary, it is difficult for measurement-based CAC to
obtain accurate online measurements. Measurement-based
CAC can only deliver significant gain in utilization when there
is a high degree of statistical multiplexing [1].
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Considering the difficulties with both traffic descriptor-based
and measurement-based CAC to obtain accurate traffic char-
acteristics, the performance of a CAC scheme should not be
measured only by the utilization achieved under ideal circum-
stances where traffic sources are all tightly characterized. Also,
one must consider whether enough accurate traffic characteris-
tics can be obtained from sources and/or network practically,
and, the robustness of the CAC scheme against the inaccura-
cies in those traffic characteristics. In addition to high network
utilization, an ideal CAC scheme should satisfy the following
requirements [9], [10]:

• Simplicity: The scheme must be both economically imple-
mentable and fast. The traffic characteristics required by
the CAC scheme should be easily and reliably obtained
from the traffic sources and/or network.

• Flexibility: The scheme must not only be able to satisfy
the current needs of network services but also be able to
adapt to new services which are likely to evolve.

• Robustness: The scheme must be able to handle imperfect
assumptions.

Cell loss and cell delay are often adopted as measures of
quality of service (QoS). Cell delay can usually be controlled
within a desired bound by engineering the buffer size, hence
cell loss is used in most papers as the QoS index.

In this paper, based on the bufferless fluid flow model (bffm),
we first define the cell loss rate function (clrf) and use it to study
the cell loss QoS. To analyze the clrf, we resort to the stochastic
ordering theory. The loss performance of heterogeneousON–OFF

sources in bffm is investigated using the clrf and the stochastic
ordering theory. A conjecture proposed by Rasmussenet al.[11]
conceiving cell loss ofON–OFFsources is proved. Furthermore,
we propose a tighter cell loss upper bound than that previously
proposed in the literature. The upper bound is applied to design
a measurement-based CAC scheme. In the design of the CAC
scheme, the above guiding principles for CAC schemes are ad-
dressed with particular attention given to the impact of inaccu-
racies in declared traffic parameters.

The rest of the paper is organized as follows. In Section
II, the clrf is defined and the stochastic ordering theory is
introduced. In Section III, loss performance of heterogeneous
ON–OFFsources in bffm is investigated and the cell loss upper
bound is developed; the CAC scheme is designed in Section IV.
Section V presents some simulation using exponentialON–OFF

sources. In Section VI, we analyze the robustness of the CAC
scheme against inaccuracies in declared traffic parameters. In
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Section VII, video sources are used to test the performance of
our CAC scheme, and conclusions are given in Section VIII.

II. EVALUATING CELL LOSS IN THEBUFFERLESSFLUID FLOW

MODEL—CELL LOSSRATE FUNCTION

A bffm is often used in the literature to analyze cell loss [7],
[12], [13]. Since this approach assumes that there is no buffer at
the burst time scale [14], it generates conservative estimates for
cell loss. However, the simplicity of bffm enables us to concen-
trate on the characteristics of traffic sources themselves. In this
paper, bffm is employed to analyze the cell loss.

Under bffm, cell loss due to overflow occurs if and only if the
sum of the traffic rates of all active connections, denoted by,
exceeds the link capacity. Let us define a function as

(1)

We call the clrf of . The clrf has many attractive features
which facilitate the analysis of cell loss in bffm. For example,

denotes the cell loss rate of a traffic sourceon a link
with link capacity . Traffic sources with similar clrf can be re-
garded as equivalent from the point of view of cell loss analysis.
From the definition of clrf, it can be shown that

for (2)

(3)

Then, the cell loss ratio (clr) can be calculated as

(4)

An important property of the clrf is given below.
Property 1: If and denote the traffic density distri-

bution of independent traffic sources and , respectively,
then the clrf of is given by , where is
the clrf of , and denotes convolution.

Proof: Construct a function such that

It can be shown that .
Thus, the clrf of , denoted by , is

To analyze the clrf, we turn to the stochastic ordering theory.
Given two random variables and , we say that is smaller
than with respect to theincreasing convex ordering, written as

, if for the distribution function of and , denoted
by and , the following condition:

(5)

holds for all increasing convex function, for which the integral
exists [15]. The following property of the increasing convex or-
dering enables us to use it to analyze the clrf.

Lemma 1: if and only if
for any .

See [15, Sect. 1.3, Theorem A] for a proof. According to
Lemma 1, if and only if the clrf of is smaller
than or equal to the clrf of for any real value.

An importantspecial caseof the increasing convex ordering
is when and have the same mean value, i.e.,

. In this case, we say that is smaller than with re-
spect to theconvex ordering, written as , because the
characterizing inequality (5) holds for all convex functions [16,
Corollary 8.5.2]. implies that not only the cell loss
of is less than or equal to that of, but also, from (3) and
(4), the clr of is less than or equal to that of. We refer to
[15]–[17] for the properties of the increasing convex ordering.

III. H ETEROGENEOUS ON–OFFSOURCES IN THEBUFFERLESS

FLUID FLOW MODEL

For simplicity, let us considerON–OFF traffic sources. Ac-
cording to the probability density distribution ofON and OFF

periods,ON–OFFsource models can be further classified into ex-
ponentialON–OFFsource model, periodicON–OFFsource model,
ParetoON–OFFsource model, etc. They are widely used for loss
performance analysis [7], [11], [12], [18], [19].

An ON–OFF source generates cells at a peak cell rate (pcr)
denoted by pcr in active periods. In idle periods, no cells are
generated. Let mcr denote the mean cell rate (mcr) of anON–OFF

source. The activity parameterof anON-OFFsource is defined

as the ratio of mcr to pcr: . The probability that an
ON–OFFsource is active or idle is given byor , respectively.

Assume there areindependentON–OFFsources
on the link, where has peak cell rate , mean cell
rate and activity parameter . Denote the
probability mass function (pmf) of by .
The pmf of can be expressed as

(6)

In this paper, we use subscript, subscript (pcr), and superscript
to denote the number ofON–OFFsources, peak cell rates of

sources, and their activity parameters, respectively, when it is
necessary to emphasize the dependence of a function on these
parameters.

Since anON–OFF source or the multiplexing ofON–OFF

sources, denoted by , is a discrete random variable, the
definition in (1) can be simplified as

(7)

where is the probability mass function of the discrete
random variable .

We shall now introduce an important property ofON–OFF

sources.
Proposition 1: Assume is an arbitrary traffic source such

that and , where
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. Let represent anON–OFF source with
mean cell rate mcr and peak cell rate pcr. Then .

It has been shown in [17, App. B] that . Then,
noting that , Proposition 1 is easily proved. This
proposition implies that, among traffic sources with the same
mcr and pcr,ON–OFFsource constitutes the worst-case in cell
loss analysis.

We shall now introduce an important theorem about heteroge-
neous Bernoulli sources. Bernoulli sources areON–OFFsources
with the same peak cell rate.

Theorem 1: Let be independent hetero-
geneous Bernoulli sources with the same peak cell rate and
activity parameters , respectively. The activity
parameters are subject to . Let
be independent homogeneous Bernoulli sources, where

has the same peak cell rate as and an activity
parameter . Then .

See Appendix A for a proof.

Theorem 1 states that homogeneous Bernoulli sources
generate more cell loss than that of heterogeneous Bernoulli
sources. Theorem 1 was first proposed as a conjecture by
Rasmussenet al.[11]. Based on Theorem 1, they proposed
that the cell loss of heterogeneousON–OFF sources, whose
maximum peak cell rate is pcr, is upper bounded by that of
homogeneousON–OFF sources with peak cell rate pcr, where
the sum of mean cell rates remains the same. In addition to
[11], Theorem 1 is also used for loss performance analysis in
many other literature [7], [20], [21].

In real networks, many traffic sources of the same type have
the same pcr. However, because of their specific application cir-
cumstances, they may have different mean cell rates. Theorem
1 is very useful for analyzing this kind of traffic source.

We shall now introduce another theorem aboutON–OFF

sources.
Theorem 2: Let and be two independentON-OFFsources

with the same mean cell rate denoted by mcr.and have
peak cell rates and respectively. If ,
then .

Proof: Since , it suffices to show that the
clrf of is greater than or equal to that of. This can be easily
shown by computing the clrf of and and comparing their
values.

In [12], a result to the same effect of Theorem 2 is proved
using another approach.

Theorem 2 is used by Leeet al. [12] in their CAC scheme.
Based on it, they design a CAC scheme capable of real-time esti-
mation of cell loss of the multiplexing of heterogeneousON–OFF

sources. Theorem 2 will be used for loss performance analysis
and CAC scheme design in this paper.

On the basis of the theorems, lemmas, and properties shown
previously, we shall now introduce an important theorem about
independent heterogeneousON–OFFsources.

Theorem 3: Let be independent heteroge-
neous ON–OFF sources with peak cell rates
and mean cell rates , respectively. Let

represent independent homogeneousON–OFF

sources with peak cell rate pcr and mean cell rate mcr, where

and
. Then

(8)

For a proof, see Appendix B.
This theorem provides a cell loss upper bound for heteroge-

neousON–OFFsources. It states that the cell loss of heteroge-
neousON–OFFsources is less than or equal to that of the cor-
responding homogeneousON–OFFsources given in the theorem.
The sum of mean cell rates of the homogeneous sources remains
the same as that of the heterogeneous sources, and the sum of
peak cell rates of the homogeneous sources is also substantially
the same as that of the heterogeneous sources. It is not difficult,
using the clrf and Theorem 1, to prove that our upper bound is
tighter than the upper bound proposed by Rassussenet al. [11].

IV. CAC SCHEME

The proposed upper bound can be applied to either traffic
descriptor-based CAC or measurement-based CAC. Here we
choose to design a measurement-based CAC.

Measurement-based CAC has attracted a lot of interest in re-
cent years [1], [4], [7], [8], [22]–[26]. Shiomotoet al. [23] use
a lowpass filter to obtain the instantaneous virtual path (VP)
utilization from crude measurements. A residual bandwidth is
derived from the maximum of the observed instantaneous VP
utilization. If the bandwidth requirement of the new connec-
tion is smaller than the residual bandwidth, the new connec-
tion is admitted, otherwise it is rejected. Gibbenset al. [7] use
a decision-theoretic approach for call admission control to ex-
plicitly incorporate call-level dynamics into the model. In their
work, call admission decisions are based on whether the cur-
rent measured load is less than a precomputed threshold. In a
study by Dzionget al.[24], a Kalman filter is used to obtain
an optimal estimate of mcr and variance. An aggregate equiv-
alent bandwidth is then obtained from the mean and variance
estimates. A spare bandwidth is set in the aggregate equivalent
bandwidth to account for the estimation errors. Grossglauser
et al. [22] study a robust measurement-based admission con-
trol with emphasis on the impact of estimation errors, mea-
surement memory, call-level dynamics and separation of time
scales. Their work [22], [25] also identifies acritical time-scale

such that aggregate traffic fluctuation slower thancan
be tracked by the admission controller and compensated for by
connection admissions and departures. Fluctuations faster than

have to be absorbed by reserving spare bandwidth on the
link. Using Gaussian and heavy traffic approximations, the crit-
ical time scale is shown to scale as , where is the
average flow duration and is the size of the link in terms of
number of flows it can carry.

In this section, based on the loss performance analysis in the
previous sections, we shall design a CAC scheme using pa-
rameters from both traffic descriptors and measurements. The
principles introduced in Section I are used to govern the CAC
scheme design. Robustness, flexibility, and simplicity become
major concerns in our CAC design and later simulation valida-
tion.
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Let us select a traffic rate unit such that is greater than
or equal to the maximum pcr of all traffic sources on the link.
From now on in this paper, all traffic rates, as well as link ca-
pacity, are normalized with respect tounless otherwise speci-
fied. Without loss of generality, we assume that link capacity
is an integer.

Suppose there are independent heterogeneousON–OFF

sources, denoted by , on the link. The declared pcr
of ON–OFFsource is pcr . We keep a list of the de-
clared peak cell rates of all connections on the link and denote
the sum of the peak cell rates by PCR, i.e., .
Realizing that it is difficult for traffic sources to tightly char-
acterize their mean cell rates, we obtain the sum of mean cell
rates from online measurements. This is of course the mcr of
the link. We denote the measured mcr of the link by.

From Theorem 3

where

(9)

and is an independentON–OFFsource with peak cell
rate 1 and activity parameter. The choice of should make the
mcr of and the mcr of equal. The method of
estimating from measurements is described later. The pmf of

is given by the following binomial distribution:

else.
(10)

According to the definition of clrf for discrete random variable
given in (7), the clrf of can be calculated as

(11)

The clr of is estimated using (4). It can be shown that
clr of is greater than or equal to that of .

A. Estimation of the Activity Parameter

We shall now describe the estimation of. Since we derive the
mcr of from online measurements,can be directly
estimated as follows:

(12)

Increasing the measurement window size will increase the
accuracy of the measured mcrand the accuracy of estima-
tion of . Yamadaet al. [27] introduce a method for finding the
measurement window size. Estimation ofusing (12) is simple;
however, for accurate estimation it requires a large measurement
window size. Here we use another approach.

In an ATM network, traffic can only arrive in integer multi-
ples of an ATM cell. Therefore, we first choose a sampling pe-
riod such that the impact of the granularity of the traffic rate
measurements taken overcan be ignored. In our analysis,
is chosen to be 100 cell unit time. One cell unit time is the time

required to transmit an ATM cell on the link. Denote the mean
and the variance of the traffic rate samplemeasured over
by and , and the mean and the variance of the traffic rate
sample measured over a sampling period of by
and , respectively. Assuming that the aggregate traffic is sta-
tionary, then it can be shown that , and are re-
lated by and

where is the autocorrelation between traffic rate samples
taken over and over . decreases
with the increase of . In the above analysis, the impact of
call level dynamics was ignored, i.e., we assume no call is
admitted into the network or departs from the network during
the measurement window. The impact of call level dynamics is
discussed later in this subsection.

According to the Central Limit Theorem, when the number
of connections is large, the distribution of the aggregate traffic
can be well approximated by Gaussian distribution. Therefore,
the aggregate traffic is assumed to be Gaussian. If the following
equation is chosen as an estimate of the mcr:

where is a constant, in order to satisfy the estimation objective

(13)

we have to choose . If the aggregate traffic is not
Gaussian, a largercan be obtained using the Chebyshev’s in-
equality. In the rest of the paper, we only consider the case when
the aggregate traffic is Gaussian traffic.

An estimate of can either be obtained directly from
on-line traffic measurements, or can be obtained from on-line
estimation of and autocorrelation function. However,
on-line estimation of these parameters is not an easy task, so
we take another approach.

The variance of is given by
. Moreover, using the properties of the convex or-

dering, it can be easily shown that, if ,
then the variance of is greater than or equal to that of

. Therefore, is the maximum
variance of the aggregate traffic . So, instead of
measuring the variance directly, is estimated as

(14)

When a sufficiently large is chosen such that traffic fluctua-
tions with time scale larger than are small, the estimated

is larger than its true value despite possible fluctuations in
. An estimate of is then obtained as

(15)

where is a constant between 0 and 1. Parametercan be ob-
tained by inspecting the variance-time plot obtained from traffic
measurements [28], [29]. In contrast to [28] and [29] which
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study the self-similarity in network traffic, our interest is mainly
in the variance-time curve in a relatively small time region from

to . In this region, even for short-range dependent
traffic, a much smaller than 1 may be observed. In our simu-
lation shown later, is a very stable value. This is because the
traffic mix in the simulation is almost time-invariant. As a re-
sult, the autocorrelation in network traffic does not change sig-
nificantly. However, our analysis on traffic data from real ATM
networks1 shows that the value of will change slowly with
time within a day. In that case, the smallest value of observed
should be used in (15). For simulation using exponentialON–OFF

sources shown later,is chosen to be 0.35; for simulation using
Motion-JPEG encoded video sources,is chosen to be 0.4. The
advantage of this method is that the value ofcan be obtained
from off-line traffic analysis, therefore, online estimation of the
second-order statistics is avoided. Here we would like to com-
ment that this method will not give an accurate estimate of.
However, generally the estimated value of is larger than its
true value, which will satisfy the estimation objective in (13).

Then an estimate of can be obtained: .
In summary, in the measurement scheme, parameteris

chosen to be 100 cell unit time and parametersand can
be obtained empirically from off-line traffic analysis. The mea-
surement window size is chosen to be , and an
estimate of is obtained as

(16)

where

(17)

and is the mean traffic rate measured over.
This approach first appeared in [7]. The introduction of

the safety margin enables us to greatly reduce the required
measurement window size while maintaining the robustness
of the estimation. Moreover, the safety margin introduces
additional benefits. Loss performance analysis presented in
this paper gives a cell loss upper bound of the aggregate traffic
based on bffm. The measurement scheme shown above also
gives a robust estimate of. Therefore, the above measurement
scheme will give a tight QoS guarantee. However, for a network
with large buffers, clr will decrease due to large buffer size.
The proposed CAC scheme is conservative for a network with
large buffers. In this case, safety margincan be chosen to be
smaller than that given in (17), or even zero, to achieve a higher
link utilization. Our simulation shows that, for a fixed buffer
size, controlling the safety margincan control the clr, as well
as utilization. Selecting a safety marginto adapt to a network
with large buffers is subject to further study.

Therefore, the introduction of brings some flexibility into
the CAC scheme which enables us to efficiently utilize network

1These traffic traces have been collected by Waikatp Applied Network Dy-
namics group at the University of Auckland since November 1999. The time-
stamp of measurement data in the trace has an accuracy of 1�s. More details
about the traces can be found at http://moat.nlanr.net/Traces/Kiwitraces.

Fig. 1. Relationship between update interval and measurement interval.

resources. Thus, we use (16) to estimatein our CAC scheme
instead of (12).

The clrf of is updated using (10) and (11) every
seconds. More specifically, the clrf is updated at the end of each
measurement period. Fig. 1 shows the relationship between the
update period and measurement period . The update pe-
riod is chosen empirically. We suggest choosing ain the
range , depending on the network state. When
call level dynamics are fast, i.e., connections enter and leave the
network very often, should be chosen close to . On the
other hand, for a network where call level dynamics are slow,

should be chosen close to .

Call level dynamics affect the measurements. If a new con-
nection is admitted within a given measurement window, the
new connection possibly generates traffic only during part of the
measurement window or does not generate traffic at all. There-
fore, the new connection will make the measured mcr of the link
smaller than its actual value, which will affect the robustness
of the CAC scheme with regard to QoS guarantees. To solve
this problem, when the measurement window sizeis much
smaller than the connection setup time, we block the admission
of new connections during the measurement window. The ad-
mission will be delayed till the end of the measurement window.
In the worst case, this will introduce a delay of to the con-
nection setup time. This method is used in our simulation. Alter-
natively, if the delay caused by to the connection setup time
becomes a concern, one can add the sum of declared mean cell
rates, if available in the traffic descriptor, or the sum of declared
peak cell rates of the connections admitted in the measurement
window, divided by , to the estimated in (16). In this case,
we do not need to block the admission of new connections in
the measurement window.

It is also possible that during the measurement window some
existing connections are released, thus affecting the measured
mcr. Departing connections contribute to the measured mcr of
the link. However, PCR is the sum of peak cell rates of con-
nections on the link at the instant of updating clrf, not including
peak cell rates of the departing connections. So if there are some
connections that are released during the measurement interval
they will make the estimated larger, which in turn makes the
CAC scheme more conservative, assuring that QoS guarantees
are not affected. Another alternative is to update the clrf only
when no existing connections depart during the measurement
interval. We do not adopt this approach in our CAC scheme be-
cause it may result in the clrf not being updated for a long time,
thus affecting the performance of the CAC scheme.

In our CAC scheme, we do not update the clrf for departing
connections. The changes in traffic parameters due to departing
connections are caught up by updating the clrf at the end of each
measurement period.
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B. Cell Loss Ratio Estimation

We shall now present the method to estimate the clr when
a new connection request arrives. Suppose there arecon-
nections, denoted by , admitted into the network
since the last measurement interval. Denote by the
connections on the link at the instant when the last measure-
ment interval finished, and denote by the clrf of the corre-
sponding upper bound of , which is com-
puted using (9)–(11) and (16). When a new connection request
arrives, denoted by , if , where

is the declared pcr of , the new connection
can be admitted directly and no cell loss will occur. Otherwise,
the following method is used to estimate the clr if the new con-
nection is accepted and to determine whether the new connec-
tion should be accepted.

Denote the updated clrf after the admission of by .
The procedure of updating the clrf is described later. Denote the
pcr and mcr of the new connection request by
and . is smaller than, with respect to the convex
ordering, anON–OFFsource with a peak cell rate 1 and mean
cell rate . Therefore, the cell loss ratio of the aggregate
traffic, if the new connection is admitted, is less than

(18)

where denotes the pmf of. If clr is less than the clr objective
then the connection is admitted; otherwise the connection is re-
jected. If the connection is admitted, clrf will be updated:

(19)

For the special case of , the clrf is actually ,
the clrf of .

Alternatively, one can also take as an esti-
mate of the sum of mean cell rates of all connections on the link
if the new connection request is admitted; and calculate
the clrf using (9)–(11) and (16). Accordingly, in (9),
pcr now means the sum of peak cell rates of all connection on
the link if connection request is admitted.

Updating the clrf using (19) is computationally much more
efficient. However, since (19) actually takes the peak cell rate
of as , it will generate more conservative
results. In the later simulation, (19) is chosen to update the clrf.

Noting that in the estimation of clr only the computation of
and from 0 to is needed, we do not need to calculate

all values of and from 0 to .
In the above method, the traffic sources are required to specify

their peak cell rates and mean cell rates. Using the loss perfor-
mance analysis presented in this paper, other methods can also
be developed which only need the traffic sources to specify their
peak cell rates, or need less computation [30].

C. Clr of Individual Connection

In the previous sections, a CAC scheme was developed which
is able to guarantee the clr of the aggregate traffic. By choosing
the clr objective of the aggregate traffic in the CAC scheme
appropriately, the clr requirement of individual connection can
also be satisfied.

Assume there are connections on the link.
may have any distribution. The clr of connection
can be evaluated as

Let be independentON–OFF sources where
ON–OFFsource has the same pcr and mcr as. It
is shown in [13, Theorem 1] that the clr of connection is
upper bounded by

where is the clrf of . The clr of the aggregate
traffic , denoted by , is related to by

Denote the clr objective of by . If

(20)

is satisfied, the QoS of connection can be guaranteed. We
can further remove the term from (20), i.e., if

(21)

is satisfied, then the QoS requirement of connectioncan be
guaranteed. Equation (21) gives more conservative clr objective
for the aggregate traffic than that given by (20), however (21)
is much easier to implement practically. Since

, when is not a small value, the clr objective for the
aggregate traffic given by (21) is close to that given by (20).

Therefore, if the clr objective of the aggregate traffic is chosen
to be , the proposed CAC
scheme is able to guarantee the clr requirement of connection

. Also, if the clr objective of the aggregate traffic is chosen
to be

(22)

the clr requirements of all connections can be satisfied.
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V. SIMULATION STUDY

In this section, we study the performance of the proposed
CAC scheme using simulation. The aim of the simulation is
to evaluate the performance of our CAC scheme with respect
to link utilization and its effectiveness in terms of its ability to
guarantee the QoS constrains required by the connections.

The simulation is carried out using OPNET. The following
parameters are used in the simulation unless otherwise speci-
fied: switching speed of the ATM switch is set to be infinity,
hence every incoming cell is placed immediately in the output
buffer; the output buffer size is set to be 20 cells to absorb cell
level congestion [31], [14]. The link utilization and clr are ob-
served in the simulation. Link utilization is calculated as the
ratio of the instantaneous link traffic rate to the link capacity;
clr is calculated as the ratio of the total observed cell loss to the
total cells offered to the link in a moving window with size.
More specifically, clr at time is the ratio of the number of cell
loss occurred in the interval to the total number of
cells offered to the link for transmission in the same interval,
where equals 500s. In each scenario, there are several types
of traffic sources multiplexed onto the link. The connection ar-
rival process of each type of traffic is a Poisson process with a
mean of calls per second. The connection holding time for all
traffic types is exponentially distributed with a mean of 100 s.

A. Simulation Model

In this section we shall use an exponentialON–OFF source
model in the simulation. The duration of theON andOFFperiods
are independent and exponentially distributed with meansand

, respectively. DuringON periods, cells are generated at peak
cell rate. During off periods no cells are generated.

Furthermore, the following parameters are used for the sim-
ulation: the link capacity is set to be 10 Mb/s, and the measure-
ment window size is chosen to be 0.08 s. Clrf update period is
chosen to be 0.2 s. The safety marginis chosen to be 1.0. In
the simulation, three types of traffic sources are multiplexed on
the link. The traffic rate unit is set to be 100 kb/s, which is the
maximum pcr of the three traffic types.

Two scenarios were simulated. In the first scenario, referred
to as the saturation scenario, the connection arrival rate is chosen
to be very high. The high call arrival rate means that the system
is continuously receiving new connection requests. Thus, the
CAC scheme is expected to achieve the maximum utilization
in the saturation scenario. This scenario is used to establish the
performance of our CAC scheme with regard to QoS guarantees,
because if calls are offered at a very high rate, the rate at which
calls are admitted in error becomes very large too [7]. In the
second scenario, referred to as the moderate scenario, the call
arrival rate of each traffic type is carefully chosen to make the
call blocking ratio fall between 0–0.03. The call blocking ratio
is defined as the ratio of the number of calls rejected to the total
number of call arrivals. Since real networks are not likely to
operate in the saturation scenario, the utilization achieved in the
moderate scenario can better represent the utilization that can
be achieved by our CAC scheme.

TABLE I
PARAMETERS OF THETHREETRAFFIC TYPES IN THESATURATION SCENARIO

B. Saturation Scenario

The parameters of the three types of traffic for the saturation
scenario are listed in Table I.

The mean on time of the three traffic types shown in Table I
implies that traffic type 1 has a mean burst length of 100 cells,
traffic type 2 has a mean burst length of 50 cells, and traffic type
3 has a mean burst length of 20 cells. The mean burst length is
several times larger than the buffer size. This is used as a trial
to establish the performance of the CAC scheme using online
measurement.

The clr objective of the aggregate traffic is set to be .
According to our analysis in Section IV-C, approximating the
term by 1, it can be shown that by choosing
such an aggregate traffic clr objective, the clr of traffic type 1
can be controlled below ; the clr of traffic type 2 can be
controlled below and the clr of traffic type 3 can be
controlled below . These parameters are examined in
the simulation to validate the proposed CAC scheme as well as
our loss performance analysis on individual connections in Sec-
tion IV-C. It should be noticed that these parameters are only
used in the simulation to test the performance of the proposed
CAC scheme. In real applications, the clr objective of the aggre-
gate traffic should be chosen according to the clr requirements
of individual connections using (22) in order to satisfy the QoS
requirements of each connection on the link.

The simulation is run for 10 000 s. An average utilization of
0.76 is achieved by our CAC scheme. Figs. 2 and 3 show the
clr of each traffic type as well as the clr of the aggregate traffic.
As shown in Figs. 2 and 3, both the clr of the aggregate traffic
and the clr of each traffic type are controlled within the desired
bound. Fig. 4 shows the number of connections of each traffic
type on the link. Fig. 5 shows the admissible region for the three
types of connections as well as the number of connections ac-
tually admitted by the CAC scheme. The number of admitted
connections is close to the boundary of the admissible region but
within the admissible region. Therefore, the CAC scheme is ro-
bust with regard to QoS guarantees, and is capable of achieving
a high link utilization. This is also verified by the observed clr
shown in Fig. 2 and 3.

According to Gibbenset al. [32] and Guerinet al. [33], the
effective bandwidth of anON–OFFsource is given by

where , clr is the cell loss ratio objective, is
the buffer size, and is the mean on time. Define the statistical
multiplexing gain to be the ratio of the bandwidth required to
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Fig. 2. Cell loss ratio of traffic type 1 and traffic type 2 in the saturation
scenario.

Fig. 3. Cell loss ratio of traffic type 3 and the aggregate traffic in the saturation
scenario.

support the same number of connections in the simulation using
the effective bandwidth approach to the link capacity, which in-
dicates the bandwidth required by our CAC scheme. An average
statistical multiplexing gain of 2.7 is achieved in the saturation
scenario.

C. Moderate Scenario

In this scenario, we study the case where connections of each
type arrive at a moderate rate. The mean values of connection
arrival rates of type 1, type 2, and type 3 connections are 0.202,
0.756, and 1.512 call/s, respectively. All other parameters are
chosen to be the same as those in the saturation scenario. Again,
the simulation was run for 10 000 s. Simulation results show that

Fig. 4. The number of connections of the three traffic types on the link in the
saturation scenario.

Fig. 5. Comparison between admissible region and actually admitted calls.

both the clr of the aggregate traffic and the clr of each traffic
type are controlled within the desired bound in the moderate
scenario. For ease of comparison, only the clr of the aggregate
traffic is presented. Figs. 6 and 7 show the clr of the aggregate
traffic and the number of each traffic type on the link.

An average statistical multiplexing gain of 2.1 is achieved in
the moderate scenario, with an average utilization of 0.68. Com-
pared with the saturation scenario, link utilization decreased by
0.08. CLR observed in the moderate scenario also decreased.
This is a natural consequence of the decreased utilization. In our
measurement-based CAC scheme, the estimated mean traffic
rate is greater than its true value in most cases. While such an
arrangement can ensure robust QoS guarantees, as a penalty, it
will inevitably result in false rejections of connections. In the
saturation scenario, the false rejections are compensated by high
connection arrival rates, thus the utilization is unaffected. How-
ever, in the moderate scenario, the decrease in utilization is in-
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Fig. 6. Cell loss ratio of the aggregate traffic in the moderate scenario.

Fig. 7. The number of the three traffic types on the link observed in the
moderate scenario.

evitable. The safety margin can be chosen to be smaller to
achieve better utilization, but as a penalty, the degree of cer-
tainty of the CAC scheme with regard to QoS guarantees will
be decreased in the presence of high connection arrival rate.

VI. ROBUSTNESS OF THECAC SCHEME

In Section V, traffic parameters specified by the traffic sources
are tight and accurate. However, this is impossible in real net-
works. Therefore, it is essential for a CAC scheme to be robust
against inaccuracies in the declared traffic parameters. In this
section, we study the performance of our CAC scheme when
declared traffic parameters are not tight.

Fig. 8. Impact of inaccuracies in declared mcr on utilization.

Our scheme requires that traffic sources declare their mean
cell rates and peak cell rates. The impact of inaccuracies in the
declared mcr and pcr is studied separately in this section. The
simulation parameters are the same as those in the saturation
scenario unless otherwise specified. For comparison purposes,
utilization shown in this section is the moving average of ob-
served utilization, average window size is 500 s; clr at timeis
the ratio of the total number of cell losses occurred in the in-
terval to the total number of cells offered to the link in the
same interval. For ease of comparison, only the clr of the aggre-
gate traffic is considered in this section.

A. Impact of Inaccuracies in the Declared Mean Cell Rate

In this subsection we study the impact of inaccuracies in the
declared mean cell rates on the performance of the CAC scheme.
Two more scenarios are considered in this subsection. In one
scenario, referred to as the over-declared mcr scenario, the de-
clared mean cell rates of all three traffic types in the traffic con-
tract are set to be 1.5 times their actual values. In the other sce-
nario, referred to as the under-declared mcr scenario, the de-
clared mean cell rates are set to be 0.5 times their actual values.
The performance of the CAC scheme in the saturation scenario,
the under-declared mcr scenario and the over-declared mcr sce-
nario is compared.

Fig. 8 shows the moving average of the observed utilization in
the three scenarios. Fig. 9 shows the clr of the aggregate traffic.
Comparing the utilization and the clr in the three scenarios, it is
observed that varying the declared mcr in such a large range only
results in very small variation in utilization, i.e., less than 0.01,
and slight variation in clr. These results indicate that our CAC
scheme is robust against inaccuracies in the declared mcr. This
is not unexpected, because inaccuracies in the declared mcr only
have a localized effect on the performance of the CAC scheme,
that is, its impact is limited to one clrf update interval following
which the declared mcr will be replaced by the measured value.
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Fig. 9. Impact of inaccuracies in declared mcr on cell loss ratio.

B. Impact of Inaccuracies in the Declared Peak Cell Rate

In this subsection, we study the impact of inaccuracies in the
declared pcr on the performance of the CAC scheme. In contrast
to the mcr for which inaccuracies in the declared value only
have localized effects, the inaccuracies in the declared pcr have
long term effects on the performance of our CAC scheme and
will persist for the duration of the connection. Hence, it is very
important that the CAC scheme be robust against inaccuracies
in the declared pcr.

To assess this problem, we consider two new simulation sce-
narios. In the first scenario, referred to as the over-declared pcr
scenario, the declared peak cell rates of all traffic types in the
traffic contract are set to be two times their actual values, and,
in the second scenario, referred to as the under-declared pcr sce-
nario, the declared peak cell rates are set to be 0.75 times the ac-
tual values. The performance of the CAC scheme in the satura-
tion scenario, the under-declared pcr scenario, and the over-de-
clared pcr scenario is compared.

Fig. 10 shows the moving average of the observed utiliza-
tion for the three scenarios. Fig. 11 shows the clr of the aggre-
gate traffic. In the under-declared pcr scenario, an increase of
0.01 in utilization and a slight increase in clr were observed.
In the over-declared pcr scenario, utilization decreases by 0.02
and clr decreases to half of its value in the saturation scenario.
These results are very encouraging, i.e., although the declared
pcr is varied over a large range, the link utilization and clr do not
suffer significantly. These results indicate that the CAC scheme
is able to achieve a good performance even when the declared
pcr is very inaccurate. We offer the following explanation for
the robustness of the CAC scheme against inaccuracies in the
declared pcr: over-specifying the pcr will usually decrease link
utilization, but it also causes the estimated activity parameter

in our CAC scheme to drop by the same percentage, which
leads to an increase in utilization. The combination of these two

Fig. 10. Impact of inaccuracies in declared pcr on utilization.

Fig. 11. Impact of inaccuracies in declared pcr on cell loss ratio.

effects makes link utilization less sensitive to the changes in
the declared pcr. When traffic sources under-specify their peak
cell rates the reverse process occurs. It is this mechanism which
makes our CAC scheme robust against inaccuracies in the de-
clared pcr.

Simulation results and analysis presented in this section show
that the proposed CAC scheme is robust against inaccuracies in
declared traffic parameters. This feature is very attractive for
real applications as it lessens the burden on traffic sources to
tightly characterize their traffic parameters. In the simulation,
we assume that all traffic sources underspecify or overspecify
their traffic parameters. This assumption is only used to estab-
lish the performance of the CAC scheme against inaccuracies in
the declared traffic parameters. In real networks, the inaccura-
cies in the declared traffic parameters will possibly offset each
other and hence make the sum of the declared traffic parameters
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TABLE II
TRAFFIC RATE OF THE M-JPEG ENCODED MOVIES (bytes/frame)

more accurate. Therefore, in real applications, the impact of in-
accuracies in declared traffic parameters will possibly be even
less severe than that presented in this section.

VII. A PPLICATION OF THECAC SCHEME TO REAL TRAFFIC

SOURCES

In the previous section, we studied the performance of our
CAC scheme using the exponentialON–OFF source model.
In this section, we will further study the performance of our
CAC scheme using variable bit rate video sources. Eight
Motion-JPEG (M-JPEG) encoded movies are used in the sim-
ulation. Accordingly, there are eight traffic types. Connections
of each type have an exponentially distributed duration with
a mean of 100 s. Connection arrival process of each traffic
type is a Poisson process with a mean of 1 call/s. When a
connection of a given type is admitted, it starts reading the
corresponding M-JPEG encoded movie file from the beginning
and generates traffic according to the movie file. The statistics
of the M-JPEG encoded movies are shown in Table II. The
frame rate of the M-JPEG encoded movies is 30 frames/s.
Details about the M-JPEG encoded movies can be found in
[34]. The traffic rate unit is chosen to be 7.288 Mb/s, which is
the maximum pcr of the video sources. An OC3 link is used in
the simulation. The measurement window size is chosen to be
0.10 s. Clrf update period is chosen to be 0.2 s. Safety margin

is chosen to be 0.5. The cell loss ratio objective is chosen to
be . The simulation is run for 6 000 s. An average link
utilization of 0.65 is achieved in this scenario while the cell
loss ratio is controlled within the desired region. The achieved
utilization is smaller that that achieved using the exponential
ON–OFF sources. There are mainly two factors affecting the
utilization. First, the peak cell rates of the traffic sources are
close to 10% of the link rate. As a rule of thumb, when the
peak cell rates of the traffic sources are close to 10% of the link
rate, the statistical multiplexing gain which can be achieved
is small. Second, theON–OFFsource model at the basis of our
CAC scheme is the worst case among all traffic sources with
the same peak and mean. In this scenario, each video source
is modeled by anON–OFF source, which is actually the worst
case of the real source. This will also result in lower utilization.
It is worth noting that the aggregate traffic in this simulation
scenario presents significant self-similar behavior with a Hurst
parameter of 0.7 [29]. Therefore, it is possible that the proposed
measurement-based CAC scheme can be applied to self-similar
traffic. Further study is required to clarify this problem.

VIII. C ONCLUSION

In this paper, we proposed the cell loss rate function for
studying cell loss in the bufferless fluid flow model. The
clrf enabled us to decompose the complex analysis of the
multiplexing of traffic sources into simpler analysis of indi-
vidual sources. Furthermore, stochastic ordering theory was
used to analyze the clrf. The introduction of the stochastic
ordering theory not only simplified the theoretical analysis but
also made it possible to extend the application of theoretical
analysis presented in this paper to a broader area. Based on
the clrf and the stochastic ordering theory, loss performance of
heterogeneousON–OFFsources was studied. A cell loss upper
bound for heterogeneousON–OFFsources was proposed which
may simplify both theoretical analysis and computation. We
believe this theoretical analysis forms a good basis for studying
ON–OFFsources in the bffm. The methodology presented in this
paper also constitute a good starting point for studying other
traffic source models in the bffm.

The proposed upper bound can be applied to both param-
eter-based CAC and measurement-based CAC. In this paper,
we used the upper bound to design a measurement-based CAC.
Many practical factors were considered in the design of the CAC
scheme. Extensive simulation studies were carried out which
were indicative of good performance of the CAC scheme. Our
CAC scheme proves to be robust against inaccuracies in de-
clared traffic parameters and capable of achieving high link uti-
lization. The proposed CAC scheme has many attractive fea-
tures which make it suitable for implementation in real ATM
networks.

The loss performance analysis presented in this paper is a
steady-state analysis, thus the proposed upper bound consti-
tutes the worst case in terms of average loss performance. The-
oretically speaking, the average loss performance constraints
may not be meaningful, if the aggregate traffic exhibits long
range dependence. Specifically, if the aggregate traffic exhibits
long-range dependence although average performance may be
deemed to be fine, there may be rare periods of time in which
performance is consistently poor.

However, there is considerable debate about the impact
of long-range dependent traffic on bandwidth allocation and
network performance [35]–[38], especially the impact of
long-range dependent traffic on the performance of a measure-
ment-based CAC scheme [22], [25], because the time scale of
interest in real applications is limited. For measurement-based
CAC, Grossglauseret al.[22], [25] identify a critical time-scale

such that aggregate traffic fluctuations slower thancan
be tracked by the admission controller and compensated for by
connection admissions and departures. Following their anal-
ysis, only those traffic fluctuations with time scale greater than
measurement window size but less than will threaten
the performance of our CAC scheme. Our CAC scheme is
based on an upper bound, i.e., it will over-allocate bandwidth.
Thus, we consider that if traffic fluctuations with time scale
greater than measurement window sizebut less than are
negligible, or their bandwidth requirement can be satisfied by
over-allocated bandwidth, then long-range dependent traffic



136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 1, FEBRUARY 2002

will not affect the performance of the proposed CAC scheme.
Otherwise, the proposed CAC scheme will fail to provide QoS
guarantees in the presence of long-range dependent traffic. The
impact of the long-range dependent traffic on the performance
of our measurement-based CAC is in fact also a problem
for almost all measurement-based CAC. Further studies are
required to clarify this problem.

APPENDIX A

In this appendix, we shall prove Theorem 1. First we intro-
duce a lemma which will be used in the proof.

Lemma 2: Let be two independentON–OFFsources
with peak cell rates , and activity
parameters , respectively, where . Let
and be two independentON–OFFsources with peak cell rates

, and activity parameters , re-
spectively, where . Moreover,

and . Then if and
only if and .

See [30,Ch. 3] for a proof.
Let us now start the proof of Theorem 1.

Proof: It is easy to show that

Then, from Lemma 1, it suffices to show that the clrf of
is greater than or equal to that of for any real value.
The proof is by induction on .

1) First let us consider the case where . We must show
that the clrf of is less than or equal to that of

, where are two independent heteroge-
neous Bernoulli source with activity parameters ,
and the same peak cell rate pcr respectively; and
are two homogeneous Bernoulli sources with activity pa-
rameter and peak cell rate pcr. It can be
shown that

Then, from , we are able to conclude that

Using Lemma 2 , it can be shown thhat

That is, the clrf of and is less than or equal to that
of .

2) Let represent the clrf of heterogeneous
Bernoulli sources. Theth Bernoulli source has an
activity parameter and a peak cell rate pcr. Let
represent the clrf of homogeneous Bernoulli sources
where each Bernoulli source has an activity parameter

and a peak cell rate pcr. Suppose

holds for the case when ,
i.e.

for any

where . Let us consider the case when
. It can be shown that

Define a sequence so that the above procedure can be ex-
pressed as

It can be shown that

and

Solving for , when , we obtain

Thus, it can be shown that

This means that, when the above process goes on and on, the
activity parameters of thehomogeneous Bernoulli sources and
the single Bernoulli source in the above equations will converge
to . So it can be concluded that

Therefore, from the supposition that
holds for the case when , we derive the conclusion that
the inequality holds for the case when .
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Combining step 1 and step 2, it is concluded that

for any

holds for any .

APPENDIX B

In this appendix, we shall prove Theorem 3. First we intro-
duce an important lemma which will be used in the proof of
Theorem 3.

Lemma 3: Let be two independentON–OFFsources
with peak cell rates , and activity
parameters , respectively, where . Let

be any value satisfying . Then there exists
two independentON–OFF sources with peak cell rates

, and ,
such that .

See [30, Ch. 3] for a proof.
This lemma is used in proving Theorem 3 which is on het-

erogeneousON–OFFsources. We shall now begin the proof of
Theorem 3.

Proof: Theorem 3 is proved using the induction method.

1) Let us consider the case when , then .
We must show that , where is anON–OFF

source with peak cell rate and mean cell rate ,
and is anON–OFFsource with peak cell rate
and mean cell rate . This in fact is a direct application
of Theorem 2.

2) Supposing inequality (8) holds for the case when ,
we must show that inequality (8) also holds for the case
when .

First we point out that, since
, from our supposition

that inequality (8) holds for and
, it naturally follows that it also

holds for and .
Now let us consider the twoON–OFF source and

, we shall consider the following two cases.

a) When , using Proposition 1,
it can be shown that

where is anON–OFF source with peak cell rate
and mean cell rate

. Then, applying our supposition
for ON–OFFsources , it can be
shown that inequality (8) holds for the ON–OFF

sources , i.e.,

where

and is an independentON–OFF

source with peak cell rate pcr and mean cell rate
.

b) When , using Lemma 3,
we are able to find two independentON–OFF

source and has a peak cell rate
and a mean cell

rate has peak cell rate pcr and mean cell
rate ,
such that

Here is equivalent to
the condition in Lemma 3 that .

From , it is
guaranteed that . Then apply our
supposition for the independentON–OFFsources

, we obtain

where

and is an independentON–OFFsource
with peak cell rate pcr and mean cell rate

Here we note that and have the
same peak cell rate pcr, so, using Theorem 1, it can
be shown that

where

and is an independentON–OFF

source with peak cell rate pcr and mean cell rate

So, from the supposition that inequality (8) holds
for , we arrive at the conclusion that it should
also holds for .

Combining 1 and 2, we conclude that (8) holds
for all .
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