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Abstract-Although the existence of self-similarity in network t d c  has be the corresponding aggregated sequence with level of aggre- 
been widely mognized, there is considerable debate on the impact of self- 
similarity on traffic engineering and network perfomaoce, and whether 
or not self-similar model should be used for traffic modelling. This paper 
mviews some mdor research in the area and summarizes limihtions in cnr. 
rent theoretical performance analysis with self-similar input. It is pointed 
out that these performance analysa 819 msnllicient to make a definitive 
conclusion on the long-range dependence eaects. Furthermore, it is pointed 
out that In a real system, the timescale range of interest for trffic mfasnre- 
ments, modelling and performance analysis is Limited, which cm be charac- 
teerized by an engineering timescale range (ETR). Only trffic correlations 
within the ETR will afPect performance and are important for tratfic mea- 
surement, modelling and performance analysis. Factors contributing to the 
ETR are identified. Further research is proposed on quantitatively identi- 
fyhg the ETR, and tratfic measurements and self-similar trafiic modelling 
using Markov models. 

I. INTRODUCTION 

Bandwidth hungry computer and communications applica- 
tions are on the rise with a variety of services, as a few ex- 
amples, video conference, video on demand, voice over IP and 
high-definition television. Different from traditional data com- 
munication applications, most of these applications are real-time 
applications and they have stringent requirements on quality of 
service (QoS), i.e. traffic delay, jitter and loss. Traditional data 
communication technique such as retransmission does not ap- 
ply to real-time traffic. Because even a packet is delivered to 
the destination eventually, if it does not arrive in time, it will 
be considered as lost. One of the major challenges in designing 
modem communication networks is providing QoS support to 
the individual applications. 

It is well known that some of the characteristics of network 
traffic fall beyond the conventional framework of Markov traf- 
fic modelling. Leland et al. demonstrated self-similarity in a 
LAN environment (Ethernet) [l]. Paxson et al. showed self- 
similar burstiness manifesting itself in pre-World Wide Web 
WAN IP traffic [2]. Beran et al. [3] and Garrett et al. [4] demon- 
strated self-similarity in variable-bit-rate (VBR) video traffic, 
and Crovella et al. showed self-similarity for WWW traffic [5]. 
Collectively, these measurement works constitute strong evi- 
dence that scale-invariant burstiness is not an isolated, spurious 
phenomenon but rather a persistent trait existing across a range 
of network environments [6]. 

For a stationary sequence X = { X ( i ) ,  i 2 l}, let 

- -~ 
gation m, obtained by dividing the original series X intonon- 
overlapping blocks of size m and averaging over each block. 
The index k,  labels the block. A stationary sequence X = 
{ X ( i ) ,  i 2 1) is called exactly self-similar if it satisfies (2) 
for all aggregation levels m. 

X e ml-HX(m), 0 < H < 1. (2) 

It is said to be asymptotically self-similar if (2) only holds as 
m + CO. Parameter H is called the Hurst parameter [7] and is 
a measure of self-similarity. For self-similar processes its value 
is between 0.5 and 1 and the degree of self-similarity increases 
as the Hurst parameter approaches 1. Self-similarity in network 
traffic usually refers to asymptotic self-similarity. There are a 
number of other different, not equivalent, definitions of self- 
similarity. Refer to [SI, [9], [lo], [ll], [12] for details. 

Long-range dependence (LRD) is another widely used term 
in this m a .  Let the mean and covariance function of a station- 
ary sequence X ( t )  be denoted by @ = E ( X ( t ) ]  and C x ( k )  = 
E [ ( X ( t + k ) - p ) ( X ( t ) - p ) ] .  A long-range dependent sequence 
can be defined via a slow, power-law decay of Cx(k):  

Cx(k)  - C,k-@, 0 < f l <  1 (3) 

where C, is a finite positive constant, and the symbol - means 
that the ratio of the two sides tends to one in the limit of large k. 
0 is related to the Hurst parameter by H = 1 - 0/2.  

Strictly speaking, self-similarity and long-range dependence 
are different concepts. However in the context of network traffic 
modelling and performance analysis, they are used to refer to 
the same phenomenon that the cumulative effects of long-term 
correlations of a traffic process cannot be ignored. Therefore 
they m often used interchangeably. 

Although long-range dependence in network traffic has been 
widely recognized, QoS impact of long-range dependence is still 
an open issue U], PI, W I ,  141, [I], [141, [151, [ W ,  1171, [181. 
In this paper, some of the major research in the area are reviewed 
and it is pointed out that most performance analyses with self- 
similar input are asymptotic in nature and they fail to consider 
the impact of finite-length queue and network dynamics (i.e. 
call level dynamics, network control protocols, etc.) in shap- 
ing the traffic. As a result, although they provide useful insight 
into the performance impact of some aspects of self-similarity, 
they cannot be used to make a definitive conclusion on it. It is 
proposed that the interactions between traffic process and queue 
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level dynamics, as well as network dynamics are incorporated 
into a united framework of performance analysis through the 
concept of engineering timescale range (ETR). Only traffic cor- 
relations within the ETR will affect performance and are impor- 
tant for traffic measurement, modelling and performance analy- 
sis. A traffic model which fits the network traffic characteristics 
within the ETR is sufficient for performance analysis. Therefore 
Markov traffic model can be used for modelling self-similar traf- 
fic. 

The rest of the paper is organized as follows. In section II per- 
formance analyses on the LRD effects are reviewed. Limitations 
of most performance analysis with self-similar input are sum- 
marized in section III. The existence of engineering timescale 
range is justified in section IV. Fnrther research on traffic mea- 
surements, modelling and engineering timescale range is pro- 
posed in section V. 

11. RELEVANCE OF SELF-SIMILARITY - The Pros and Cons 

Some researchers performed performance analysis on queue- 
ing systems with self-similar input. They demonstrated that 
queue length distribution decays polynomially instead of expo- 
nentially, which is typical of Markov traffic. They considered 
that the widespread existence of self-simila& challenges the 
basis of the fxaditional Markov-based tr&c modelling, perfor- 
mance analysis and traffic engineering. Thus a major overhaul 
on the current Markov-based traffic engineering techniques is 
necessary. 

Noms [19] showed that the marginal distribution Q(z) of 
a stationary fluid queue in the fractional Brownian noise traffic 
model (FBM), which is self-similar, is asymptotically of Weibull 
type [ZO], [XI, [22], that is: 

logQ(z) - - n ~ ’ ( l - ~ )  (4) 

where n is a positive constant. Krisbnan [23] showed that 
the implication of Norm’s result is that when a sufficiently 
large number of sources are multiplexed, high-H SOUIC~S re- 
quire more bandwidth than low-H sources. Erramilli et al. 
[24] demonstrated empirically that LRD has considerable in- 
pact on queueing performance and traffic engineering problems. 
Likhanov et al. [14] showed that the overtlow probability of the 
multiplexing of a large number of on-off sources with Pareto 
distributed (heavy tailed) on periods, which is self-similar [25], 
[261, [27], has an asymptotic relationship with buffer size: 

Q(z) - az-’ ( 5 )  

where a and y are positive constants. Parulekar et al. [20] 
obtained the same asymptotic relationship using large devia- 
tions theory and the M/G/cc model [28] for self-similar pro- 
cess. There are many other research which demonstrated that 
the marginal distribution of a fluid queue under self-similar traf- 
fic decays slower than that under Markov traffic. A summary of 
these research can be found in [11]. 

However, there is considerable debate on the impact of LRD 
on traffic engineering and network performance, and whether 
or not self-similar model should be used for traffic modelling 
[291, [301, [171, 1181, [151, [311, [321, [331. They recognized 
the existence of self-simil~ty in network traffic, however, they 

took a more practical view at the problems. They pointed out 
that long-range dependence is not a crucial property in deter- 
mining the behavior of real buffers withanite buffer size. Since 
the objective of traffic modelling is to enable performance anal- 
ysis, and Markov traffic model is accurate enough to predict the 
performance of real buffers fed with real traffic sources, Markov 
traffic model should be used instead of self-similar traffic model. 

Elwalid et al. found that buffer overflow probability decreases 
exponentially with buffer size [291, i.e. 

Q(z) G a e d z ,  (6) 

where a and 6 are positive constants. They validated their result 
using simulations, where real video conference sequence coded 
by different algorithms are used as traffic sources. Their re- 
sults show that (6) accurately captures the relationship between 
buffer overtlow probability and buffer size, and DAR(1) (dis- 
crete autoregressive process with order 1) traffic source model, 
which takes into account only short-range dependence, is accu- 
rate enough for admission control and bandwidth allocation of 
video conferences. In particular, the video conference sequences 
used for their simulations exhibit long-range dependence [31. 
Therefore, their results effectively counter the assertion in 111 
that when traffic is long-range dependent “overall packet loss 
decreases very slowly with increasing buffer capacity”. 

Heyman et al. [30] employed a generic buffer model to in- 
vestigate the effects of long-range dependence. The buffer has 
capacity B, and receives input at deterministic times. Let Xi be 
the number of arrivals at discrete time Ti, Let d be the number 
of traffic that is processed during [Ti, T ~ + I ) ,  referred to as the 
ith interval, and let V, be the buffer content at the end of the ith 
interval. Then, 

v, = min { (K-1 + XI - d)+ , B} 

They showed that the resetting efiect of the buffer when buffer 
becomes empty and the truncating effect offinite buffers when 
buffer become full diminish the long-range dependence effects. 
Since VBR video traffic has stringent QoS requirements, the 
traffic intensity for these services will not be large. Thus the 
resetting effect and truncating effect should be strong in practi- 
cal regions. Their numerical examples confirmed that Markov 
model can accurately predict the QoS of real VBR video confer- 
ence and entertainment video [31], which are long-range depen- 
dent. Based on it, they concluded that long-range dependence 
is not a crucial property in determining the buffer behavior of 
VBR video sources. 

Ryu et al. investigated the practical implications of long-range 
dependence by studying the behavior of buffers with VBR video 
input over a range of desirable cell loss rates and buffer sizes 
[15]. Based on large deviations theory, they introduced the no- 
tion of Critical Time Scale (CTS). For a given buffer size, link 
capacity, and the marginal distribution of frame size, the CTS of 
a VBR video source is defined as the number of frames whose 
correlations contribute to the cell loss rate. They show that 
whether the model is Markov or long-range dependent, its CTS 
is finite. CTS assumes a small value for a small buffer, and is 
a non-decreasing function of the buffer size. In other words, 
under realistic scenarios of buffer dimensioning, the number of 
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frame correlations which affect buffer overflow probability is 
finite and small even in the presence of the long-range depen- 
dence property. Simulations were used to validate their result. 
They used the superposition of FBNDP (Fractional-Binomial- 
Noise-Driven Poisson Process) and DAB( 1) (discrete autore- 
gressive process of order 1) as their long-range dependent VBR 
video traffic model, in which the long-term correlations and the 
short-term correlations can be effectively controlled. Their sim- 
ulations showed that the buffer overflow probability of the long- 
range dependent traffic can be accurately captured by DAR(p) 
process (discrete autoregressive process of order p) ,  which is 
short-range dependent, under the practical ranges of buffer size 
and cell loss ratio. Their numerical results showed that: . even in the presence of long-range dependence, long-term 
correlations do not have significant impact on cell loss rate; and 

short-term correlations have dominant effect on cell loss rate, 
and therefore, well-designed Markov traffic models are effective 
for predicting QoS of long-range dependent VBR video traffic. 
They concluded that it is unnecessary to capture the long-term 
correlations of a real-time VBR video source under realistic 
buffer dimensioning scenarios as far as the cell loss rate and 
maximum buffer delays are concemed. 

Grossglauser et al. found the existence of the CTS indepen- 
dently [17]. They argued that most of recent modelling works 
have failed to consider the impact of two important parameters, 
namely the finite range of time scales of interest in performance 
evaluation and prediction problems, and the first-order statis- 
tics such as the marginal distribution of the process. They in- 
troduced a modulated fluid traffic model in which the correla- 
tion functions of the fluid rate matches that of an asymptotically 
second-order self-similar process with given Hurst parameter np 
to an arbitrary cutoff time lag, then drops to zero. Numerical ex- 
periments are performed to evaluate the performance of a single 
server queue fed with the above fluid input process. They found 
that the amount of correlations that needs to be taken into ac- 
count for performance evaluation depends not only on the cor- 
relation structure of the source traffic, but also on time scales 
specific to the system under study. For example, the time scale 
associated with a queueing system is a function of the maximum 
buffer size. For finite buffer queues, they found that the impact 
of conelations in the arrival process on traffic loss becomes nil 
beyond a time scale referred to as the correlation horizon. This 
means, in paaicular, for performance-modelling purposes, any 
model among the panoply of available models can be chosen as 
long as the chosen model captures the correlation structure of 
the traffic source up to the correlation horizon. 

In [181, Grossglauser et al. studied a robust measurement- 
based admission control with emphasis on the impact of esti- 
mation errors, measurement memory, call-level dynamics and 
separation of time scales. Their work [17], [18] identifies a crit- 
ical time-scale such that aggregate traffic fluctuation slower 
than 5 can be tracked by the admission controller and compen- 
sated for by connection admissions and departures. Fluctuations 
faster than have to be absorbed by reserving spare bandwidth 
on the link. Using Gaussian aggregate traffic model and heavy 
traffic approximations, the critical time scale is shown to scale 
as T h l f i ,  where Th is the average flow duration and n is the 
size of the link in terms of the number of flows it can cany. The 

. 

major insight that can be gained from their work is that call level 
dynamics, i.e. connection admissions and departures can dimin- 
ish the impact of long-range dependence on the performance of 
a MBAC. 

111. LIMITATIONS OF CURRENT RESEARCH 

The aforementioned research on the LRD effects seems to 
conflict with each other. This is due to the complexity of the 
problem. There are too many factors to be considered, which 
include, traffic characteristics, statistical multiplexing, call level 
dynamics, resetting and truncating effects of finite size buffers, 
network buffer size, network utilization level, etc. 

At this stage, no definitive conclusions can be made on the 
LRD effects. However it is noticed that there are some limita- 
tions in most theoretical performance analyses with self-similar 
input. 

They are asymptotic in nature where either buffer capacity is 
assumed infinite and marginal distribution &(z) of queue length 
is estimated as z --t CO; or buffer capacity b is assumed finite 
but buffer overllow probability is computed as b becomes un- 
bounded [34]. However it is not clear that bow large a buffer 
should be in order that the marginal distribution conforms to 
the asymptotic relationship. If that buffer size is too large that 
it exceeds practical range of real buffers, this asymptotic rela- 
tionship is not meaningful in real applications. Moreover, many 
asymptotic results are given in the form of the probability that 
the queue size exceeds a certain threshold in an infinite length 
queue. In a real system, the quantity of interest is the loss prob- 
ability in a finite length queue. This is also the quantity we can 
measure in reality. These two values may not necessarily agree 
with each other. Fig. 1 shows that the traffic loss probability in 
a real buffer with size z is actually given by: 

loss probability = Pr{traffic rate > link capacity} x Q(z) 

where &(z) denotes the probability that queue length exceeds 
the threshold value z in an infinite length queue. The first term 
in the equation Pr{traffic rate > link capacity} is a small value 
in low to medium traffic intensity. Some connection admission 
control schemes based on bufferless fluid flow model achieve a 
link utilization of 60% to 80% while still controls the loss ratio 
helow [35]. Therefore it can be expected that using Q(z) 

(7) 
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to approximate loss probability will produce a large error in non- 
heavytraffic scenarios. 

They tend to emphasize the impact of one aspect of statisti- 
cal characteristics of traffic process while neglecting the other. 
Current research on traffic self-similarity focuses on Hurst pa- 
rameter H because it defines the existence of self-similarity. 
Hurst parameter is the major concem in traffic analysis, mea- 
surements and modelling. As a result, most performance anal- 
yses are based on traffic models which match Hurst parameter 
only. The impact of the second parameter C, in (3) is often ne- 
glected. This is unfortunate because C, defines the magnitude 
of correlation variation and it plays a major role in k i n g  the 
absolute size. of the LRD-generated effects [36], [371. Concen- 
trating on the impact of Hurst parameter only may lead to the 
over exaggeration of the LRD effects because if the value of C, 
in a traflic process is small, the LRD effects will be small and 
are possihly negligible in performance analysis. Moreover, the 
analysis of measured network traffic and resulting understand- 
ing of some of its underlying structure have led to the realiza- 
tion that while network traffic is consistent with asymptotic self- 
similarity behavior, its small time scaling features are very dif- 
ferent from those observed over large timescales. Those small 
time scaling features play an important role in performance anal- 
ysis [30], [381, [39], [40], [41]. Performance analysis consider- 
ing the scaling features of traffic in both small timescale and 
large timescale is required to gain a complete understanding on 
the LRD effects. 

The amount of correlation that needs to be taken into ac- 
count for performance evaluation depends not only on the cor- 
relation structure of the traffic process, but also on the range of 
timescales specific to the system under study [ 171. In a real sys- 
tem, the range of timescale of interest for traffic measurements, 
modelling and performance analysis is limited. Some perfor- 
mance analyses emphasize one aspect of the LRD effects, that 
is, the cumulative effects of long-term correlations can not he ig- 
nored in the performance analysis. Their results implicitly con- 
sider an infinite timescale for performance analysis. This may 
produce a large error in a real system and may lead qualitatively 
different conclusions 

Most performance analyses with self-similar input are based 
on the “open loop” data traffic models [38]. Here “open loop” 
refers to the fact that while the traffic characteristics impact 
queueing behavior, the impact of finite-length queue and net- 
work dynamics (i.e. call level dynamics, network control proto- 
cols, etc.) in shaping the incident traffic is not modelled. It has 
been pointed out that a finite-length queue will interact with the 
traffic process to diminish the LRD effects [30], 1311. It is also 
observed that network traffic control protocols (e.g. TCP, UDP) 
can modify the self-similar scaling behavior of network traflic 
[38] and call level dynamics (i.e. connection arrivals and depar- 
tures) will affect the LRD effects [lX]. In [36], it was found that 
long-term correlations in the traffic affect performance at higher 
utilizations. Short-term correlations are important in comple- 
mentary regimes and both are important at intermediate utiliza- 
tions. These research together reveals a fact that the impact of 
finite length queue and network dynamics cannot be ignored in 
investigating the LRD effects. 

In summary, although these theoretical analyses with self- 

similar input provide useful insight into the performance impact 
of some aspects of self-similar traffic, they cannot be used to 
make a definitive conclusion on it. 

IV. THE EXISTENCE OF ENGINEERING TlMESCALE RANGE 

In this section we try to heuristically establish that in a real 
system, the timescale range of interest for traffic measurements, 
modelling and performance analysis is limited. This finite 
timescale range of interest for practical traflic engineering is re- 
ferred to as the engineering timescale range (ETR). Traffic cor- 
relations beyond the ETR will have no impact on performance. 
Several factors that may affect the engineering timescale range 
are identified. 

While theoretically self-similarity may extend to an infinitely 
large timescale, the timescale range of interest is limited in a 
real system. For example, traffic congestion and performance 
degradation at 3pm is unlikely caused by some traffic sources 
at 3am although statistically strong large-timescale correlation 
may he measured between them [42]. It has been found that self- 
similarity in the aggregate traffic is caused by the high variabil- 
ity in the activelsilence period distributions of individual con- 
nections 151, [26], 1161. This is not unexpected because any 
statistical characteristics of the aggregate traffic should be able 
to be traced hack to the statistical characteristics of individual 
connections and network control mechanisms (e.g. traffic con- 
trol protocols) shaping the traffic. The impact of the aggregate 
traffic at a past instant t on the performance of current system 
will eventually be realized through the individual connections 
that consist in the aggregate traffic at time t .  However the im- 
pact of an individual Connection can not go beyond its lifetime. 
Moreover the lifetime of a connection must he limited in a real 
system, that is, any connection cannot exist in the system indef- 
initely. Therefore it can be asserted that the state of the network 
system at time t will have no impact on the performance of the 
current system when all connections active at time t have left 
network. Furthermore, the impact of the system state at time 1 on 
the performance of the current system will be negligible when 
most active connections at t has left the network. Therefore a 
timescale, referred to as critical timescale, should exist such that 
traffic correlations beyond the critical timescale have no impact 
on performance, This timescale should be upper-bounded by a 
value which can be expressed as a function of the distribution of 
connection durations. 

There are other factors which are important in determining 
the value of the critical timescale. It was pointed out that the re- 
setting effect when a buffer becomes zero will diminish the LRD 
effects. The effects of LRD are significant only if LRD causes 
the busy periods to be long enough for the long lags to come 
into play. Similarly, the truncating effect of a finite buffer will 
also diminish the LRD effects [30], [31]. Actually in [15] and 
[IS], critical timescale is considered to he a function of maxi- 
mum buffer size. However maximum huffer size alone cannot 
determine critical timescale because both the truncating effect 
and the resetting effect are a function of utilization and they are 
stronger at low to medium utilization [31]. This conforms to 
the findings in [36], where it was found that long-term corre- 
lations in the traffic affect performance only at higher utiliza- 
tions. Therefore network utilization is also an important factor 
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in determining critical time scale. This fact may affect traffic 
engineering techniques for different applications. Real-time ap- 
plications such as video on demand, video conference usually 
have stringent requirements on QoS. Thus they usually run at 
low to medium utilization levels where LRD effects are less sig- is the first step toward actuate traffic 
nificant. Some non-realtime applications multiplexed with them modelling and performance over the lots of 
have lower priority and will not affect the QOs of those real- measurement works have been done, to name but a few, [l], 
time applications. Non-realtime applications such as dataaaffic [4], [39], [a], [4q. They contribute significantly to our under- 
do not have stringent QoS requirements and they be run at standing of the network traffic characteristics. However, due to 
high utilization to fill the capacity gap left by realtime aPPliCa- the progressive natue of our understanding a b u t  the impact of 
tions. LRD effects are more significant for these non-realtime various statistical of the earlier works concen. 
applications. trate only on certain limited aspects of the traffic process, e.g. 

The effects of network traffic and congestion COntrol Proto- marginal distribution, Hurst parmeter, etc. In order to provide 
cols also need to be considered in determining critical timescale. an and complete description of actual network &af- 
For non-redtime traffic, it was found that TCP can modify the fit, other as the magnitude of variation, 
self-similar scaling behavior of network traffic [381. For real- shofi.krm 
time traffic, which is not subject to TCP control because their There are a variety oftools to measuring the scaling 
stringent delay requirement, it was found that a features of traffic sources, for variance-time plot and 
based admission control scheme can investigate call level dy- its v&ans, figuchi,s method [461, ws method, Periodogm 
namics to diminish the LRD effects [181. Moreover will method and its "aniants, m i d e  estimator and wavelet-based es- 

relations at large timescales. It is therefore expected that traffic appears to be a very promising because of 
prediction and performance prediction can be em- its robustness, negligible bias, low variance and a key advantage 
bedded in traffic control protocols to improve performance un- that quite different kinds of scaling can be 
der self-similar traffic. The impact of these traffic and conges- technique. 
tion control protocols on the LRD effects can be represented by 

protocols. The cumulative effects can be represented by a CTS 
value not larger than these individual CTS values. 

B. Tra& Measurements 

~ ~ a f f i ~  

also need to be measured. 

the Predictability Of network traffic due lo larger cor- timator [47], [42], A comparison is made in [48]. Wavelet-based 

by the 

their effects on determine the timescale of interest for perfor- 
mance analysis, i.e. critical timescale. 

The critical timescale forms the upper boundary of the engi- 
neering timescale, which defines the range of long-term correla- 
tions that needs to be considered in performance analysis. The 
ETR should also have a lower boundary which defines the range 
of short-term correlations that needs to be considered. This is 
due to the fact that small timescale correlations, which present 
as rapid traffic rate fluctuations, below a certain limit can be ef- 
fectively absorbed by a small buffer, thus are of no importance 
in performance analysis [431, [U]. 

The resulting ETR will possibly span both small timescale 
and large timescale. Only trafiic correlations within the ETR 
will affect performance and are of impoflance for traffic mea- 
surements, modelling and resource provisioning. 

V. FURTHER RESEARCH 

A. Determining the Critical 7imescale 
It is extremely difficult to consider the aforementioned con- 

tributing factors to critical timescale altogether to obtain the 
value of CTS. Therefore we suggest modelling the diminishing 
effects of these queue level dynamics and network dynamics on 
the LRD effects by identifying a critical timescale for each kind 
of diminishing effect. This includes: 

a CTS for finite queue size. The impact of network utilization 
on CTS can be considered when evaluating the resetting and 
truncating effects. . a CTS for call level dynamics. . a CTS for network control protocols. 
Redtime applications and non-realtime applications should be 
treated differently when determining CTS because of different 
utilizations they are usually working at and different control 

C. Trafc Modelling and Performance Analysis 

Some widely used self-similar traffic models such as FBN, 
heavy-tailed on-off sources are either insufficient to capture sta- 
tistical behavior of real traffic or intractable to performance anal- 
ysis. Since only traflic correlations within the ETR will affect 
performance and are important for traffic measurement, mod- 
elling and performance analysis, a traffic model which fits the 
network traffic characteristics within the ETR is sufficient for 
performance analysis. Therefore, Markov traffic models are 
considered to be strong candidates for traffic modelling. Markov 
traffic models have been successfully applied in the past to 
model the first-order statistical characteristics of network traffic. 
The benefit of using Markov models is obvious - a whole array 
of tools for estimating performance measures is already avail- 
able. The major obstacle in the application of Markov models is 
their incapability in modelling LRD. The definition of ETR will 
remove this obstacle. Traffic model is only required to model 
the scaling behavior over a finite timescale range. Andersen 
et al. [32] demonstrated the capability of superposition of two- 
state MMF'P (Markov-Modulated Poisson Process) in modelling 
LRD over several timescales. Further research in this area will 
be finding a suitable Markov model which is able to model both 
the first-order statical characteristic of network traffic and the 
scaling behavior of the traffic process across the whole range of 
ETR. 
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