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Absrrocr-The effect of network mechanisms (i.e. buffer, handwidth, 
statistical multiplexing and traffic control protocols) on t&c is on two 
aspects: first they contribute to network performance by Limiting the 
timescale range of interest for performance analysis; secand L e y  shape 
L e  traffic, i.e. changing the scaling behavior of t&c. While %me re. 
search has been done on the first aspect in terms of critical timescale, the 
second aspect has not be given enough attention. This paper investipates 
Le eNec1 of buffer and bandwidth on the scaling behavior of t&c. Our 
analysis shows that they have different effect an trafic at small timescale 
and large timescale. Both buffer and bandwidth can significantly affect 
L e  small timescale scaling exponent, but they seem ineffective on the large 
timereale ra l i i g  exponent Moreover the use of smaller buffer size and less 
bandwidth will reduce the energy of t&c at small theseale. Therefore 
traffic may became Iw bursty. 

I. INTRODUCTION 

It is well known that some characteristics of Internet traf- 
fic fall beyond the conventional framework of Markov traffic 
modelling. Leland et al. discovered the existence of traffic self- 
similarity in a local area network (LAN) environment [l]. Be- 
ran et al. demonstrated self-similarity in variable-bit-rate (VBR) 
video traffic [Z] and Crovella et al. showed self-similarity for 
WWW traffic [3]. Recent measurements further revealed that 
WAN traffic has complex multifractal characteristics on small 
timescales, and is self-similar on large timescales [4], [5 ] .  

There are a number of different. not equivalent, definitions of 
self-similarity. Refer to [6] for definitions of self-similarity. A 
measure of self-similarity is the Hurst parameter H .  

Long-range dependence (LRD) is another widely used term 
in this area. Let the mean and the covariance function of a 
stationary sequence X ( t )  he denoted by p = E [ X ( t ) ]  and 
C.x(k) = E [ ( X ( t + k ) - p ) ( X ( t ) - p ) ] .  AnLRDsequencecan 
he defined via a slow, power-law decay of C.x(k): Cx(k) - 
C,k-p, 0 < < 1, where C., is a finite positive constant, 
and the symbol - means that the ratio of the two sides tends to 
one in the limit of large k. fi is related to the Hurst parameter 
by H = 1 - ?/2. Equivalently. LRD can also he defined via a 
power-law divergence at the origin of its spectrum: 

- c f l v ,  1ul --t 0 (1) 

where f z ( v )  satisfies, in the case of discrete time processes 

U: being the variance (or power) of X ( t )  [7] .  Parameter c f  is 
the frequency domain equivalent of C,. Parameter cy is related 
to the Hurst parameter by cy = 1 - p = 2H - 1. 

Self-similarity and long-range dependence are different con- 
cepts. However in the context of network traffic analysis, they 
both refer to the fact that the cumulative effect of long-term cor- 
relations of a traffic process cannot he ignored. Therefore they 
are often used interchangeably. 

Despite the well established presence of the scaling phe- 
nomenon, its impact on teletraffic issues and network perfor- 
mance is still the subject of some confusion and uncertainty. 
Specifically, although network traffic may exhibit the scaling 
behavior across a very wide range of timescales, it never ex- 
ists alone. These scaling properties must exert their influence 
through a network of finite dimension, i.e. a network of finite 
size, finite capacity and finite queue. Moreover, traffic coming 
from different sources may mutually interact and this traffic will 
also he subject to the restrictions of traffic and congestion con- 
trol protocols. All these network mechanisms (i.e. finite buffer, 
finite bandwidth, statistical multiplexing and traffic and conges- 
tion control protocols) cast a limit on the impact of traffic scal- 
ing. As a result, we only need to consider a finite timescale range 
when performing performance analysis [ S I .  Moreover, as traf- 
fic passes through the network, these network mechanisms may 
also shape the traffic, i.e. change the scaling behavior of traffic. 
Some earlier work exists in the area [9], [IO], [I l l ,  [12]. How- 
ever most of the work focuses on the contribution of network 
mechanisms to the finite timescale range of interest. The con- 
tribution of the network to shaping the traffic has not received 
much attention. 

In this paper, we investigate the impact of some network 
mechanisms on shaping the traffic. Specifically, we investigate 
the impact of buffer and bandwidth on the scaling behavior of 
traffic. The rest of the paper is organized as follows: in section 
II, we present some qualitative analysis on the effect of buffer 
and bandwidth; analysis tool used in the paper is introduced in 
section Ill; section IV gives a brief introduction to the traffic 
trace used in our analysis; the effect of buffer and the bandwidth 
limiting effect are analyzed in section V and section VI respec- 
tively; and finally some conclusions are given in section VII. 

11. QUALITATIVE ANALYSIS 

In this section, we present some qualitative analysis on the 
effect of buffer and bandwidth on the scaling behavior of traffic. 

A. Finite Bufer 

Consider a buffer with capacity B and receives input at de- 
terministic time. Let X i  he the number of arrivals at discrete 
time Ti. Let d he the number of traffic that is processed during 
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Fig. I .  Relationship between input and output traffic rate in a queue with a link 
capacity C 

[Ti, 
content at the end of the i‘k interval. Then, 

referred to as the i th interval, and let V,  be the buffer 

V,  = min { ( K - l +  x, - d ) +  , B ) .  ( 3 )  

Analysis on (3) reveals that only traffic arriving in the same busy 
period Tauay interacts with each other and determines the buffer 
content in the it‘ interval. Traffic arriving in a different busy 
period has no impact on buffer content in the i th interval al- 
though it may be statistically correlated with traffic in the ith 
interval. This is referred to as the resetfing effect [13]. Resetting 
effect appears whenever buffer content reaches zero. It intro- 
duces a “break” in the impact of traffic correlations. Moreover, 
when buffer content becomes full another effect, referred to as 
the truricafing effect, emerges. Truncating effect enhances re- 
setting effect and they both diminish the performance impact 
of traffic correlations. Another effect of the finite buffer is that 
every busy period containing an overtlow is shorter than the cor- 
responding busy period in an infinite buffer version. This effect 
and its performance impact have been shown both graphically 
and analytically in our paper [SI. 

In addition to its performance impact, a finite buffer also con- 
tributes to shaping the traffic. A finite buffer bas the effect of 
a low-pass filter in network. At small timescales, it may effec- 
tively smooth traffic and remove some small timescale traffic 
variations. This effect becomes more pronounced when traffic 
passes through a tandem of queues instead of a single queue. 

B. Finite Bandwidth 

Any traffic travelling in the network is subject to the restric- 
tion of a network link with a finite bandwidth. This effect is 
referred to as the bandwidth limiting effect. Fig. 1 shows the 
relationship between the input traffic rate and output traffic rate 
in a queue with a link capacity C. When the link utilization is 
low, the link works in a linear region close to the origin. There- 
fore traffic variations are almost fully preserved when passing 
through the link. The bandwidth limiting effect of a finite band- 
width link has little effect. However, when the link utilization is 
high, the link works in a region close to the link capacity C. The 
saturation point is easily reached, the limited remaining band- 
width will only allow a small variation of the traffic. Thus the 
bandwidth limiting effect may significantly change the traffic 
characteristics. Moreover, in normal network conditions, it is 
rare that the input traffic rate can exceed the link capacity for 
a long time period. Therefore it is expected that the bandwidth 
limiting effect will mainly affect the small timescale features of 

traffic. The large timescale features will remain intact. Erramilli 
et al. observed that the performance impact of small timescale 
and large timescale traffic components are different at different 
link utilizations [5]. Small timescale features can affect perfor- 
mance substantially at low and intermediate utilizations, while 
the large timescale self-similarity is important at intermediate 
and high utilizations. Their observation actually witnessed the 
impact of the bandwidth limiting effect. 

111. ANALYSIS METHOD 

A lot of methods have been developed in the literature to 
analyze the scaling behavior of network traffic, to name but a 
few, variance-time plot, Higuchi’s Method, WS method, Peri- 
odogram method, Whittle estimator. A comprehensive overview 
of these methods can be found in [14]. In th is  paper, we are 
going to perform our analysis using wavelet tools. Wavelets 
have many advantages when used in traffic analysis. Fundamen- 
tally, this is due to the non-trivial fact that the analyzing wavelet 
family itself possesses a scale invariant feature, a property not 
shared by other analysis methods. Quite different kinds of scal- 
ing features can be analyzed by the same technique and the same 
set of computations. 

Wavelet analysis is based on the decomposition of a signal 
using orthogonal bases. Discrete wavelet transform (DWT) con- 
sists of the collection of coefficients 

C J k  =< X , p J k ( t )  > , d j k  =< x , $ j k ( t )  >, k E z,j  5 J 
(4) 

where < *, * > denotes inner product, { d j k }  are the wavelet 
coefficients and { C J k }  are the scaling coefficients. Equation (4) 
compares the signal X to be analyzed with a set of analysis func- 
tions 

$ j k ( t )  = 2-’”$(2-’t - k ) .  (5 )  

This set of analysis functions is constructed from a reference 
pattern $( t )  called the mother-wavelet by a time-shift operation 
and a dilation operation. $(t)  is a band pass function. Function 
p J k ( t )  is a time shifted function of the scaling function i p ~ ( t ) :  

i p J k ( t )  = p J ( t  - k ) .  p J ( t )  is a low-pass function which can 
separate the large timescale (low frequency) component of the 
signal. Thus wavelet transform decomposes a signal into a large 
timescale approximation (coarse approximation) and a collec- 
tion of details at different smaller timescales (finer details). The 
original signal can be recovered from the wavelet coefficients 
and the scaling coefficients using 

k j=O k 

Theoretically the scale j can span from --03 to 03. For prac- 
tical signals, i.e. network traffic, we limit the scale to 0 - J ,  
where scale J is the largest timescale and scale 0 is the smallest 
timescale. 

The wavelet transform decomposes a signal into different fre- 
quency components and analyzes each component with a reso- 
lution matched to its scale. We can use coefficients of a wavelet 
decomposition to directly study the scale (or frequency) depen- 
dent properties of the signal. The coefficient l d j k l ’  measures 
the amount of energy in a signal X about the time to  = 23k 
and about the frequency 2-3 fo or timescale 231 fo, where fo is 
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Fig. 2. Traffic rate measured on 1 minute interval 

a reference frequency depending on the mother wavelet. Let E3 
denotes the average of 1d3(k)1* at each scale: 

( 7 )  

where N3 is the number of wavelet coefficients at scale j ,  then 
Ej is a measure of the energy that lies within a given bandwidth 
2-3 around frequency Z-jfo. Using the logarithm of Ej,  pa- 
rameters of LRD CJ and a in (1) can be estimated: 

logz(E(Ej)) = .fa + logz(cfC), (8) 

where C is a constant determined by the mother wavelet. 

IV. NETWORK TRAFFIC 

The network traffic used in our analysis was collected by 
WAND research group at the University of Waikato Computer 
Science Department. It is the LAN traffic at the University of 
Auckland on campus level. The traffic trace was collected on 
June 11, 2000 between 6am and 12pm on a IOOMhps Ether- 
net link. IP headers in the traffic trace are GPS synchronized 
and have an accuracy of 1 ~ s .  More information on the traffic 
trace and the measurement infrastructure can be found on their 
webpage: http://atm.cs.waikato.ac.nz/wand/wits/auckl6/. Fig.2 
shows the traffic rate of the traffic trace measured on 1 minute 
intervals. As shown in the figure, the traffic presents signifi- 
cant non-stationarity during the measurement period. In order 
to minmize the effect of non-stationarity, only a piece of the 
whole traffic trace during a two-hour time interval, i.e. 240 
minute - 360 minute, is used for analysis in the rest of the pa- 
per. The average traffic rate during the two-hour time interval is 
4.847izIbps. 

Dauhechies 5 wavelets is used and the choice of number of 
vanishing moment of 5 for Daubechies wavelet is used to fur- 
ther diminish the effect of polynomial trend in traffic due to non- 
stationarity. The analysis program is modified from the program 
of Veitch et al. [7]. The data being analyzed is the incoming 
traffic rate measured in the number of bytes per lOnzs. lOms 
interval is chosen to avoid the situation that there may he no in- 
coming packets during a time interval. Fig.3 shows the logscale 
diagram of E(Ej)  together with the 95% confidence interval of 
the estimation. The bottom axis of the figure shows the scale j 
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Fig. 3. Wavelet analysis of the Vaffic 

and the top axis of the figure shows the corresponding timescale. 
As shown in the figure, the LAN traffic presents complex bis- 
caling behavior. The traffic trace is consistent with asymptotic 
self-similarity or LRD at large timescale, but the large timescale 
and small timescale have distinct scaling behavior. The traffic 
fluctuation at small timescale is less correlated, which is indi- 
cated by a much less scaling exponent a (or equivalently H). 
A value of CY equal zero indicates the traffic fluctuation at small 
timescale is independent. The transition from small timescale 
behavior to large timescale behavior occurs around timescale 
80ms - 320ms, which is the typical round-trip time of the net- 
work. Since the small timescale features of traffic play an impor- 
tant role in network performance [l I], [15], the distinct scaling 
behavior of traffic in small timescale and large timescale indi- 
cates that an exact self-similar model which is characterized by 
a single scaling exponent, e.g. Fractional Gaussian Noise model, 
is inappropriate for modelling LAN traffic. 

In the following sections, the small timescale and large 
timescale features of traffic are analyzed separately. 

V. THE IMPACT O F  BUFFER ON THE SCALING 
BEHAVIOR 

In this section, we investigate the impact of buffer on the scal- 
ing behavior of traffic using simulations. The simulations are 
implemented using OPNET. We let the traffic analyzed in sec- 
tion N pass through a queue with a link capacity of 1.5, where 
the link capacity is normalized by the average traffic rate, and 
vary the buffer size of the queue from lms to lOOms to observe 
the impact of buffer on traffic. Here the size of the buffer is ex- 
pressed in time unit, which is obtained by dividing the buffer 
size by the link capacity. Fig.4 shows the variation of the small 
timescale scaling exponent with the buffer size together with 
the 95% confidence interval for the scaling exponent estima- 
tion. Please refer to [7] for the detailed procedure on calculating 
the confidence interval. Fig.5 shows the variation of the large 
timescale scaling exponent. Fig.6 shows the variation of E(EJ) 
with the buffer size for some typical buffer sizes. Table I shows 
the packet loss ratio (PLR). 

Simulation results reveal that buffer size has different im- 
pact on the scaling behavior of traffic at large timescale and 
small timescale. At large timescale, buffer size has essentially 
no impact on the scaling exponent of traffic. However buffer 
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Fig. 4. Variation of scaling exponent a at small timescale with buffer size 
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Fig. 5.  Variation of scaling exponent a at large timescale with buffer sire 

size can dramatically change the scaling exponent of traffic at 
small timescale. When the buffer size is increased from lms to 
looms, the scaling exponent at small timescale increases from 
0.308 to 0.804. Fig.6 shows that generally with the decrease of 
buffer size, E(Ej) at both large timescale and small timescales 
decreases. This indicates that energy of the traffic deceases both 
at small timescale and at large timescale with decreasing buffer 
size. Therefore traffic will be less bursty with decreasing buffer 
size. This effect is most likely due to traffic loss. Fig.6 also 
reveals the intriguing behavior that when buffer size varies be- 
tween lOms and looms, while the large timescale energy in- 
creases with increasing buffer size, the small timescale energy 
decreases slightly with increasing buffer size. Table I indicates 
that the traffic has moderate loss when buffer size falls in this re- 
gion. This fact seems to suggest that in this region, with increas- 
ing buffer size, the buffer can smooth the transient component of 
traffic and thus transfer a portion of the small timescale energy 
to large timescale. In real network, traffic loss is mostly caused 
by bursty traffic, which is the high frequency (small timescale) 
component of traffic. Therefore this delicate exchange of energy 
between small timescale and large timescale, although small in 

TABLE I 
VARIATION OF PACKET LOSS RATIO WITH BUFFER SIZE 

buffer(ms) I I I 5 I I0 I 20 I 30 I 50 I 75 I 100 
I .38 I ,081 I ,035 I ,016 I ,011 I ,007 I .XI5 I ,005 PLR 

magnitude, may have significant impact of traffic loss. Further 
investigation is being performed to fully understand this effect. 

VI. BANDWIDTH LIMITING EFFECT 

In this section, we shall investigate the impact of the band- 
width limiting effect on the scaling behavior of traffic. We let 
the traffic pass through a queue with varying link capacity and 
fix the buffer size at 90.89kB, which gives a normalized buffer 
size of lOOms at a link capacity of 1.5. The link capacity is nor- 
malized with respect to the average traffic rate. Fig.7 shows the 
variation of the small timescale scaling exponent with the link 
capacity. Fig.8 shows the variation of the large timescale scal- 
ing exponent. Fig.9 shows the variation of E(Ej). The PLRs 
at link capacities 1.5 and 2 are 0.0047 and 0.0017 respectively. 
When the link capacity is increased beyond 3, the PLR becomes 
essentially zero. 

. .  . .  
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Fig. 7. Variation of scaling exponent a at small timescale with the link capacity 

It is shown in the figures that the bandwidth limiting effect 
has different impact on the scaling behavior of traffic at large 
timescale and small timescale. At large timescale, the band- 
width limiting effect has almost no impact on the scaling ex- 
ponent. At small timescale the scaling exponent increases dra- 
matically with decreasing link capacity. As shown in Fig. 3, 
the small timescale scaling exponent of the traffic before pass- 
ing the link is 0.352. Fig. 7 shows that when the traffic passes 
through a link with a large link capacity, the small timescale 
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Fig. 8. Variation of scaling exponent a at large timescale with the link capacily 

scaling exponent remains almost constant. But when the traf- 
fic passes through a link with a much smaller link capacity, the 
small timescale scaling exponent increases dramatically. 

Moreover, when the link capacity is increased beyond 3, there 
is no traffic loss. However both the small timescale scaling ex- 
ponent and energy, as indicated by E(E,) in Fig.9, still change 
with the link capacity. Specifically, the small timescale scaling 
exponent increases with decreasing link capacity and the small 
timescale energy decreases with decreasing link capacity (in- 
creasing link utilization). In contrast the large timescale scaling 
exponent and energy is essentially constant in this region. This 
reveals that it is not necessary for traffic loss to occur in order for 
the network to modify the scaling behavior of traffic and smooth 
the traffic. 

Finally, Fig.9 shows that the energy of the signal at both small 
timescale and large timescale decreases with increasing link uti- 
lization. The decrease at small timescale is more significant than 
that at large timescale. This shows that at heavy link utilization, 
the traffic will become smoother both at small timescale and at 
large timescale but small timescale variations of traffic is more 
heavily affected by the link utilization. 

VII. CONCLUSION 

In this paper, we analyzed the impact of network mechanisms, 
i.e. bandwidth and buffer, in shaping the traffic. Analysis re- 
sults showed that both bandwidth and buffer can significantly 

change the small timescale scaling exponent of traffic. How- 
ever their effect on the large timescale scaling exponent is al- 
most negligible. Moreover the use of smaller buffer and smaller 
link capacity can effectively reduce the energy of traffic at small 
timescale, thus smooth the traffic. Simulation results indicated 
that this effect can be achieved even when there is no traffic 
loss. A plausible application of this result is that the use of a 
small but sufficient link capacity such that no traffic loss occurs 
at the network edge can achieve better performance than using a 
very large link capacity. The reason is that traffic becomes less 
bursty with smaller link capacity. Therefore traffic entering into 
the core network will be smoother and less traffic loss can be 
expected at the core network, which is usually the bottleneck of 
the traffic congestion. Moreover, our preliminary analysis also 
revealed the intriguing behavior of buffer that it can transfer a 
portion of small timescale energy to large timescale, therefore 
the traffic becomes less bursty at small timescale. This is a di- 
rect evidence that buffer can effectively smooth small timescale 
(high frequency) traffic variations and reduce the burstiness of 
traffic. Further research is being performed to investigate this 
effect and its performance implication in real network. 
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